共查询到20条相似文献,搜索用时 15 毫秒
1.
Advanced glycation end products (AGEs) play an important role in vascular complications of diabetes, including fibrinolytic abnormalities.Pioglitazone, a peroxisome proliferator-activated receptor gamma (PPARΥ) agonist, has recently been shown to reduce circulating plasminogen activator inhibitor-1 (PAI-1) levels in diabetes mellitus. In the present study, we investigated the effects of pioglitazone on the expression of local PAI-1 in rat vascular smooth muscle cells (VSMCs) induced by AGEs and the underlying mechanism. The result showed that AGEs could enhance the PAI-1 expression by 5.1-fold in mRNA and 2.7-fold in protein level, as evaluated by real-time RT-PCR and Western blotting,respectively. Pioglitazone was found to down-regulate the AGE-stimulated PAI-1 expression in VSMCs. However, these inhibitory effects were partially attenuated by the PPARΥ antagonist, GW9662. Furthermore, we found that AGEs induced a rapid increase in phosphorylation and activation of extracellular signal-regulated protein kinase 1/2 (ERK 1/2). The ERK kinase inhibitor, UO126, partially prevented the induction of PAI-1 by AGEs. Moreover, pioglitazone was also found to inhibit the phosphorylation of ERKi/2. Taken together, it was concluded that pioglitazone could inhibit AGE-induced PAI-1 expression, which was mediated by the ERK1/2 and PPARΥ pathways. Our findings suggestedpioglitazone had a therapeutic potential in improving fibrinolytic activity, and consequently preventing thromboembolic complications of diabetes and cardiovascular disease. 相似文献
2.
There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenic reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-γ (PPARγ). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-κB activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE expression via PPARγ activation. 相似文献
3.
We explored the in vitro effects of Rosiglitazone (RZG), a PPARγ agonist, on human pancreatic islet dysfunctions induced by chronic free fatty acid exposure. We demonstrated that RZG beneficial effects on insulin secretion and apoptosis did not imply PDX-1 or insulin gene modulation. It rather involved, through a PPARγ-dependent mechanism, a reduction of iNOS overexpressed in lipotoxic islets. This reduction likely led to the restoration of ATP level and insulin secretion as well as the decrease in apoptosis. More interestingly, we also demonstrated that RZG beneficial effects involved PPARγ-independent mechanisms. RZG treatment led to a limitation of oxidative stress exemplified by an increase of GPx and SOD expression. It also increased UCP2 expression that seemed to display antioxidant action in this model. Thus, RZG did not appear to exert a direct action on insulin expression but rather an indirect action on insulin secretion and apoptosis, through PPARγ-dependent and -independent mechanisms, via regulation of nitrogen and oxygen reactive species injury. 相似文献
4.
Glycosaminoglycans are extracellular matrix components related to several biological functions and diseases. Chondroitin sulfate is a sulphated glycosaminoglycan synthesized as part of proteoglycan molecules. They are frequently associated with amyloid deposits and possess an active role in amyloid fibril formation. Recently, a neuroprotective effect of extracellular matrix components against amyloid toxicity and oxidative stress has been reported. Advanced glycation end products (AGEs), the end products of the glycation reaction, have been linked to amyloid-based neurodegenerative disease as associated with oxidative stress and inflammation. In this study we have analyzed the effect of chondroitin sulfate isolated from different species, in comparison with a new biotechnological unsulfated chondroitin, in the amyloid aggregation process of insulin, as well as the ability to prevent the formation of AGEs and related toxicity. The results have showed a determining role of chondroitin sulfate groups in modulating insulin amyloid aggregation. In addition, both sulfated and unsulfated chondroitins have shown protective properties against amyloid and AGEs-induced toxicity. These data are very relevant as a protective effect of these glycosaminoglycans in the AGE-induced toxicity was never observed before. Moreover, considering the issues related to the purity and safety of chondroitin from natural sources, this study suggests a new potential application for the biotechnological chondroitin. 相似文献
5.
