首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Enzymatic hydrolysis of corncob and ethanol fermentation from cellulosic hydrolysate were investigated. After corncob was pretreated by 1% H2SO4 at 108 °C for 3 h, the cellulosic residue was hydrolyzed by cellulase from Trichoderma reesei ZU-02 and the hydrolysis yield was 67.5%. Poor cellobiase activity in T. reesei cellulase restricted the conversion of cellobiose to glucose, and the accumulation of cellobiose caused severe feedback inhibition to the activities of β-1,4-endoglucanase and β-1,4-exoglucanase in cellulase system. Supplementing cellobiase from Aspergillus niger ZU-07 greatly reduced the inhibitory effect caused by cellobiose, and the hydrolysis yield was improved to 83.9% with enhanced cellobiase activity of 6.5 CBU g−1 substrate. Fed-batch hydrolysis process was started with a batch hydrolysis containing 100 g l−1 substrate, with cellulosic residue added at 6 and 12 h twice to get a final substrate concentration of 200 g l−1. After 60 h of reaction, the reducing sugar concentration reached 116.3 g l−1 with a hydrolysis yield of 79.5%. Further fermentation of cellulosic hydrolysate containing 95.3 g l−1 glucose was performed using Saccharomyces cerevisiae 316, and 45.7 g l−1 ethanol was obtained within 18 h. The research results are meaningful in fuel ethanol production from agricultural residue instead of grain starch.  相似文献   

2.
Enzyme hydrolysis of pretreated cellulosic materials slows as the concentration of solid biomass material increases, even though the ratio of enzyme to cellulose is kept constant. This form of inhibition is distinct from substrate and product inhibition, and has been noted for lignocellulosic materials including wood, corn stover, switch grass, and corn wet cake at solids concentrations greater than 10 g/L. Identification of enzyme inhibitors and moderation of their effects is of considerable practical importance since favorable ethanol production economics require that at least 200 g/L of cellulosic substrates be used to enable monosaccharide concentrations of 100 g/L, which result in ethanol titers of 50 g/L. Below about 45 g/L ethanol, distillation becomes energy inefficient. This work confirms that the phenols: vanillin, syringaldehyde, trans-cinnamic acid, and hydroxybenzoic acid, inhibit cellulose hydrolysis in wet cake by endo- and exo-cellulases, and cellobiose hydrolysis by β-glucosidase. A ratio of 4 mg of vanillin to 1 mg protein (0.5 FPU) reduces the rate of cellulose hydrolysis by 50%. β-Glucosidases from Trichoderma reesei and Aspergillus niger are less susceptible to inhibition and require about 10× and 100× higher concentrations of phenols for the same levels of inhibition. Phenols introduced with pretreated cellulose must be removed to maximize enzyme activity.  相似文献   

3.
A β-glucosidase gene from Putranjiva roxburghii (PRGH1) was heterologously expressed in Saccharomyces cerevisiae to enable growth on cellobiose. The recombinant enzyme was secreted to the culture medium, purified and biochemically characterized. The enzyme is a glycoprotein with a molecular weight of ∼68 kDa and exhibited enzymatic activity with β‐linked aryl substrates like pNP-Fuc, pNP-Glc, pNP-Gal and pNP-Cel with catalytic efficiency in that order. Significant enzyme activity was observed for cellobiose, however the enzyme activity was decreased with increase in chain length of glycan substrates. Using cellobiose as substrate, the enzyme showed optimal activity at pH 5.0 and 65 °C. The enzyme was thermostable up to 75 °C for 60 min. The enzyme showed significant resistance towards both glucose and ethanol induced inhibition. The recombinant S. cerevisiae strain showed advantages in cell growth, glucose and bio-ethanol production over the native strain with cellobiose as sole carbon source. In simultaneous saccharification and fermentation (SSF) experiments, the recombinant strain was used for bio-ethanol production from two different cellulosic biomass sources. At the end of the SSF, we obtained 9.47 g L−1 and 14.32 g L−1 of bio-ethanol by using carboxymethyl cellulose and pre-treated rice straw respectively. This is first report where a β-glucosidase gene from plant origin has been expressed in S. cerevisiae and used in SSF.  相似文献   

