首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutron dose coefficients for standard irradiation geometries have been reported in International Commission on Radiological Protection (ICRP) Publication 116 for the ICRP Publication 110 adult reference phantoms. In the present work, organ and effective dose coefficients have been calculated for a receptor in both upright and articulated (bent) postures representing more realistic working postures exposed to a mono-energetic neutron radiation field. This work builds upon prior work by Dewji and co-workers comparing upright and bent postures for exposure to mono-energetic photon fields. Simulations were conducted using the Oak Ridge National Laboratory’s articulated stylized adult phantom, “Phantom wIth Moving Arms and Legs” (PIMAL) software package, and the Monte Carlo N-Particle (MCNP) version 6.1.1 radiation transport code. Organ doses were compared for the upright and bent (45° and 90°) phantom postures for neutron energies ranging from 1 × 10??9 to 20 MeV for the ICRP Publication 116 external exposure geometries—antero-posterior (AP), postero-anterior (PA), and left and right lateral (LLAT, RLAT). Using both male and female phantoms, effective dose coefficients were computed using ICRP Publication 103 methodology. The resulting coefficients for articulated phantoms were compared to those of the upright phantom. Computed organ and effective dose coefficients are discussed as a function of neutron energy, phantom posture, and source irradiation geometry. For example, it is shown here that for the AP and PA irradiation geometries, the differences in the organ coefficients between the upright and bent posture become more pronounced with increasing bending angle. In the AP geometry, the brain dose coefficients are expectedly higher in the bent postures than in the upright posture, while all other organs have lower dose coefficients, with the thyroid showing the greatest difference. Overall, the effective dose estimated for the upright phantom is more conservative than that for the articulated phantom, which may have ramifications in the estimation or reconstruction of radiation doses.  相似文献   

2.
Pretreatment intensity-modulated radiotherapy quality assurance is performed using simple rectangular or cylindrical phantoms; thus, the dosimetric errors caused by complex patient-specific anatomy are absent in the evaluation objects. In this study, we construct a system for generating patient-specific three-dimensional (3D)-printed phantoms for radiotherapy dosimetry. An anthropomorphic head phantom containing the bone and hollow of the paranasal sinus is scanned by computed tomography (CT). Based on surface rendering data, a patient-specific phantom is formed using a fused-deposition-modeling-based 3D printer, with a polylactic acid filament as the printing material. Radiophotoluminescence glass dosimeters can be inserted in the 3D-printed phantom. The phantom shape, CT value, and absorbed doses are compared between the actual and 3D-printed phantoms. The shape difference between the actual and printed phantoms is less than 1 mm except in the bottom surface region. The average CT value of the infill region in the 3D-printed phantom is −6 ± 18 Hounsfield units (HU) and that of the vertical shell region is 126 ± 18 HU. When the same plans were irradiated, the dose differences were generally less than 2%. These results demonstrate the feasibility of the 3D-printed phantom for artificial in vivo dosimetry in radiotherapy quality assurance.  相似文献   

3.
Absorbed-dose and dose-equivalent rates for astronauts were estimated by multiplying fluence-to-dose conversion coefficients in the units of Gy.cm2 and Sv.cm2, respectively, and cosmic-ray fluxes around spacecrafts in the unit of cm−2 s−1. The dose conversion coefficients employed in the calculation were evaluated using the general-purpose particle and heavy ion transport code system PHITS coupled to the male and female adult reference computational phantoms, which were released as a common ICRP/ICRU publication. The cosmic-ray fluxes inside and near to spacecrafts were also calculated by PHITS, using simplified geometries. The accuracy of the obtained absorbed-dose and dose-equivalent rates was verified by various experimental data measured both inside and outside spacecrafts. The calculations quantitatively show that the effective doses for astronauts are significantly greater than their corresponding effective dose equivalents, because of the numerical incompatibility between the radiation quality factors and the radiation weighting factors. These results demonstrate the usefulness of dose conversion coefficients in space dosimetry.  相似文献   

