首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
AMPK phosphorylation of raptor mediates a metabolic checkpoint   总被引:4,自引:0,他引:4  
AMPK is a highly conserved sensor of cellular energy status that is activated under conditions of low intracellular ATP. AMPK responds to energy stress by suppressing cell growth and biosynthetic processes, in part through its inhibition of the rapamycin-sensitive mTOR (mTORC1) pathway. AMPK phosphorylation of the TSC2 tumor suppressor contributes to suppression of mTORC1; however, TSC2-deficient cells remain responsive to energy stress. Using a proteomic and bioinformatics approach, we sought to identify additional substrates of AMPK that mediate its effects on growth control. We report here that AMPK directly phosphorylates the mTOR binding partner raptor on two well-conserved serine residues, and this phosphorylation induces 14-3-3 binding to raptor. The phosphorylation of raptor by AMPK is required for the inhibition of mTORC1 and cell-cycle arrest induced by energy stress. These findings uncover a conserved effector of AMPK that mediates its role as a metabolic checkpoint coordinating cell growth with energy status.  相似文献   

3.
Intestinal cell kinase (ICK), named after its cloning origin, the intestine, is actually a ubiquitously expressed and highly conserved serine/threonine protein kinase. Recently we reported that ICK supports cell proliferation and G(1) cell cycle progression. ICK deficiency significantly disrupted the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) signaling events. However, the biological substrates that mediate the downstream signaling effects of ICK in proliferation and the molecular mechanisms by which ICK interacts with mTORC1 are not well defined. Our prior studies also provided biochemical evidence that ICK interacts with the mTOR/Raptor complex in cells and phosphorylates Raptor in vitro. In this report, we investigated whether and how ICK targets Raptor to regulate the activity of mTORC1. Using the ICK substrate consensus sequence [R-P-X-S/T-P/A/T/S], we identified a putative phosphorylation site, RPGT908T, for ICK in human Raptor. By mass spectrometry and a phospho-specific antibody, we showed that Raptor Thr-908 is a novel in vivo phosphorylation site. ICK is able to phosphorylate Raptor Thr-908 both in vitro and in vivo and when Raptor exists in protein complexes with or without mTOR. Although expression of the Raptor T908A mutant did not affect the mTORC1 integrity, it markedly impaired the mTORC1 activation by insulin or by overexpression of the small GTP-binding protein RheB under nutrient starvation. Our findings demonstrate an important role for ICK in modulating the activity of mTORC1 through phosphorylation of Raptor Thr-908 and thus implicate a potential signaling mechanism by which ICK regulates cell proliferation and division.  相似文献   

4.
Poly(ADP-ribose) polymerase-1 (PARP-1) is widely involved in cell death responses. Depending on the degree of injury and on cell type, PARP activation may lead to autophagy, apoptosis or necrosis. In HEK293 cells exposed to the alkylating agent N-methyl-N’-nitro-N’-nitrosoguanine (MNNG), we show that PARP-1 activation triggers a necrotic cell death response. The massive poly(ADP-ribose) (PAR) synthesis following PARP-1 activation leads to the modulation of mTORC1 pathway. Shortly after MNNG exposure, NAD+ and ATP levels decrease, while AMP levels drastically increase. We characterized at the molecular level the consequences of these altered nucleotide levels. First, AMP-activated protein kinase (AMPK) is activated and the mTORC1 pathway is inhibited by the phosphorylation of Raptor, in an attempt to preserve cellular energy. Phosphorylation of the mTORC1 target S6 is decreased as well as the phosphorylation of the mTORC2 component Rictor on Thr1135. Finally, Akt phosphorylation on Ser473 is lost and then, cell death by necrosis occurs. Inhibition of PARP-1 with the potent PARP inhibitor AG14361 prevents all of these events. Moreover, the antioxidant N-acetyl-L-cysteine (NAC) can also abrogate all the signaling events caused by MNNG exposure suggesting that reactive oxygen species (ROS) production is involved in PARP-1 activation and modulation of mTOR signaling. In this study, we show that PARP-1 activation and PAR synthesis affect the energetic status of cells, inhibit the mTORC1 signaling pathway and possibly modulate the mTORC2 complex affecting cell fate. These results provide new evidence that cell death by necrosis is orchestrated by the balance between several signaling pathways, and that PARP-1 and PAR take part in these events.  相似文献   