4.
The (hemi)cellulolytic systems of two novel lignocellulolytic Penicillium strains (Penicillium pulvillorum TUB F-2220 and P. cf. simplicissimum TUB F-2378) have been studied. The cultures of the Penicillium strains were characterized by high cellulase and β-glucosidase as well moderate xylanase activities compared to the Trichoderma reesei reference strains QM 6a and RUTC30 (volumetric or per secreted protein, respectively). Comparison of the novel Penicillium and T. reesei secreted enzyme mixtures in the hydrolysis of (ligno)cellulose substrates showed that the F-2220 enzyme mixture gave higher yields in the hydrolysis of crystalline cellulose (Avicel) and similar yields in hydrolysis of pre-treated spruce and wheat straw than enzyme mixture secreted by the T. reesei reference strain. The sensitivity of the Penicillium cellulase complexes to softwood (spruce) and grass (wheat straw) lignins was lignin and temperature dependent: inhibition of cellulose hydrolysis in the presence of wheat straw lignin was minor at 35 °C while at 45 °C by spruce lignin a clear inhibition was observed. The two main proteins in the F-2220 (hemi)cellulase complex were partially purified and identified by peptide sequence similarity as glycosyl hydrolases (cellobiohydrolases) of families 7 and 6. Adsorption of the GH7 enzyme PpCBH1 on cellulose and lignins was studied showing that the lignin adsorption of the enzyme is temperature and pH dependent. The ppcbh1 coding sequence was obtained using PCR cloning and the translated amino acid sequence of PpCBH1 showed up to 82% amino acid sequence identity to known Penicillium cellobiohydrolases.  相似文献   

5.
β-Glucosidase immobilized on magnetic chitosan microspheres for potential recycling usage in hydrolysis of cellulosic biomass was investigated. The immobilized enzyme had an activity of 6.4 U/g support under optimized condition when using cellobiose as substrate. Immobilization resulted in less increase of the apparent Km, low drift of the optimal pH, as well as improved stability relative to the free enzyme. The immobilized β-glucosidase was applied to enzymatic hydrolysis of corn straw to produce 60.2 g/l reducing sugar with a conversion rate of 78.2% over the course of a 32-h reaction. This conversion rate was maintained above 76.5% after recycling the enzyme for use in eight batches (total 256 h), showing favorable operational stability of the immobilized enzyme.  相似文献   

6.
An improved mutant was isolated from the cellulolytic fungus Stachybotrys sp. after nitrous acid mutagenesis. It was fed-batch cultivated on cellulose and its extracellular cellulases (mainly the endoglucanases and β-glucosidases) were analyzed. One β-glucosidase was purified to homogeneity after two steps, MonoQ and gel filtration and shown to be a dimeric protein. The molecular weight of each monomer is 85 kDa. Besides its aryl β-glucosidase activity towards salicin, methyl-umbellypheryl-β-d-glucoside (MUG) and p-nitrophenyl-β-d-glucoside (pNPG), it showed a true β-glucosidase activity since it splits cellobiose into two glucose monomers. The Vmax and the Km kinetics parameters with pNPG as substrate were 78 U/mg and 0.27 mM, respectively. The enzyme shows more affinity to pNPG than cellobiose and salicin whose apparent values of Km were, respectively, 2.22 and 37.14 mM. This enzyme exhibits its optimal activity at pH 5 and at 50 °C. Interestingly, this activity is not affected by denaturing gel conditions (SDS and β-mercaptoethanol) as long as it is not pre-heated. The N-terminal sequence of the purified enzyme showed a significant homology with the family 1 β-glucosidases of Trichoderma reesei and Humicola isolens even though these two enzymes are much smaller in size.  相似文献   

