首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An engineered reversal of the β-oxidation cycle was exploited to demonstrate its utility for the synthesis of medium chain (6–10-carbons) ω-hydroxyacids and dicarboxylic acids from glycerol as the only carbon source. A redesigned β-oxidation reversal facilitated the production of medium chain carboxylic acids, which were converted to ω-hydroxyacids and dicarboxylic acids by the action of an engineered ω-oxidation pathway. The selection of a key thiolase (bktB) and thioesterase (ydiI) in combination with previously established core β-oxidation reversal enzymes, as well as the development of chromosomal expression systems for the independent control of pathway enzymes, enabled the generation of C6–C10 carboxylic acids and provided a platform for vector based independent expression of ω-functionalization enzymes. Using this approach, the expression of the Pseudomonas putida alkane monooxygenase system, encoded by alkBGT, in combination with all β-oxidation reversal enzymes resulted in the production of 6-hydroxyhexanoic acid, 8-hydroxyoctanoic acid, and 10-hydroxydecanoic acid. Following identification and characterization of potential alcohol and aldehyde dehydrogenases, chnD and chnE from Acinetobacter sp. strain SE19 were expressed in conjunction with alkBGT to demonstrate the synthesis of the C6–C10 dicarboxylic acids, adipic acid, suberic acid, and sebacic acid. The potential of a β-oxidation cycle with ω-oxidation termination pathways was further demonstrated through the production of greater than 0.8 g/L C6–C10 ω-hydroxyacids or about 0.5 g/L dicarboxylic acids of the same chain lengths from glycerol (an unrelated carbon source) using minimal media.  相似文献   

2.
We previously reported development of a metabolic pathway in Escherichia coli for overproduction of medium-chain methyl ketones (MK), which are relevant to the biofuel and flavor-and-fragrance industries. This MK pathway was a re-engineered version of β-oxidation designed to overproduce β-ketoacyl-CoAs and involved overexpression of the fadM thioesterase gene. Here, we document metabolic engineering modifications that have led to a MK titer of 3.4 g/L after ~45 h of fed-batch glucose fermentation and attainment of 40% of the maximum theoretical yield (the best values reported to date for MK). Modifications included balancing overexpression of fadR and fadD to increase fatty acid flux into the pathway, consolidation of the pathway from two plasmids into one, codon optimization, and knocking out key acetate production pathways. In vitro studies confirmed that a decarboxylase is not required to convert β-keto acids into MK and that FadM is promiscuous and can hydrolyze several CoA-thioester pathway intermediates.  相似文献   

3.
Corynebacterium glutamicum is known to produce organic acids under anaerobic culture conditions, in particular, lactic, succinic, and acetic acids. Our study is focused on acetic and succinic acid production using a lactate dehydrogenase-deficient strain of C. glutamicum. Usually, with this bacterium, the organic acid production process is based on an initial aerobic growth phase, followed by a rapid deoxygenation and an anaerobic production phase. In our study, we demonstrated that this strategy was unfavorable for the production of organic acids. Conversely, we showed that applying the best transition strategy based on progressive deoxygenation significantly increased the concentration of organic acids up to 640%. This was observed either by applying controlled dissolved oxygen concentrations or by decreasing the steps of gas flow rates. Our results also showed that applying constant oxygen transfer flux throughout the culture, and thus in the absence of the anaerobic phase, promoted constant production yields (approximately 0.5 mol of succinate or acetate per mole of glucose). In this case, acetate production (120 mM) was favored over succinate production (132 mM), resulting in a decrease in the molar ratio of products (succinate/acetate) from 4.8 to 1.1 between progressive deoxygenation and constant OTR cultures.  相似文献   

4.
Polyhydroxyalkanoates that contain the medium-chain-length monomers (mcl-PHAs) have a wide range of applications owing to their superior physical and mechanical properties. A challenge to synthesize such mcl-PHAs from unrelated and renewable sources is exploiting the efficient metabolic pathways that lead to the formation of precursor (R)-3-hydroxyacyl-CoA. Here, by engineering the reversed fatty acid β-oxidation cycle, we were able to synthesize mcl-PHAs in Escherichia coli directly from glucose. After deletion of the major thioesterases, the engineered E. coli produced 6.62 wt% of cell dry weight mcl-PHA heteropolymers. Furthermore, when a low-substrate-specificity PHA synthase from Pseudomonas stutzeri 1317 was employed, recombinant E. coli synthesized 12.10 wt% of cell dry weight scl–mcl PHA copolymers, of which 21.18 mol% was 3-hydroxybutyrate and 78.82 mol% was medium-chain-length monomers. The reversed fatty acid β-oxidation cycle offered an efficient metabolic pathway for mcl-PHA biosynthesis in E. coli and can be further optimized.  相似文献   