AbstractAdvanced glycation end-products (AGEs) are a heterogeneous group of compounds formed by the Maillard chemical process of non- enzymatic glycation of free amino groups of proteins, lipids and nucleic acids. This chemical modification of biomolecules is triggered by endogeneous hyperglycaemic or oxidative stress-related processes. Additionally, AGEs can derive from exogenous, mostly diet-related, sources. Considering that AGE accumulation in tissues correlates with ageing and is a hallmark in several age-related diseases it is not surprising that the role of AGEs in ageing and pathology has become increasingly evident. The receptor for AGEs (RAGE) is a single transmembrane protein being expressed in a wide variety of human cells. RAGE binds a broad repertoire of extracellular ligands and mediates responses to stress conditions by activating multiple signal transduction pathways being mostly responsible for acute and/or chronic inflammation. RAGE activation has been implicated in ageing as well as in a number of age-related diseases, including atherosclerosis, neurodegeneration, arthritis, stoke, diabetes and cancer. Here we present a synopsis of findings that relate to AGEs-reported implication in cell signalling pathways and ageing, as well as in pathology. Potential implications and opportunities for translational research and the development of new therapies are also discussed. 相似文献
6.
高糖环境下体内积聚的晚期糖基化终产物(advanced glycation end products,AGEs)是糖尿病慢性并发症的主要致病因素.AGEs可通过对蛋白的修饰直接作用于机体或通过受体介导的作用影响机体.本文就AGEs的来源、病理生理作用,尤其是在糖尿病肾病(diabetic nephropathy,DN)发生发展中的作用及治疗干预作一综述. 相似文献
7.
The retina is exposed to a lifetime of potentially damaging environmental and physiological factors that make the component cells exquisitely sensitive to age-related processes. Retinal ageing is complex and a raft of abnormalities can accumulate in all layers of the retina. Some of this pathology serves as a sinister preamble to serious conditions such as age-related macular degeneration (AMD) which remains the leading cause of irreversible blindness in the Western world. 相似文献
8.
Advanced glycation end products (AGEs) are implicated in the development of diabetic complications via the receptor for AGEs (RAGE). We have reported that the 3-hydroxypyridinium (3HP)-containing AGEs derived from α-hydroxyaldehydes physically interact with RAGE and show cytotoxicity. Lactaldehyde (LA) is formed from a reaction between threonine and myeloperoxidase, but no LA-derived AGEs have been characterized. Here, we identify the structure and physiological effects of an AGE derived from LA. We isolated a novel 3HP derivative, 2-acetamido-6-(3-hydroxy-5-methyl-pyridin-1-ium-1-yl)hexanoate, named as N-acetyl-LAPL (lactaldehyde-derived pyridinium-type lysine adduct), from a mixture of LA with Nα-acetyl-L-lysine. LAPL was also detected in the LA-modified protein. LAPL elicited toxicity in PC12 neuronal cells, but the effect was suppressed by the soluble form of RAGE as a decoy receptor. Moreover, surface plasmon resonance-based analysis revealed that LAPL specifically binds to recombinant RAGE. These results indicate that LA generates an AGE containing the 3HP moiety and contributes to RAGE-dependent cytotoxicity. Abbreviations: AGEs: advanced glycation end products; RAGE: receptor for advanced glycation end products; 3HP: 3-hydroxypyridinium; LA: lactaldehyde; LAPL: lactaldehyde-derived pyridinium-type lysine adduct; BSA: bovine serum albumin; GLAP: glyceraldehyde-derived pyridinium; MPO: myeloperoxidase; HFBA: heptafluorobutyric acid; TFA: trifluoroacetic acid; HPLC: high performance liquid chromatography; LC-ESI-QTOF-MS: liquid chromatography-electrospray ionization-quadrupole time-of-flight-mass spectrometry; NMR: nuclear magnetic resonance; LA-BSA: lactaldehyde-modified bovine serum albumin; PBS: phosphate buffered saline, GST, glutathione S-transferase; SPR: surface plasmon resonance; OP-lysine: 2-ammonio-6-(3-oxidopyridinium-1-yl)hexanoate; GLO1: glyoxalase 1; MG, methylglyoxal 相似文献
9.