7.
Using chromatography on different matrixes, three β-glucosidases (120, 116, and 70 kDa) were isolated from enzymatic complexes of the mycelial fungi Aspergillus japonicus, Penicillium verruculosum, and Trichoderma reesei, respectively. The enzymes were identified by MALDI-TOF mass-spectrometry. Substrate specificity, kinetic parameters for hydrolysis of specific substrates, ability to catalyze the transglucosidation reaction, dependence of the enzymatic activity on pH and temperature, stability of the enzymes at different temperatures, adsorption ability on insoluble cellulose, and the influence of glucose on catalytic properties of the enzymes were investigated. According to the substrate specificity, the enzymes were shown to belong to two groups: i) β-glucosidase of A. japonicus exhibiting high specific activity to the low molecular weight substrates cellobiose and pNPG (the specific activity towards cellobiose was higher than towards pNPG) and low activity towards polysaccharide substrates (β-glucan from barley and laminarin); ii) β-glucosidases from P. verruculosum and T. reesei exhibiting relatively high activity to polysaccharide substrates and lower activity to low molecular weight substrates (activity to cellobiose was lower than to pNPG).  相似文献   

8.
《Process Biochemistry》2004,39(11):1543-1551
Corrugated cardboard samples were subjected to two-step saccharification. A first prehydrolysis stage was carried out to solubilise the hemicellulosic fraction as hemicellulosic sugars, and the solid phase from prehydrolysis was used as a substrate for the enzymic hydrolysis of cellulose. The prehydrolysis step was carried out for 0–180 min in media containing 1–3 wt.% of H2SO4 and the fraction of solid recovered after treatments and the compositions of solid and liquid phases from treatments were measured. The susceptibility of prehydrolysed solids towards the enzymic hydrolysis was assessed in further experiments. Under selected prehydrolysis conditions (3% H2SO4, 180 min), 78.2% of initial hemicelluloses was saccharified, leading to liquors containing up to 10 g hemicellulosic sugars/l and 9.2 g glucose/l. The corresponding solid phase, enriched in cellulose, showed good susceptibility towards enzymatic hydrolysis, leading to solutions containing up to 17.9 g glucose/l (conversion yield=63.6%) and a glucose/total sugar ratio of 0.93 g/g. Mathematical models assessing the effects of the operational conditions on both the prehydrolysis stage and the susceptibility of substrates towards enzymic hydrolysis have been developed.  相似文献   

9.
The genes encoding expanin-like proteins from Trichoderma reesei (TrSwo1) and Bacillus subtilis (BsEXLX1) were successfully expressed in Pichia pastoris. The yields of two recombinant proteins were significantly improved by the use of PMSF (phenylmethylsulfonyl fluoride) and a commercial protease inhibitor cocktail. Under the optimum culture conditions, the highest TrSwo1/BsEXLX1 expression level reached was approximately 120/860 mg l−1, which was almost 2.4/86-fold as much as the highest expression level in other host cells. Purified BsEXLX1/TrSwo1 displayed synergism in cellulose hydrolysis with endoglucanase, and the maximum amount of reducing sugars released was almost 2.0/2.5-fold as high as those in reaction mixtures without expansin-like proteins. The synergistic effect reached the maximum level when 1 mg of target protein per g of filter paper was loaded. Both proteins exhibited relatively high thermal stability at temperatures of 50, 70 and 90 °C, and retained more than 45% residual activities after 1 h of pre-incubation at 100 °C, suggesting remarkable heat tolerance. They also showed resistance to denaturation by urea and SDS. Under several enzymatic hydrolysis conditions, the synergistic activity of TrSwo1 was higher than that of BsEXLX1, indicating stronger disrupting activity of TrSwo1 on cellulose than BsEXLX1. This is the first study to report high-efficient expression and unreported properties of BsEXLX1/TrSwo1.  相似文献   

10.
Product inhibition is a barrier for enzymatic conversion of cellulose into reducing sugar in single aqueous phase. In addition, the difficulty in the recovery of cellulase also leads to high cost for the enzymatic hydrolysis of cellulose. In this study, enzymatic degradation of cellulose was carried out in pH–pH recyclable aqueous two-phase systems (ATPS) composed by copolymers poly (AA-co-DMAEMA-co-BMA) (abbreviated PADB3.8) and poly (MAA-co-DMAEMA-co-BMA) (abbreviated PMDB). In the systems, cellulase was immobilized on pH-response copolymer PMDB by using 1-Ethyl-3-(3-dimethyllaminopropyl)-carbodiimide hydrochloride (EDC) as cross-linker. Optimized partition coefficient of product in the systems was 2.45, in the presence of 40 mM (NH4)2SO4. Insoluble substrate and immobilized enzyme were biased to bottom phase, while the product was partitioned to top phase. Microcrystalline cellulose was hydrolyzed into reducing sugar, and the product entered into top phase. The yield of saccharification in ATPS could reach 70.57% at the initial substrate concentration of 0.5% (w/v), and the value was 9.3% higher than that in the single aqueous phase. Saccharification yield could reach 66.15% after immobilized cellulase was recycled five times in ATPS.  相似文献   