5.
Cell growth is influenced by environmental stress. Mammalian target of rapamycin (mTOR), the central regulator of cell growth, can be positively or negatively regulated by various stresses through different mechanisms. The p38 MAP kinase pathway is essential in cellular stress responses. Activation of MK2, a downstream kinase of p38α, enhances mTOR complex 1 (mTORC1) activity by preventing TSC2 from inhibiting mTOR activation. The p38β-PRAK cascade targets Rheb to inhibit mTORC1 activity upon glucose depletion. Here we show the activation of p38β participates in activation of mTOR complex 1 (mTORC1) induced by arsenite but not insulin, nutrients, anisomycin, or H(2)O(2). Arsenite treatment of cells activates p38β and induces interaction between p38β and Raptor, a regulatory component of mTORC1, resulting in phosphorylation of Raptor on Ser(863) and Ser(771). The phosphorylation of Raptor on these sites enhances mTORC1 activity, and contributes largely to arsenite-induced mTORC1 activation. Our results shown here and in previous work demonstrate that the p38 pathway can regulate different components of the mTORC1 pathway, and that p38β can target different substrates to either positively or negatively regulate mTORC1 activation when a cell encounters different environmental stresses.  相似文献   

6.
7.
Conflicting results have been reported concerning the role of AMP-activated protein kinase (AMPK) in mediating thrombin stimulation of endothelial NO-synthase (eNOS). We examined the involvement of two upstream kinases in AMPK activation in cultured human umbilical endothelial cells, LKB1 stimulated by a rise in intracellular AMP/ATP ratio, and Ca(+2)/CaM kinase kinase (CaMKK) responding to elevation of intracellular Ca(+2). We also studied the effects of AMPK activation on the downstream target eNOS. In culture medium 1640 the level of intracellular ATP was unchanged after thrombin stimulation and the CaMKK inhibitor STO-609 totally inhibited phosphorylation of AMPK and acetyl coenzyme A carboxylase (ACC) but not eNOS. In Morgan's medium 199 thrombin caused a significant lowering of intracellular ATP and STO-609 only partially inhibited the phosphorylation of AMPK, ACC and eNOS. Inhibition of AMPK by Compound C or AMPK downregulation using siRNA partially inhibited the phosphorylation of eNOS in medium 199 but not in 1640, underscoring a clear difference in the pathways mediating thrombin-stimulated eNOS phosphorylation in different culture media. Thus, conditions subjecting endothelial cells to a fall in ATP after thrombin stimulation facilitate activation of pathways partly dependent on AMPK causing downstream phosphorylation of eNOS. In contrast, under culture conditions that do not facilitate a fall in ATP after stimulation, AMPK activation is exclusively mediated by CaMKK and does not contribute to the phosphorylation of eNOS.  相似文献   

8.
Zheng M  Wang YH  Wu XN  Wu SQ  Lu BJ  Dong MQ  Zhang H  Sun P  Lin SC  Guan KL  Han J 《Nature cell biology》2011,13(3):263-272
Cell growth can be suppressed by stressful environments, but the role of stress pathways in this process is largely unknown. Here we show that a cascade of p38β mitogen-activated protein kinase (MAPK) and p38-regulated/activated kinase (PRAK) plays a role in energy-starvation-induced suppression of mammalian target of rapamycin (mTOR), and that energy starvation activates the p38β-PRAK cascade. Depletion of p38β or PRAK diminishes the suppression of mTOR complex 1 (mTORC1) and reduction of cell size induced by energy starvation. We show that p38β-PRAK operates independently of the known mTORC1 inactivation pathways--phosphorylation of tuberous sclerosis protein 2 (TSC2) and Raptor by AMP-activated protein kinase (AMPK)--and surprisingly, that PRAK directly regulates Ras homologue enriched in brain (Rheb), a key component of the mTORC1 pathway, by phosphorylation. Phosphorylation of Rheb at Ser 130 by PRAK impairs the nucleotide-binding ability of Rheb and inhibits Rheb-mediated mTORC1 activation. The direct regulation of Rheb by PRAK integrates a stress pathway with the mTORC1 pathway in response to energy depletion.  相似文献   