5.
Excessive energy intake leads to fat overload and the formation of lipotoxic compounds mainly derived from the saturated fatty acid palmitate (PAL), thus promoting insulin resistance (IR) in skeletal muscle. N  3 polyunsaturated fatty acids (n  3PUFA) may prevent lipotoxicity and IR. The purpose of this study was to examine the differential effects of n  3PUFA on fatty acid metabolism and insulin sensitivity in muscle cells. C2C12 myotubes were treated with 500 μM of PAL without or with 50 μM of alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) for 16 h. PAL decreased insulin-dependent AKT activation and glucose uptake and increased the synthesis of ceramides and diglycerides (DG) derivatives, leading to protein kinase Cθ activation. EPA and DHA, but not ALA, prevented PAL-decreased AKT activation but glucose uptake was restored to control values by all n  3PUFA vs. PAL. Total DG and ceramide contents were decreased by all n  3PUFA, but only EPA and DHA increased PAL β-oxidation, decreased PAL incorporation into DG and reduced protein kinase Cθ activation. EPA and DHA emerge as better candidates than ALA to improve fatty acid metabolism in skeletal muscle cells, notably via their ability to increase mitochondrial β-oxidation.  相似文献   

6.
《Process Biochemistry》2007,42(6):925-933
The influence of organic acids on growth and dithiolopyrrolone antibiotic production by Saccharothrix algeriensis NRRL B-24137 was studied. The production of dithiolopyrrolones depends upon the nature and concentration of the organic acids in the culture medium. Study of the nature of organic acids showed that the most effective organic acids for thiolutin specific production were maleic, 4-hydroxybenzoic, benzentetracarboxylic, pantothenic, pivalic and pyruvic acids (which yielded almost five-fold over the starting medium) and pimelic acid (more than three-fold). 4-Bromobenzoic acid showed the best production of senecioyl-pyrrothine (59 mg g−1 DCW). Tiglic acid showed the best production of tigloyl-pyrrothine (22 mg g−1 DCW). The highest yield of isobutyryl-pyrrothine (7.6 mg g−1 DCW) was observed in the presence of crotonic acid. Sorbic acid yielded the best production of butanoyl-pyrrothine (26 mg g−1 DCW). Methacrylic, butyric, pyruvic and 4-bromobenzoic acids also exhibited the best production of butanoyl-pyrrothine (27–11-fold).Study of organic acid concentration showed that among the selected organic acids, pimelic acid yielded the highest specific production of thiolutin (91 mg g−1 DCW) at 7.5 mM; and senecioyl-pyrrothine (11 mg g−1 DCW), tigloyl-pyrrothine (9 mg g−1 DCW) and butanoyl-pyrrothine (3.5 mg g−1 DCW) at 5 mM. Pyruvic acid at 1.25 mM enhanced the production of senecioyl-pyrrothine (4.3 mg g−1 DCW). The maximum production of tigloyl-pyrrothine (18.6 mg g−1 DCW) was observed in the presence of tiglic acid at 2.5 mM. Maximum production of isobutyryl-pyrrothine was observed in the presence of 7.5 mM tiglic acid. In addition, methacrylic acid (at 5 mM) and butyric acid (at 2.5 mM) enhanced the production of butanoyl-pyrrothine (26 and 20 times, respectively).The above results can be employed in the optimisation of the culture medium for the production of dithiolopyrrolone in higher quantities.  相似文献   

7.
Concerns over sustained availability of fossil resources along with environmental impact of their use have stimulated the development of alternative methods for fuel and chemical production from renewable resources. In this work, we present a new approach to produce α,β-unsaturated carboxylic acids (α,β-UCAs) using an engineered reversal of the β-oxidation (r-BOX) cycle. To increase the availability of both acyl-CoAs and enoyl-CoAs for α,β-UCA production, we use an engineered Escherichia coli strain devoid of mixed-acid fermentation pathways and known thioesterases. Core genes for r-BOX such as thiolase, hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase, and enoyl-CoA reductase were chromosomally overexpressed under the control of a cumate inducible phage promoter. Native E. coli thioesterase YdiI was used as the cycle-terminating enzyme, as it was found to have not only the ability to convert trans-enoyl-CoAs to the corresponding α,β-UCAs, but also a very low catalytic efficiency on acetyl-CoA, the primer and extender unit for the r-BOX pathway. Coupling of r-BOX with YdiI led to crotonic acid production at titers reaching 1.5 g/L in flask cultures and 3.2 g/L in a controlled bioreactor. The engineered r-BOX pathway was also used to achieve for the first time the production of 2-hexenoic acid, 2-octenoic acid, and 2-decenoic acid at a final titer of 0.2 g/L. The superior nature of the engineered pathway was further validated through the use of in silico metabolic flux analysis, which showed the ability of r-BOX to support growth-coupled production of α,β-UCAs with a higher ATP efficiency than the widely used fatty acid biosynthesis pathway. Taken together, our findings suggest that r-BOX could be an ideal platform to implement the biological production of α,β-UCAs.  相似文献   