11.
A functional bacterial consortium that can effectively hydrolyze cellobiose and produce bio-hydrogen was isolated by a concentration-to-extinction approach. The sludge from a cattle feedlot manure composting plant was incubated with 2.5–20 g l?1 cellobiose at 35 °C and pH 6.0. The microbial diversity of serially concentrated suspensions significantly decreased following increasing cellobiose concentration, finally leaving only two viable strains, Clostridium butyricum strain W4 and Enterococcus saccharolyticus strain. This consortium has a maximum specific hydrogen production rate of 2.19 mol H2 mol hexose?1 at 5 g l?1 cellobiose. The metabolic pathways shifted from ethanol-type to acetate-butyrate type as cellobiose concentration increased from 2.5 to >7 g l?1. The concentration-to-extinction approach is effective for isolating functional consortium from natural microflora. In this case the functional strains of interest are more tolerant to the increased loadings of substrates than the non-functional strains.  相似文献   

12.
《Process Biochemistry》2010,45(2):272-278
A mycelial β-glucosidase from the thermophilic mold Humicola insolens was purified and biochemically characterized. The enzyme showed carbohydrate content of 21% and apparent molecular mass of 94 kDa, as estimated by gel filtration. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis showed a single polypeptide band of 55 kDa, suggesting that the native enzyme was a homodimer. Mass spectrometry analysis showed amino acid sequence similarity with a β-glucosidase from Humicola grisea var. thermoidea, with about 22% coverage. Optima of temperature and pH were 60 °C and 6.0–6.5, respectively. The enzyme was stable up to 1 h at 50 °C and showed a half-life of approximately 44 min at 55 °C. The β-glucosidase hydrolyzed cellobiose, lactose, p-nitrophenyl-β-d-glucopyranoside, p-nitrophenyl-β-d-fucopyranoside, p-nitrophenyl-β-d-xylopyranoside, p-nitrophenyl-β-d-galactopyranoside, o-nitrophenyl-β-d-galactopyranoside, and salicin. Kinetic studies showed that p-nitrophenyl-β-d-fucopyranoside and cellobiose were the best enzyme substrates. Enzyme activity was stimulated by glucose or xylose at concentrations up to 400 mM, with maximal stimulatory effect (about 2-fold) around 40 mM. The high catalytic efficiency for the natural substrate, good thermal stability, strong stimulation by glucose or xylose, and tolerance to elevated concentrations of these monosaccharides qualify this enzyme for application in the hydrolysis of cellulosic materials.  相似文献   

13.
An alternative potential feedstock for bioethanol in the automotive sector is citrus peel waste (CPW), which can be processed through enzymatic hydrolysis and fermentation. The present work considers mathematical modeling of orange peel wastes (OPW) hydrolysis with the use of free enzymes and compares the performance of batch, fed-batch and continuous well-mixed reactors after introducing appropriate rate equations in dynamic mass balances. MATLAB® was used for model implementation.Following the Michaelis–Menten approach, the authors used their own kinetic parameters for the pectin hydrolysis rate equation. The parameters were generated in an apposite experimental program for OPW hydrolysis to galacturonic acid with consideration of product inhibition; the corresponding values were obtained after Lineweaver–Burk linearization and are: rmax = 0.28 g/(L min), Km = 19.80 g/L and KIGA = 6.96 g/L, respectively. Vice-versa, the authors adopted the Kadam's group kinetic schemes and parameters for cellulose hydrolysis to cellobiose and glucose. The mathematical model of a well-mixed batch reactor was perfectly validated against the experimental results of OPW hydrolysis to galacturonic acid. In the case of a continuous well-mixed reactor, high dilution rates determine low conversion of OPW. The increased complication of fed-batch operation does not add advantages when compared to batch processing.  相似文献   