9.
The role of the main intracellular energy sensor adenosine monophosphate (AMP)-activated protein kinase (AMPK) in the induction of autophagic response and cell death was investigated in SH-SY5Y human neuroblastoma cells exposed to the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA). The induction of autophagy in SH-SY5Y cells was demonstrated by acridine orange staining of intracellular acidic vesicles, the presence of autophagosome- and autophagolysosome-like vesicles confirmed by transmission electron microscopy, as well as by microtubule-associated protein 1 light-chain 3 (LC3) conversion and p62 degradation detected by immunoblotting. 6-OHDA induced phosphorylation of AMPK and its target Raptor, followed by the dephosphorylation of the major autophagy inhibitor mammalian target of rapamycin (mTOR) and its substrate p70S6 kinase (S6K). 6-OHDA treatment failed to suppress mTOR/S6K phosphorylation and to increase LC3 conversion, p62 degradation and cytoplasmatic acidification in neuroblastoma cells in which AMPK expression was downregulated by RNA interference. Transfection of SH-SY5Y cells with AMPK or LC3β shRNA, as well as treatment with pharmacological autophagy inhibitors suppressed, while mTOR inhibitor rapamycin potentiated 6-OHDA-induced oxidative stress and apoptotic cell death. 6-OHDA induced phosphorylation of p38 mitogen-activated protein (MAP) kinase in an AMPK-dependent manner, and pharmacological inhibition of p38 MAP kinase reduced neurotoxicity, but not AMPK activation and autophagy triggered by 6-OHDA. Finally, the antioxidant N-acetyl cysteine antagonized 6-OHDA-induced activation of AMPK, p38 and autophagy. These data suggest that oxidative stress-mediated AMPK/mTOR-dependent autophagy and AMPK/p38-dependent apoptosis could be valid therapeutic targets for neuroprotection.  相似文献   

10.
Natural products represent a rich reservoir of potential small chemical molecules exhibiting anti-proliferative and chemopreventive properties. Here, we show that treatment of pancreatic ductal adenocarcinoma (PDAC) cells (PANC-1, MiaPaCa-2) with the isoquinoline alkaloid berberine (0.3–6 µM) inhibited DNA synthesis and proliferation of these cells and delay the progression of their cell cycle in G1. Berberine treatment also reduced (by 70%) the growth of MiaPaCa-2 cell growth when implanted into the flanks of nu/nu mice. Mechanistic studies revealed that berberine decreased mitochondrial membrane potential and intracellular ATP levels and induced potent AMPK activation, as shown by phosphorylation of AMPK α subunit at Thr-172 and acetyl-CoA carboxylase (ACC) at Ser79. Furthermore, berberine dose-dependently inhibited mTORC1 (phosphorylation of S6K at Thr389 and S6 at Ser240/244) and ERK activation in PDAC cells stimulated by insulin and neurotensin or fetal bovine serum. Knockdown of α1 and α2 catalytic subunit expression of AMPK reversed the inhibitory effect produced by treatment with low concentrations of berberine on mTORC1, ERK and DNA synthesis in PDAC cells. However, at higher concentrations, berberine inhibited mitogenic signaling (mTORC1 and ERK) and DNA synthesis through an AMPK-independent mechanism. Similar results were obtained with metformin used at doses that induced either modest or pronounced reductions in intracellular ATP levels, which were virtually identical to the decreases in ATP levels obtained in response to berberine. We propose that berberine and metformin inhibit mitogenic signaling in PDAC cells through dose-dependent AMPK-dependent and independent pathways.  相似文献   