Summary L-Arginine (Arg) has a structure similar to that of aminoguanidine (AG) and may inhibit glycation and advanced glycosylated end product (AGE) formation. Human serum albumin (HSA) (100mg/ml) was incubated for 2 weeks with glucose (200mM) at 37°C or with glucose and equimolar concentrations of Arg, N- -acetyl Arg, or AG with or without 25mM diethylenetriaminepentaacetic acid (DTPA). In the absence of DTPA, electrospray ionization mass spectrometry showed a 70% reduction of covalently bound glucose in the presence of Arg and a 30% reduction with AG. Digestibility by trypsin of HSA incubated with glucose and Arg was similar to that of HSA incubated alone. This suggests less covalent modification of HSA in the presence of Arg as compared with the absence of Arg. When incubations contained DTPA, autoradiography showed less 14C labeling of HSA subunits in the presence of Arg and AG. When the -amino group of Arg was blocked with an acetyl group, labeling was similar to that of HSA incubated with glucose, suggesting involvement of the -amino group in the inhibition. Fluorescence of HSA at ex 370 and em 440 was reduced with Arg, but AG was more effective than Arg. These results suggest that Arg, like AG, can inhibit glycation and AGE formation.Presented in part at the FASEB meeting, Atlanta, GA, 1991. 相似文献
10.
The blood-brain barrier (BBB) is a biological unit composed of capillary endothelial cells and astrocytes. Here we examined the effects of various types of advanced glycation end-products (AGEs) on astrocytes and BBB-forming endothelial cells. While no type of AGE we examined changed the permeability of endothelial sheets, glyceraldehyde-derived AGE induced VEGF expression most significantly in astrocytes. The expression of glial cell line-derived neurotrophic factor (GDNF), which reduces the vascular permeability, was decreased in the astrocytes by treatment with glyceraldehyde-derived AGE. These results indicate that glyceraldehyde-derived AGE is the biologically active substance for astrocytes by regulating the VEGF and GDNF expression, which is causally contributing to an increase in the permeability of the BBB. 相似文献
11.
Physiological concentration of Mg 2+, Cu 2+, and Zn 2+ accelerated AGE formation only in glucose-mediated conditions, which was effectively inhibited by chelating ligands. Only quercetin (10) inhibited MGO-mediated AGE formation as well as glucose- and ribose-mediated AGE formation among 10 polyphenols ( 1–10) tested. We performed an additional structure-activity relationship (SAR) study on flavanols ( 10, 11, 12, 13, and 14). Morin ( 12) and kaempherol ( 14) showed inhibitory activity against MGO-mediated AGE formation, whereas rutin ( 11) and fisetin ( 13) did not. These observations indicate that 3,5,7,4′-tetrahydroxy and 4-keto groups of 10 are important to yield newly revised mono-MGO adducts ( 16 and 17) and di-MGO adduct ( 18) having cyclic hemiacetals, while 3′-hydroxy group is not essential. We propose here a comprehensive inhibitory mechanism of 10 against AGE formation including chelation effect, trapping of MGO, and trapping of reactive oxygen species (ROS), which leads to oxidative degradation of 18 to 3,4-dihydroxybenzoic acid ( 15) and other fragments. 相似文献
12.
本文探讨了晚期糖化终产物(advanrced glycation end products,AGEs)修饰蛋白对内皮细胞通透性及细胞骨架肌动蛋白的形态学影响,以及特异的AGEs受体(receptors for AGEs,RAGE)、氧化应激和p38 MAPK通路在此病理过程中的作用。用不同浓度的AGEs修饰人血清白蛋白(AGE-HSA)与人脐静脉内皮细胞株ECV304在体外共同培养不同时间,并设立对照组进行比较,采用TRITC荧光标记白蛋白漏出法测定单层内皮细胞的通透系数Pa值,荧光染色法示细胞骨架的形态学改变。与对照组相比,AGE-HSA以时间和剂量依赖的方式引起单层内皮细胞通透性的升高及细胞骨架肌动蛋白F-actin形态的改变;可溶性RAGE的抗体(anti-RAGE IgG)、NADPH氧化酶抑制剂(apocynin)及p38抑制剂SB203580均可减轻AGEs对内皮细胞屏障功能和形态的影响。结果提示,AGEs修饰蛋白对单层内皮细胞通透性及骨架重排的作用可能通过与内皮细胞上的RAGE结合,引起细胞内的氧化应激,并激活p38 MAPK通路所介导。 相似文献
13.