4.
5.
The mathematical phantom of the Brazilian man was developed because many anatomical differences exist between South Americans, Europeans and North Americans. The objective of this work was to compare specific absorbed fractions (SAF) obtained for a model of the Brazilian adult male with those for the reference adult calculated by Snyder et al. in 1974 and to evaluate the importance of these new values in calculating radiation doses in diagnosis and therapy. The length and mass of the total body for the Brazilian man phantom were obtained from tables provided by the Brazilian government (IBGE) in which the masses of organs were measured atautopsy. Monte Carlo methods (using the ALGAM-97 computer code) were applied to calculate SAF for internal organs and the total body. The mathematical phantom designed by Snyder et al. represents very closely Reference Man, as defined in ICRP publication 23. SAF for the whole body were not more than 15% different between the two phantoms. The differences between both models are more significant for individual organs. When the source organ is the lung and red marrow is the target, for initial photon energy of 10 keV, the results obtained indicate that marrow receives 64% more dose in Brazilian model than in the Reference Man model. Eighty tables were made for 97 distinct organs (target-source) and the comparison made between the, Brazilian man and Reference man.  相似文献   

6.
PurposeThe purpose of this study was to develop and validate a Monte Carlo (MC) simulation tool for patient dose assessment for a 320 detector-row CT scanner, based on the recommendations of International Commission on Radiological Protection (ICRP). Additionally, the simulation was applied on four clinical acquisition protocols, with and without automatic tube current modulation (TCM).MethodsThe MC simulation was based on EGS4 code and was developed specifically for a 320 detector-row cone-beam CT scanner. The ICRP adult reference phantoms were used as patient models. Dose measurements were performed free-in-air and also in four CTDI phantoms: 150 mm and 350 mm long CT head and CT body phantoms. The MC program was validated by comparing simulations results with these actual measurements acquired under the same conditions. The measurements agreed with the simulations across all conditions within 5%. Patient dose assessment was performed for four clinical axial acquisitions using the ICRP adult reference phantoms, one of them using TCM.ResultsThe results were nearly always lower than those obtained from other dose calculator tools or published in other studies, which were obtained using mathematical phantoms in different CT systems. For the protocol with TCM organ doses were reduced by between 28 and 36%, compared to the results obtained using a fixed mA value.ConclusionsThe developed simulation program provides a useful tool for assessing doses in a 320 detector-row cone-beam CT scanner using ICRP adult reference computational phantoms and is ready to be applied to more complex protocols.  相似文献   

7.
The use of dose coefficients (DCs) based on the reference phantoms recommended by the International Commission on Radiological Protection (ICRP) with a fixed body size may produce errors to the estimated organ/tissue doses to be used, for example, for epidemiologic studies depending on the body size of cohort members. A set of percentile-specific computational phantoms that represent 10th, 50th, and 90th percentile standing heights and body masses in adult male and female Caucasian populations were recently developed by modifying the mesh-type ICRP reference computational phantoms (MRCPs). In the present study, these percentile-specific phantoms were used to calculate a comprehensive dataset of body-size-dependent DCs for photon external exposures by performing Monte Carlo dose calculations with the Geant4 code. The dataset includes the DCs of absorbed doses for 29 individual organs/tissues from 0.01 to 104 MeV photon energy, in the antero-posterior, postero-anterior, right lateral, left lateral, rotational, and isotropic geometries. The body-size-dependent DCs were compared with the DCs of the MRCPs in the reference body size, showing that the DCs of the MRCPs are generally similar to those of the 50th percentile standing height and body mass phantoms over the entire photon energy region except for low energies (≤ 0.03 MeV); the differences are mostly less than 10%. In contrast, there are significant differences in the DCs between the MRCPs and the 10th and 90th percentile standing height and body mass phantoms (i.e., H10M10 and H90M90). At energies of less than about 10 MeV, the MRCPs tended to under- and over-estimate the organ/tissue doses of the H10M10 and H90M90 phantoms, respectively. This tendency was revised at higher energies. The DCs of the percentile-specific phantoms were also compared with the previously published values of another phantom sets with similar body sizes, showing significant differences particularly at energies below about 0.1 MeV, which is mainly due to the different locations and depths of organs/tissues between the different phantom libraries. The DCs established in the present study should be useful to improve the dosimetric accuracy in the reconstructions of organ/tissue doses for individuals in risk assessment for epidemiologic investigations taking body sizes into account.  相似文献   