11.
《Autophagy》2013,9(7):737-747
Protein synthesis and autophagy work as two opposing processes to control cell growth in response to nutrient supply. The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) pathway, which acts as a master regulator to control protein synthesis, has recently been shown to inhibit autophagy by phosphorylating and inactivating ULK1, an autophagy regulatory protein. ULK1 also inhibits phosphorylation of a mTORC1 substrate, S6K1, indicating that a complex signaling interplay exists between mTORC1 and ULK1. Here, we demonstrate that ULK1 induces multisite phosphorylation of Raptor in vivo and in vitro. Using phospho-specific antibodies we identify Ser855 and Ser859 as being strongly phosphorylated by ULK1, with moderate phosphorylation of Ser792 also observed. Interestingly, ULK1 overexpression also increases phosphorylation of Raptor Ser863 and the mTOR autophosphorylation site, Ser2481 in a mTORC1-dependent manner. Despite this evidence for heightened mTORC1 kinase activity following ULK1 overexpresssion, mTORC1-mediated phosphorylation of S6K1 and 4E-BP1 is significantly inhibited. ULK1 expression has no effect on protein-protein interactions between the components of mTORC1, but does reduce the ability of Raptor to bind to the substrate 4E-BP1. Furthermore, shRNA knockdown of ULK1 leads to increased phosphorylation of mTORC1 substrates and decreased phosphorylation of Raptor at Ser859 and Ser792. We propose a new mechanism whereby ULK1 contributes to mTORC1 inhibition through hindrance of substrate docking to Raptor. This is a novel negative feedback loop that occurs upon activation of autophagy to maintain mTORC1 inhibition when nutrient supplies are limiting.  相似文献   

12.
Protein synthesis and autophagy work as two opposing processes to control cell growth in response to nutrient supply. The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) pathway, which acts as a master regulator to control protein synthesis, has recently been shown to inhibit autophagy by phosphorylating and inactivating ULK1, an autophagy regulatory protein. ULK1 also inhibits phosphorylation of a mTORC1 substrate, S6K1, indicating that a complex signaling interplay exists between mTORC1 and ULK1. Here, we demonstrate that ULK1 induces multisite phosphorylation of Raptor in vivo and in vitro. Using phospho-specific antibodies we identify Ser855 and Ser859 as being strongly phosphorylated by ULK1, with moderate phosphorylation of Ser792 also observed. Interestingly, ULK1 overexpression also increases phosphorylation of Raptor Ser863 and the mTOR autophosphorylation site, Ser2481 in a mTORC1-dependent manner. Despite this evidence for heightened mTORC1 kinase activity following ULK1 overexpresssion, mTORC1-mediated phosphorylation of S6K1 and 4E-BP1 is significantly inhibited. ULK1 expression has no effect on protein-protein interactions between the components of mTORC1, but does reduce the ability of Raptor to bind to the substrate 4E-BP1. Furthermore, shRNA knockdown of ULK1 leads to increased phosphorylation of mTORC1 substrates and decreased phosphorylation of Raptor at Ser859 and Ser792. We propose a new mechanism whereby ULK1 contributes to mTORC1 inhibition through hindrance of substrate docking to Raptor. This is a novel negative feedback loop that occurs upon activation of autophagy to maintain mTORC1 inhibition when nutrient supplies are limiting.  相似文献   