Acetoacetate (AA) is an important ketone body, which produces reactive oxygen species (ROS). Advanced glycation end products (AGEs) are defined as final products of glycation process whose production is influenced by the levels of ROS. The accumulation of AGEs in the body contributes to pathogenesis of many diseases including complications of diabetes, and Alzheimer’s and Parkinson’s disease. Here, we evaluated the impact of AA on production of AGEs upon incubation of human serum albumin (HSA) with glucose. The effect of AA on the AGEs formation of HSA was studied under physiological conditions after incubation with glucose for 35 days. The physical techniques including circular dichroism (CD) and fluorescence spectroscopy were used to assess the impact of AA on formation and structural changes of glycated HSA (GHSA). Our results indicated that the secondary and tertiary structural changes of GHSA were increased in the presence of AA. The fluorescence intensity measurements of AGEs also showed an increase in AGEs formation. Acetoacetate has an activator effect in formation of AGEs through ROS production. The presence of AA may result in enhanced glycation in the presence of glucose and severity of complications associated with accumulation of AGEs. 相似文献
14.
It has been reported that apelin functions as an adipokine, which has been associated to obesity and insulin resistance. The
objective of this study was to analyze the apelin mRNA expression in white adipose tissue (WAT) from high-fat (Cafeteria)
fed rats, in order to examine potential relationships with obesity markers and other related risk factors. Animals fed on
the high-fat diet during 56 days increased their body weight, total body fat and WAT depots weights when compared to controls.
Apelin subcutaneous mRNA expression was higher in the Cafeteria than in the Control fed group and this increase was partially
reversed by dietary vitamin C supplementation. Statistically significant associations between subcutaneous apelin gene expression
and almost all the studied variables were identified, being of special interest the correlations found with serum leptin ( r = 0.517), liver malondialdehyde (MDA) levels ( r = 0.477), and leptin, IRS-3 and IL-1ra retroperitoneal mRNA expression ( r = 0.701; r = 0.692 and r = 0.561, respectively). These associations evidence a possible role for apelin in the excessive weight gain induced by high-fat
feeding and increased adiposity, insulin-resistance, liver oxidative stress and inflammation. 相似文献
15.
Sitagliptin is a stable inhibitor of dipeptidyl peptidase-IV, a responsible enzyme that mainly inactivates glucagon-like peptide-1 (GLP-1), and now one of the widely used agents for the treatment of diabetes. However, effects of sitagliptin on vascular injury are largely unknown. Since advanced glycation end products (AGEs) and their receptor (RAGE) axis contribute to vascular damage in diabetes, we investigated here whether sitagliptin inhibits the AGE-RAGE-induced endothelial cell damage in vitro. Although effects of 10?pM GLP-1 or 0.5?μM sitagliptin monotherapy on RAGE gene and protein expression were modest, combination therapy completely blocked the AGE-induced increase in RAGE mRNA and protein levels in human umbilical vein endothelial cells (HUVEC). AGEs induced reactive oxygen species (ROS) generation and reduced endothelial nitric oxide synthase (eNOS) mRNA level in HUVEC, both of which were also completely blocked by the treatment with 10?pM GLP-1 and 0.5?μM sitagliptin, but not with GLP-1 or sitagliptin monotherapy. Further, anti-RAGE antibody restored the decrease in eNOS mRNA level in AGE-exposed HUVEC. The present study suggests that sitagliptin augments the effects of GLP-1 on eNOS mRNA level in AGE-exposed HUVEC by suppressing RAGE expression and subsequent ROS generation. Sitagliptin may work as a vasoprotecitve agent in diabetes by blocking the AGE-RAGE axis. 相似文献
16.
BackgroundAdvanced glycation end products (AGEs) have been proposed to be involved in pulmonary fibrosis, but its role in this process has not been fully understood. To investigate the role of AGE formation in pulmonary fibrosis, we used a bleomycin (BLM)-stimulated rat model treated with aminoguanidine (AG), a crosslink inhibitor of AGE formation. MethodsRats were intratracheally instilled with BLM (5 mg/kg) and orally administered with AG (40, 80, 120 mg/kg) once daily for two weeks. AGEs level in lung tissue was determined by ELISA and pulmonary fibrosis was evaluated by Ashcroft score and hydroxyproline assay. The expression of heat shock protein 47 (HSP47), a collagen specific molecular chaperone, was measured with RT-PCR and Western blot. Moreover, TGFβ1 and its downstream Smad proteins were analyzed by Western blot. ResultsAGEs level in rat lungs, as well as lung hydroxyproline content and Ashcroft score, was significantly enhanced by BLM stimulation, which was abrogated by AG treatment. BLM significantly increased the expression of HSP47 mRNA and protein in lung tissues, and AG treatment markedly decreased BLM-induced HSP47 expression in a dose-dependent manner (p < 0.05). In addition, AG dose-dependently downregulated BLM-stimulated overexpressions of TGFβ1, phosphorylated (p)-Smad2 and p-Smad3 protein in lung tissues. ConclusionThese findings suggest AGE formation may participate in the process of BLM-induced pulmonary fibrosis, and blockade of AGE formation by AG treatment attenuates BLM-induced pulmonary fibrosis in rats, which is implicated in inhibition of HSP47 expression and TGFβ/Smads signaling. 相似文献
17.