14.
《Process Biochemistry》2010,45(9):1494-1503
Lactose, an inexpensive, soluble substrate, offers reasonably good induction for cellulase production by Trichoderma reesei. The fungus does not uptake lactose directly. Lactose is hydrolyzed to extracellular glucose and galactose for subsequent ingestion. The roles of this extracellular hydrolysis step were investigated in this study. Batch and continuous cultures were grown on the following substrates: lactose, lactose–glycerol mixtures, glucose, galactose, and glucose–galactose mixtures. Cell growth, substrate consumption, lactose hydrolysis, and lactase and cellulase production were followed and modeled. Cells grew much faster on glucose than on galactose, but with comparable cell yields. Glucose (at >0.3 g/L) repressed the galactose consumption. Cellulase synthesis was growth-independent while lactase synthesis was growth-dependent, except at D < ∼0.065 h−1 where a basal level lactase production was observed. For cellulase production the optimal D was 0.055–0.065 h−1 where the enzyme activity and productivity were both near maxima. The model suggested that lactase synthesis was subject to weak galactose repression. As the galactose concentration increased at high D (>0.1 h−1), lactase synthesis became repressed. The insufficient lactase synthesis limited the lactose hydrolysis rate. Extracellular lactose hydrolysis was concluded to be the rate-limiting step for growth of T. reesei Rut C30 on lactose.  相似文献   

15.
A biocatalyst with high activity retention of lipase was fabricated by the covalent immobilization of Candida rugosa lipase on a cellulose nanofiber membrane. This nanofiber membrane was composed of nonwoven fibers with 200 nm nominal fiber diameter. It was prepared by electrospinning of cellulose acetate (CA) and then modified with alkaline hydrolysis to convert the nanofiber surface into regenerated cellulose (RC). The nanofiber membrane was further oxidized by NaIO4. Aldehyde groups were simultaneously generated on the nanofiber surface for coupling with lipase. Response surface methodology (RSM) was applied to model and optimize the modification conditions, namely NaIO4 content (2–10 mg/mL), reaction time (2–10 h), reaction temperature (25–35 °C) and reaction pH (5.5–6.5). Well-correlating models were established for the residual activity of the immobilized enzyme (R2 = 0.9228 and 0.8950). We found an enzymatic activity of 29.6 U/g of the biocatalyst was obtained with optimum operational conditions. The immobilized lipase exhibited significantly higher thermal stability and durability than equivalent free enzyme.  相似文献   

16.
Most studies of cellulose hydrolysis have been carried out on three components of the cellulolytic systems, viz, endoglucanases, exoglucanases, and cellobiases. Little attention has been paid to the fragmentation activity of certain cellulolytic systems. We have noticed that despite being a more powerful degrader of modified cellulose (CMC), the 7-day grown culture filtrate of Myrothecium verrucaria was less effective than that of Trichoderma reesei at degrading pure unmodified cellulose. Scanning electron microscopy imaging showed that one distinguishing feature of the latter is its ability to fragment (macerate) the cellulose. Cellulose particle size decreased with time as it was incubated in the culture filtrate of T. reesei at 37 °C. This was used as a pre-treatment. Pre-treated cellulose was then washed and incubated with fresh T. reesei or M. verrucaria culture filtrates. Pre-treatment increased liberation of reducing sugars during subsequent incubation of cellulose in T. reesei culture filtrate but not in subsequent incubation in M. verrucaria culture filtrate. It was hypothesized that fragmentation activity of the pre-treatment opened up attack sites for further hydrolysis, but these were not available for attack by other enzyme systems.  相似文献   

17.
Kinetics of cellulose hydrolysis with halostable cellulase from a marine Aspergillus niger was analyzed at different salinities. Cellulase activity in 8% NaCl solution was 1.43 folds higher than that in NaCl free solution. Half saturation constant, Km (15.6260 g/L) and the rate constant of deactivation, Kde (0.3369 g/L h) in 8% NaCl solution was lower than that (18.6364 g/L), 0.3754 (g/L h) in NaCl free solution. The maximum initial hydrolysis velocity, Vmax (25.5295 g/L h), in 8% NaCl solution was higher than that in NaCl free solution (25.0153 g/L h). High salinity increased affinity to the cellulase to the substrate and thermostability. Halostable cellulase from a marine Aspergillus niger was valuable for cellulose hydrolysis under high salinity conditions.  相似文献   