13.
Raptor-rictor axis in TGFbeta-induced protein synthesis   总被引:1,自引:0,他引:1  
Transforming growth factor-beta (TGFbeta) stimulates pathological renal cell hypertrophy for which increased protein synthesis is critical. The mechanism of TGFbeta-induced protein synthesis is not known, but PI 3 kinase-dependent Akt kinase activity is necessary. We investigated the contribution of downstream effectors of Akt in TGFbeta-stimulated protein synthesis. TGFbeta increased inactivating phosphorylation of Akt substrate tuberin in a PI 3 kinase/Akt dependent manner, resulting in activation of mTOR kinase. mTOR activity increased phosphorylation of S6 kinase and the translation repressor 4EBP-1, which were sensitive to inhibition of both PI 3 kinase and Akt. mTOR inhibitor rapamycin and a dominant negative mutant of mTOR suppressed TGFbeta-induced phosphorylation of S6 kinase and 4EBP-1. PI 3 kinase/Akt and mTOR regulated dissociation of 4EBP-1 from eIF4E to make the latter available for binding to eIF4G. mTOR and 4EBP-1 modulated TGFbeta-induced protein synthesis. mTOR is present in two multi protein complexes, mTORC1 and mTORC2. Raptor and rictor are part of mTORC1 and mTORC2, respectively. shRNA-mediated downregulation of raptor inhibited TGFbeta-stimulated mTOR kinase activity, resulting in inhibition of phosphorylation of S6 kinase and 4EBP-1. Raptor shRNA also prevented protein synthesis in response to TGFbeta. Downregulation of rictor inhibited serine 473 phosphorylation of Akt without any effect on phosphorylation of its substrate, tuberin. Furthermore, rictor shRNA increased phosphorylation of S6 kinase and 4EBP-1 in TGFbeta-independent manner, resulting in increased protein synthesis. Thus mTORC1 function is essential for TGFbeta-induced protein synthesis. Our data also provide novel evidence that rictor negatively regulates TORC1 activity to control basal protein synthesis, thus conferring tight control on cellular hypertrophy.  相似文献   

14.
mTOR complex 1 (mTORC1) is a multiprotein complex that integrates diverse signals including growth factors, nutrients, and stress to control cell growth. Raptor is an essential component of mTORC1 that functions to recruit specific substrates. Recently, Raptor was suggested to be a key target of regulation of mTORC1. Here, we show that Raptor is phosphorylated by JNK upon osmotic stress. We identified that osmotic stress induces the phosphorylation of Raptor at Ser-696, Thr-706, and Ser-863 using liquid chromatography-tandem mass spectrometry. We found that JNK is responsible for the phosphorylation. The inhibition of JNK abolishes the phosphorylation of Raptor induced by osmotic stress in cells. Furthermore, JNK physically associates with Raptor and phosphorylates Raptor in vitro, implying that JNK is responsible for the phosphorylation of Raptor. Finally, we found that osmotic stress activates mTORC1 kinase activity in a JNK-dependent manner. Our findings suggest that the molecular link between JNK and Raptor is a potential mechanism by which stress regulates the mTORC1 signaling pathway.  相似文献   

15.
Here we report that activation of AMP-activated protein kinase (AMPK) mediates plumbagin-induced apoptosis and growth inhibition in both primary cultured human colon cancer cells and cell lines. Knocking-down of AMPKα by the target shRNA significantly inhibits plumbagin-induced cytotoxicity in cultured colon cancer cells, while forced activation of AMPK by introducing a constitutively active AMPK (CA-AMPK), or by the AMPK activator, inhibits HT-29 colon cancer cell growth. Our Western-blots and immunoprecipitation (IP) results demonstrate that plumbagin induces AMPK/Apoptosis signal regulating kinase 1 (ASK1)/TNF receptor-associated factor 2 (TRAF2) association to activate pro-apoptotic c-Jun N-terminal kinases (JNK)-p53 signal axis. Further, after plumbagin treatment, activated AMPK directly phosphorylates Raptor to inhibit mTOR complex 1 (mTORC1) activation and Bcl-2 expression in colon cancer cells. Finally, we found that exogenously-added short-chain ceramide (C6) enhances plumbagin-induced AMPK activation and facilitates cell apoptosis and growth inhibition. Our results suggest that AMPK might be the key mediator of plumbagin's anti-tumor activity.  相似文献   