8.
In order to provide fundamental data required for dose evaluation due to environmental exposures, effective dose conversion coefficients, that is, the effective dose rate per unit activity per unit area, were calculated for a number of potentially important radionuclides, assuming an exponential distribution in ground, over a wide range of relaxation depths. The conversion coefficients were calculated for adults and a new-born baby on the basis of dosimetric methods that the authors and related researchers have previously developed, using Monte Carlo simulations and anthropomorphic computational phantoms. The differences in effective dose conversion coefficients due to body size between the adult and baby phantoms were found to lie within 50?%, for most cases; however, for some low energies, differences could amount to a factor of 3. The effective dose per unit source intensity per area was found to decrease by a factor of 2–5, for increasing relaxation depths from 0 to 5?g/cm2, above a source energy of 50?keV. It is also shown that implementation of the calculated coefficients into the computation of the tissue weighting factors and the adult reference computational phantoms of ICRP Publication 103 does not significantly influence the effective dose conversion coefficients of the environment. Consequently, the coefficients shown in this paper could be applied for the evaluation of effective doses, as defined according to both recommendations of ICRP Publications 103 and 60.  相似文献   

9.
Computational phantoms with articulated arms and legs have been constructed to enable the estimation of radiation dose in different postures. Through a graphical user interface, the Phantom wIth Moving Arms and Legs (PIMAL) version 4.1.0 software can be employed to articulate the posture of a phantom and generate a corresponding input deck for the Monte Carlo N-Particle (MCNP) radiation transport code. In this work, photon fluence-to-dose coefficients were computed using PIMAL to compare organ and effective doses for a stylized phantom in the standard upright position with those for phantoms in realistic work postures. The articulated phantoms represent working positions including fully and half bent torsos with extended arms for both the male and female reference adults. Dose coefficients are compared for both the upright and bent positions across monoenergetic photon energies: 0.05, 0.1, 0.5, 1.0, and 5.0 MeV. Additionally, the organ doses are compared across the International Commission on Radiological Protection’s standard external radiation exposure geometries: antero-posterior, postero-anterior, left and right lateral, and isotropic (AP, PA, LLAT, RLAT, and ISO). For the AP and PA irradiation geometries, differences in organ doses compared to the upright phantom become more profound with increasing bending angles and have doses largely overestimated for all organs except the brain in AP and bladder in PA. In LLAT and RLAT irradiation geometries, energy deposition for organs is more likely to be underestimated compared to the upright phantom, with no overall change despite increased bending angle. The ISO source geometry did not cause a significant difference in absorbed organ dose between the different phantoms, regardless of position. Organ and effective fluence-to-dose coefficients are tabulated. In the AP geometry, the effective dose at the 45° bent position is overestimated compared to the upright phantom below 1 MeV by as much as 27% and 82% in the 90° position. The effective dose in the 45° bent position was comparable to that in the 90° bent position for the LLAT and RLAT irradiation geometries. However, the upright phantom underestimates the effective dose to PIMAL in the LLAT and RLAT geometries by as much as 30% at 50 keV.  相似文献   

10.
In head computed tomography, radiation upon the eye lens (as an organ with high radiosensitivity) may cause lenticular opacity and cataracts. Therefore, quantitative dose assessment due to exposure of the eye lens and surrounding tissue is a matter of concern. For this purpose, an accurate eye model with realistic geometry and shape, in which different eye substructures are considered, is needed. To calculate the absorbed radiation dose of visual organs during head computed tomography scans, in this study, an existing sophisticated eye model was inserted at the related location in the head of the reference adult male phantom recommended by the International Commission on Radiological Protection (ICRP). Then absorbed doses and distributions of energy deposition in different parts of this eye model were calculated and compared with those based on a previous simple eye model. All calculations were done using the Monte Carlo code MCNP4C for tube voltages of 80, 100, 120 and 140 kVp. In spite of the similarity of total dose to the eye lens for both eye models, the dose delivered to the sensitive zone, which plays an important role in the induction of cataracts, was on average 3% higher for the sophisticated model as compared to the simple model. By increasing the tube voltage, differences between the total dose to the eye lens between the two phantoms decrease to 1%. Due to this level of agreement, use of the sophisticated eye model for patient dosimetry is not necessary. However, it still helps for an estimation of doses received by different eye substructures separately.  相似文献   