18.
Eucalyptus was fractionated with mild alkaline process, and the obtained cellulose fraction was pretreated with various ionic liquids (ILs) to enhance the enzymatic saccharification. The results showed that the ILs used was efficient for the hydrolysis of cellulose, with the maximum total reducing sugars (TRS) yield over 80% at 50 °C. The regenerated cellulose substrate exhibited a significant improvement about 4.4–6.4 folds enhancement on saccharification rate during the first 4 h reaction. The crystallinity index (CrI) of cellulose via 1-ally-3-methylimidazolium ([AMIM]Cl) pretreatment was significantly decreased from 70.2% to 31.2%, resulting in structural change from cellulose I to cellulose II, which enabled the cellulase enzymes easier access to hydrolyze cellulose. However, 1-butyl-3methylimidazolium acesulfamate ([BMIM]Ace) pretreatment had no large effect on the CrI although a high conversion yield in glucose was obtained. The surface morphologies of the regenerated substrate which was pretreated via 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) and 1-ethyl-3-methylimidazolium acetate ([EMIM]Ac) showed more porous and incompact network of cellulose when compared with the untreated substrate. This result indicated a better accessibility by cellulases to the cellulose surface. Besides, a certain amount of catalysts such as MgCl2 and H2SO4 could improve the rate of enzymatic saccharification.  相似文献   

19.
One prominent feature of Trichoderma reesei (Tr) endoglucanases catalyzed cellulose hydrolysis is that the reaction slows down quickly after it starts (within minutes). But the mechanism of the slowdown is not well understood. A structural model of Tr- Cel7B catalytic domain bound to cellulose was built computationally and the potentially important binding residues were identified and tested experimentally. The 13 tested mutants show different binding properties in the adsorption to phosphoric acid swollen cellulose and filter paper. Though the partitioning parameter to filter paper is about 10 times smaller than that to phosphoric acid swollen cellulose, a positive correlation is shown for two substrates. The kinetic studies show that the reactions slow down quickly for both substrates. This slowdown is not correlated to the binding constant but anticorrelated to the enzyme initial activity. The amount of reducing sugars released after 24 h by Cel7B in phosphoric acid swollen cellulose, Avicel and filter paper cellulose hydrolysis is correlated with the enzyme activity against a soluble substrate p-nitrophenyl lactoside. Six of the 13 tested mutants, including N47A, N52D, S99A, N323D, S324A, and S346A, yield ∼15–35% more reducing sugars than the wild type (WT) Cel7B in phosphoric acid swollen cellulose and filter paper hydrolysis. This study reveals that the slowdown of the reaction is not due to the binding of the enzyme to cellulose. The activity of Tr- Cel7B against the insoluble substrate cellulose is determined by the enzyme’s capability in hydrolyzing the soluble substrate.  相似文献   

20.
The kinetic characteristics of β-d-glucosidase (cellobiase, β-d-glucosidase glucohydrolase, EC 3.2.1.21) from the filtered broth of a well grown culture of Aspergillus wentii have been studied. Both cellobiose and 4-nitrophenyl-β-d-glucoside (4NPG) were used as substrates and values of Km, Vmax for both the substrates were determined. Activity was maximum over a pH range of 4.5–5.5 but declined sharply beyond 5.5 for both substrates. The optimum temperature was between 60 and 65°C. Half-life of the cellobiase was ~38.0 h at 60°C and ~6.3 h at 65°C. However, the enzyme was found to be quite stable at 50°C. The activation and deactivation energies for 4NPG hydrolysis were 33.2 and 111.3 kJ mol?1 K?1, and 43.6 and 63.7 kJ mol K?1 for cellobiose hydrolysis. Product inhibition was found to be of the competitive type. Preliminary experiments showed that marked synergistic activity exists between Trichoderma reesei and A. wentii cellulases [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] for cellulose hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号