16.
Our earlier work showed that mammalian target of rapamycin (mTOR) is essential to the development of various hypertrophic responses, including cardiomyocyte survival. mTOR forms two independent complexes, mTORC1 and mTORC2, by associating with common and distinct cellular proteins. Both complexes are sensitive to a pharmacological inhibitor, torin1, although only mTORC1 is inhibited by rapamycin. Since mTORC2 is known to mediate the activation of a prosurvival kinase, Akt, we analyzed whether mTORC2 directly mediates Akt activation or whether it requires the participation of another prosurvival kinase, PKCε (epsilon isoform of protein kinase-C). Our studies reveal that treatment of adult feline cardiomyocytes in vitro with insulin results in Akt phosphorylation at S473 for its activation which could be augmented with rapamycin but blocked by torin1. Silencing the expression of Rictor (rapamycin-insensitive companion of mTOR), an mTORC2 component, with a sh-RNA in cardiomyocytes lowers both insulin-stimulated Akt and PKCε phosphorylation. Furthermore, phosphorylation of PKCε and Akt at the critical S729 and S473 sites respectively was blocked by torin1 or Rictor knockdown but not by rapamycin, indicating that the phosphorylation at these specific sites occurs downstream of mTORC2. Additionally, expression of DN-PKCε significantly lowered the insulin-stimulated Akt S473 phosphorylation, indicating an upstream role for PKCε in the Akt activation. Biochemical analyses also revealed that PKCε was part of Rictor but not Raptor (a binding partner and component of mTORC1). Together, these studies demonstrate that mTORC2 mediates prosurvival signaling in adult cardiomyocytes where PKCε functions downstream of mTORC2 leading to Akt activation.  相似文献   

17.
The mammalian target of rapamycin complex 1(mTORC1) integrates diverse signals to control cell growth, proliferation, survival, and metabolism. Role of reactive oxygen species (ROS) on mTORC1 signaling remains obscure and mechanisms through which ROS modulate mTORC1 are not known. We demonstrate that low doses ROS exposure stimulate mTORC1 while high concentrations or long-term ROS treatment decrease mTORC1 activity in vivo and in a variety of cell lines. The dose/time needed for inhibition or activation are cell type-dependent. In HEK293 cells hydrogen peroxide (H2O2) stimulates phosphorylation of AMP-activated kinase (AMPK) (T172) and Raptor (S792), enhances association of activated AMPK with Raptor. Furthermore, AMPK inhibitor compound c inhibits H2O2-induced Raptor (S792) phosphorylation and reverses H2O2-induced de-phosphorylation of mTORC1 downstream targets p70-S6K1 (T389), S6 (S235/236) and 4E-BP1 (T37/46). H2O2 also stimulates association of endogenous protein phosphatase 2A catalytic subunit (PP2Ac) with p70-S6K1. Like compound c, inhibitor of PP2A, okadaic acid partially reverses inactivation of mTORC1 substrates induced by H2O2. Moreover, inhibition of PP2A and AMPK partially rescued cells from H2O2-induced cell death. High doses of H2O2 inhibit while low doses of H2O2 activate mTORC1 both in TSC2?/? P53?/? and TSC2+/+ P53?/? MEFs. These data suggest that PP2A and AMPK-mediated phosphorylation of Raptor mediate H2O2-induced inhibition of mTORC1 signaling.  相似文献   