11.
Conversion coefficients from measurable quantities such as air kerma free-in-air or personal dose equivalent to effective dose were determined by phantom experiments. Heterogenic anthropomorphic phantoms representing children of one and five years age, and a Rando phantom representing an adult were exposed in the open field contaminated by different levels of radiocesium in the upper soil layer, in a forest site and inside a wooden house. LiF thermoluminescent (TL) detectors were used inside the phantoms for the estimation of organ doses and effective dose. Personal dosimeters similar to those used in radiation protection for individual dose measurements were placed onto the phantom surface (chest area). The ratios of dose values in separate organs to air kerma free-in-air varied from 0.69 to 1.15 for the children phantoms, and from 0.55 to 0.94 for the adult phantom, respectively, when irradiated in the open field. Body size (weight) was found to be the most important factor influencing the values of the conversion coefficients. The differences observed can reach approximately 40% when comparing conversion factors from air kerma free-in-air to effective dose for adults and newborns. For conversion coefficients from personal dose to effective dose, these differences can reach approximately 15%. The dependences of the various conversion coefficients on body mass were quantified by regression analysis. The results were compared with those calculated for a plane mono-energetic photon source having an energy of 700 keV and being located in the ground at a depth of 0.5 g cm−2. Calculated and measured conversion coefficients from air kerma free-in-air to effective dose agreed within 12%.  相似文献   

12.
External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients. In this paper, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133.  相似文献   

13.
PurposeTo estimate organ dose and effective dose for patients for cardiac CT as applied in an international multicenter study (CORE320) with a 320-Detector row CT scanner using Monte Carlo (MC) simulations and voxelized phantoms. The effect of positioning of the arms, off-centering the patient and heart rate on patient dose was analyzed.MethodsA MC code was tailored to simulate the geometry and characteristics of the CT scanner. The phantoms representing the adult reference male and female were implemented according to ICRP 110. Effective dose and organ doses were obtained for CT acquisition protocols for calcium scoring, coronary angiography and myocardial perfusion.ResultsFor low heart rate, the normalized effective dose (E) for cardiac CT was higher for female (5.6 mSv/100 mAs) compared to male (2.2 mSv/100 mAs) due to the contribution of female breast tissue. Averaged E for female and male was 11.3 mSv for the comprehensive cardiac protocol consisting of calcium scoring (1.9 mSv); coronary angiography including rest cardiac perfusion (5.1 mSv) and stress cardiac perfusion (4.3 mSv). These values almost doubled at higher heart rates (20.1 mSv). Excluding the arms increased effective dose by 6–8%, centering the patient showed no significant effect. The k-factor (0.028 mSv/mGy.cm) derived from this study leads to effective doses up to 2–3 times higher than the values obtained using now outdated methodologies.ConclusionMC modeling of cardiac CT examinations on realistic voxelized phantoms allowed us to assess patient doses accurately and we derived k-factors that are well above those published previously.  相似文献   

14.
15.
The estimation of patient dose using Monte Carlo (MC) simulations based on the available patient CT images is limited to the length of the scan. Software tools for dose estimation based on standard computational phantoms overcome this problem; however, they are limited with respect to taking individual patient anatomy into account. The purpose of this study was to generate whole-body patient models in order to take scattered radiation and over-scanning effects into account. Thorax examinations were performed on three physical anthropomorphic phantoms at tube voltages of 80 kV and 120 kV; absorbed dose was measured using thermoluminescence dosimeters (TLD). Whole-body voxel models were built as a combination of the acquired CT images appended by data taken from widely used anthropomorphic voxel phantoms. MC simulations were performed both for the CT image volumes alone and for the whole-body models. Measured and calculated dose distributions were compared for each TLD chip position; additionally, organ doses were determined.MC simulations based only on CT data underestimated dose by 8%–15% on average depending on patient size with highest underestimation values of 37% for the adult phantom at the caudal border of the image volume. The use of whole-body models substantially reduced these errors; measured and simulated results consistently agreed to better than 10%.This study demonstrates that combined whole-body models can provide three-dimensional dose distributions with improved accuracy. Using the presented concept should be of high interest for research studies which demand high accuracy, e.g. for dose optimization efforts.  相似文献   