Advanced glycation end products (AGEs) form by a non-enzymatic reaction between reducing sugars and biological proteins, which play an important role in the pathogenesis of atherosclerosis. In this study, we assessed AGEs effects on human umbilical vein endothelial cells (HUVECs) growth, proliferation and apoptosis. Additionally, we investigated whether hepatocyte growth factor (HGF), an anti-apoptotic factor for endothelial cells, prevents AGEs-induced apoptosis of HUVECs. HUVECs were treated with AGEs in the presence or absence of HGF. Treatment of HUVECs with AGEs changed cell morphology, decreased cell viability, and induced DNA fragmentation, leading to apoptosis. Apoptosis was induced by AGEs in a dose- and time-dependent fashion. AGEs markedly elevated Bax and decreased NF-kappaB, but not Bcl-2 expression. Additionally, AGEs significantly inhibited cell growth through a pro-apoptotic action involving caspase-3 and -9 activations in HUVECs. Most importantly, pretreatment with HGF protected against AGEs-induced cytotoxicity in the endothelial cells. HGF significantly promoted the expression of Bcl-2 and NF-kappaB, while decreasing the activities of caspase-3 and -9 without affecting Bax level. Our data suggest that AGEs induce apoptosis in endothelial cells. HGF effectively attenuate AGEs-induced endothelial cell apoptosis. These findings provide new perspectives in the role of HGF in cardiovascular disease. 相似文献
18.
Serum levels of advanced glycation end products (AGEs) are associated with an acute phase reactant, C-reactive proteins (CRP) in diabetic patients. However, whether AGEs could directly stimulate hepatic CRP production remains to be elucidated. We found here that AGEs upregulated CRP mRNA levels in cultured Hep3B cells via Rac-1 activation, which was blocked by pigment epithelium-derived factor (PEDF). Our present study suggests that AGEs are one of the potent inducers of CRP and that PEDF may work as an anti-inflammatory agent against AGEs in the liver. 相似文献
19.
Anti-epidermal growth factor receptor (EGFR) drugs including erlotinib cause a side effect of hypomagnesemia. In lung adenocarcinoma A549 cells, anticancer agents such as cisplatin and doxorubicin dose-dependently increased toxicity, but the effects were significantly suppressed by culturing the cells in low Mg 2+-containing media. To obtain the maximum effect in cancer chemotherapy, it should be necessary to prevent the reduction of body Mg 2+ content. Anti-EGFR drugs inhibit EGF-induced elevation of transient receptor potential melastatin 6 (TRPM6) Mg 2+ channel in renal tubular epithelial NRK-52E cells. Here, we found that rosiglitazone, an antidiabetic drug, and all- trans-retinoic acid (ATRA), a vitamin A derivative, increase the messenger RNA (mRNA) level of TRPM6 in the presence of erlotinib. The rosiglitazone- and ATRA-induced elevation of mRNA level, Mg 2+ influx, and promoter activity of TRPM6 were inhibited by GW-9662, a potent antagonist of peroxisome proliferator-activated receptor (PPAR)γ, and LE135, a retinoic acid receptor (RAR) antagonist, respectively. Rosiglitazone increased the phosphorylation and nuclear localization levels of PPARγ, which were inhibited by GW-9662. In contrast, RAR was mainly distributed in the nuclei under control conditions, which was unchanged by ATRA and LE135. The promoter activity of TRPM6 was inhibited by a mutation in the peroxisome proliferator hormone response element (PPRE). A chromatin immunoprecipitation assay revealed that PPARγ and RAR bind to the PPRE, which was blocked by GW-9662 and LE135, respectively. These results suggest that rosiglitazone and ATRA reverse the reduction in Mg 2+ reabsorption caused by anti-EGFR drugs. 相似文献
|