18.
The serine/threonine kinase Akt is an upstream positive regulator of the mammalian target of rapamycin (mTOR). However, the mechanism by which Akt activates mTOR is not fully understood. The known pathway by which Akt activates mTOR is via direct phosphorylation and inhibition of tuberous sclerosis complex 2 (TSC2), which is a negative regulator of mTOR. Here we establish an additional pathway by which Akt inhibits TSC2 and activates mTOR. We provide for the first time genetic evidence that Akt regulates intracellular ATP level and demonstrate that Akt is a negative regulator of the AMP-activated protein kinase (AMPK), which is an activator of TSC2. We show that in Akt1/Akt2 DKO cells AMP/ATP ratio is markedly elevated with concomitant increase in AMPK activity, whereas in cells expressing activated Akt there is a dramatic decrease in AMP/ATP ratio and a decline in AMPK activity. Currently, the Akt-mediated phosphorylation of TSC2 and the inhibition of AMPK-mediated phosphorylation of TSC2 are viewed as two separate pathways, which activate mTOR. Our results demonstrate that Akt lies upstream of these two pathways and induces full inhibition of TSC2 and activation of mTOR both through direct phosphorylation and by inhibition of AMPK-mediated phosphorylation of TSC2. We propose that the activation of mTOR by Akt-mediated cellular energy and inhibition of AMPK is the predominant pathway by which Akt activates mTOR in vivo.  相似文献   

19.
The molecular basis for induction of apoptosis in melanoma cells by vincristine remains unknown. Here we tested the potential involvement of AMP-activated protein kinase (AMPK) in this process. We found for the first time that vincristine induces AMPK activation (AMPKα, Thr 172) and Acetyl-CoA carboxylase (ACC, Ser 79) (a downstream molecular target of AMPK) phosphorylation in cultured melanoma cells in vitro. Reactive oxygen species (ROS) dependent LKB1 activation serves as the upstream signal for AMPK activation. AMPK inhibitor (compound C) or AMPKα siRNA knockdown inhibits vincristine induced B16 melanoma cell apoptosis, while AMPK activator 5-aminoimidazole-4-carboxamide-1-β-riboside (AICAR) enhances it. AMPK activation is involved in vincristine induced p53 phosphorylation and stabilization, the latter is known to mediate melanoma cell apoptosis. Further, activation of AMPK by vincristine inhibits mTOR Complex 1 (mTORC1) in B16 melanoma cells, which serves as another important mechanism to induce melanoma cell apoptosis. Our study provides new insights into understanding the cellular and molecular mechanisms of vincristine induced cancer cell death/apoptosis. We suggest that combining AMPK activator AICAR with vincristine may have potential to be used as a new therapeutic intervention against melanoma.  相似文献   

20.
mTORC1 plays critical roles in the regulation of protein synthesis, growth, and proliferation in response to nutrients, growth factors, and energy conditions. One of the substrates of mTORC1 is 4E-BP1, whose phosphorylation by mTORC1 reverses its inhibitory action on eIF4E, resulting in the promotion of protein synthesis. Raptor in mTOR complex 1 is believed to recruit 4E-BP1, facilitating phosphorylation of 4E-BP1 by the kinase mTOR. We applied chemical cross-linking coupled with mass spectrometry analysis to gain insight into interactions between mTORC1 and 4E-BP1. Using the cross-linking reagent bis[sulfosuccinimidyl] suberate, we showed that Raptor can be cross-linked with 4E-BP1. Mass spectrometric analysis of cross-linked Raptor-4E-BP1 led to the identification of several cross-linked peptide pairs. Compilation of these peptides revealed that the most N-terminal Raptor N-terminal conserved domain (in particular residues from 89 to 180) of Raptor is the major site of interaction with 4E-BP1. On 4E-BP1, we found that cross-links with Raptor were clustered in the central region (amino acid residues 56–72) we call RCR (Raptor cross-linking region). Intramolecular cross-links of Raptor suggest the presence of two structured regions of Raptor: one in the N-terminal region and the other in the C-terminal region. In support of the idea that the Raptor N-terminal conserved domain and the 4E-BP1 central region are closely located, we found that peptides that encompass the RCR of 4E-BP1 inhibit cross-linking and interaction of 4E-BP1 with Raptor. Furthermore, mutations of residues in the RCR decrease the ability of 4E-BP1 to serve as a substrate for mTORC1 in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号