16.
Effective dose (E) has been developed by the International Commission on Radiological Protection (ICRP) as a dose quantity with a link to risks of health detriment, mainly cancer. It is based on reference phantoms representing average individuals, but this is often forgotten in its application to medical exposures, for which its use sometimes goes beyond the intended purpose. There has been much debate about issues involved in the use of E in medicine and ICRP is preparing a publication with more information on this application. This article aims to describe the development of E and explain how it should be used in medicine. It discusses some of the issues that arise when E is applied to medical exposures and provides information on how its use might evolve in the future. The article concludes with responses to some frequently asked questions about uses of E that are in line with the forthcoming ICRP publication. The main use of E in medicine is in meaningful comparison of doses from different types of procedure not possible with measurable dose quantities. However, it can be used, with appropriate care, as a measure of possible cancer risks. When considering E to individual patients, it is important to note that the dose received will differ from that assessed for reference phantoms, and the risk per Sv is likely to be greater on average in children and less in older adults. Newer techniques allow the calculation of patient-specific E which should be distinguished from the reference quantity.  相似文献   

17.
PurposeMonte Carlo (MC) simulations are highly desirable for dose treatment planning and evaluation in radiation oncology. This is true also in emerging nuclear medicine applications such as internal radiotherapy with radionuclides. The purpose of this study is the validation of irtGPUMCD, a GPU-based MC code for dose calculations in internal radiotherapy.MethodsThe female and male phantoms of the International Commission on Radiological Protection (ICRP 110) were used as benchmarking geometries for this study focused on 177Lu and including 99mTc and 131I. Dose calculations were also conducted for a real patient. For phantoms, twelve anatomical structures were considered as target/source organs. The S-values were evaluated with irtGPUMCD simulations (108 photons), with gamma branching ratios of ICRP 107 publication. The 177Lu electrons S-values were calculated for source organs only, based on local deposition of dose in irtGPUMCD. The S-value relative difference between irtGPUMCD and IDAC-DOSE were evaluated for all targets/sources considered. A DVHs comparison with GATE was conducted. An exponential track length estimator was introduced in irtGPUMCD to increase computational efficiency.ResultsThe relative S-value differences between irtGPUMCD and IDAC-DOSE were <5% while this comparison with GATE was <1%. The DVHs dosimetric indices comparison between GATE and irtGPUMCD for the patient led to an excellent agreement (<2%). The time required for the simulation of 108 photons was 1.5 min for the female phantom, and one minute for the real patient (<1% uncertainty). These results are promising and let envision the use of irtGPUMCD for internal dosimetry in clinical applications.  相似文献   

18.
The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i) a mono-material paranasal sinus phantom for endoscopy training ii) a multi-material skull base simulator and iii) 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and fabrication techniques across a variety of otolaryngological sub-specialties suggests an emerging role for rapid prototyping technology in surgical education, procedure simulation, and clinical practice.  相似文献   

19.
Precise positioning of source and dosimeters is essential in the experimental determination of dosimetric characteristics of brachytherapy sources. Various near-water equivalent solid phantoms have been used to achieve the necessary precision in the positioning. However, the uncertainties in their chemical compositions may lead to non-negligible uncertainties in the determined doses. It is proposed here that ice may be used as an alternative to the conventional solid phantoms, since its chemical composition is identical to water while the positioning advantage associated with solid phantoms is retained. In this work, the feasibility of using ice as a solid phantom for brachytherapy dosimetry is investigated. Ice-to-water conversion factors are calculated at distances of 0.2–10 cm from the source, for six high- and low-energy photon-emitting brachytherapy sources and mono-energetic photons between 10 keV to 2.0 MeV. Practical issues and challenges associated with measuring dose in an ice phantom are discussed.  相似文献   

20.
In this study we evaluated the occupational exposures during an abdominal fluoroscopically guided interventional radiology procedure. We investigated the relation between the Body Mass Index (BMI), of the patient, and the conversion coefficient values (CC) for a set of dosimetric quantities, used to assess the exposure risks of medical radiation workers. The study was performed using a set of male and female virtual anthropomorphic phantoms, of different body weights and sizes. In addition to these phantoms, a female and a male phantom, named FASH3 and MASH3 (reference virtual anthropomorphic phantoms), were also used to represent the medical radiation workers. The CC values, obtained as a function of the dose area product, were calculated for 87 exposure scenarios. In each exposure scenario, three phantoms, implemented in the MCNPX 2.7.0 code, were simultaneously used. These phantoms were utilized to represent a patient and medical radiation workers. The results showed that increasing the BMI of the patient, adjusted for each patient protocol, the CC values for medical radiation workers decrease. It is important to note that these results were obtained with fixed exposure parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号