8.
Stearoyl-CoA desaturase 1 (SCD1) is a delta-9 fatty acid desaturase that catalyzes the synthesis of mono-unsaturated fatty acids (MUFA). SCD1 is a critical control point regulating hepatic lipid synthesis and β-oxidation. Scd1 KO mice are resistant to the development of diet-induced non-alcoholic fatty liver disease (NAFLD). Using a chronic-binge protocol of ethanol-mediated liver injury, we aimed to determine if these KO mice are also resistant to the development of alcoholic fatty liver disease (AFLD).Mice fed a low-fat diet (especially low in MUFA) containing 5% ethanol for 10 days, followed by a single ethanol (5 g/kg) gavage, developed severe liver injury manifesting as hepatic steatosis. This was associated with an increase in de novo lipogenesis and inflammation. Using this model, we show that Scd1 KO mice are resistant to the development of AFLD. Scd1 KO mice do not show accumulation of hepatic triglycerides, activation of de novo lipogenesis nor elevation of cytokines or other pro-inflammatory markers. Incubating HepG2 cells with a SCD1 inhibitor induced a similar resistance to the effect of ethanol, confirming a role for SCD1 activity in mediating ethanol-induced hepatic injury.Taken together, our study shows that SCD1 is a key player in the development of AFLD and associated deleterious effects, and suggests SCD1 inhibition as a therapeutic option for the treatment of this hepatic disease.  相似文献   

9.
In this study, we expressed lipase 2 from Candida sp. 99-125 in Saccharomyces cerevisiae, and tried direct biodiesel production. Driven by 3-phosphoglycerate kinase promoter, Lip2 showed high expression level in cytoplasm. SDS-PAGE analysis confirmed the successful lipase expression with a 40 kDa molecular weight. The enzyme assay indicated that lipase 2 had a specific activity of 12.12 μmol/min/mg toward p-nitrophenyl palmitate. Gas chromatography showed that the main fatty acids of S. cerevisiae lipids were palmitoleic acid (31.79%) and oleic acid (29.84%). By three-step addition of 4% ethanol to culture broth, the yield of fatty acid ethyl esters by recombinant S. cerevisiae reached 11.4 mg/g dry cell weight. This work proposed a novel pathway for S. cerevisiae that could be applied for producing biodiesel directly.  相似文献   

10.
Mixed culture of Saccharomyces cerevisiae and Acetobacter pasteurianus was carried out for high yield of acetic acid. Acetic acid production process was divided into three stages. The first stage was the growth of S. cerevisiae and ethanol production, fermentation temperature and aeration rate were controlled at 32 °C and 0.2 vvm, respectively. The second stage was the co-culture of S. cerevisiae and A. pasteurianus, fermentation temperature and aeration rate were maintained at 34 °C and 0.4 vvm, respectively. The third stage was the growth of A. pasteurianus and production of acetic acid, fermentation temperature and aeration rate were controlled at 32 °C and 0.2 vvm, respectively. Inoculation volume of A. pasteurianus and S. cerevisiae was 16% and 0.06%, respectively. The average acetic acid concentration was 52.51 g/L under these optimum conditions. To enhance acetic acid production, a glucose feeding strategy was subsequently employed. When initial glucose concentration was 90 g/L and 120 g/L glucose was fed twice during fermentation, acetic acid concentration reached 66.0 g/L.  相似文献   

11.
Sugar esters of fatty acids have many applications as biocompatible and biodegradable emulsifiers, which are determined by their degrees of esterification (DE). Direct esterification of fructose with lauric acid in organic media used commercial immobilized Candida antarctica lipase B (CALB) was investigated for DE. Significant difference of DE was observed between 2-methyl-2-butanol (2M2B) and methyl ethyl ketone (MEK), as di-ester/mono-ester molar ratio of 1.05:1 in 2M2B and 2.79:1 in MEK. Fourier transform infrared (FTIR) spectra showed that the secondary structure of the enzyme binding mono-ester presented distinct difference in 2M2B and MEK. Contents of β-turn and antiparallel β-sheet of CALB in 2M2B were 26.9% and 16.2%, respectively, but 19.1% and 13.2% in MEK. To understand the relationship between the conformational changes and differences of DE, mono-ester and fatty acid were directly employed for synthesis of di-ester. The maximum initial velocity of di-ester synthesis in MEK was 0.59 mmol g (enzyme)−1 h−1, which was 2.19-fold as greater as that in 2M2B, indicating that CALB conformation in MEK was preferred for the synthesis of di-ester. These results demonstrated that the conformation of CALB binding mono-ester affected by organic solvents essentially determined DE.  相似文献   

12.
Retinoic acids play a critical role in vital physiological processes and vertebrate development, and their derivatives can be produced by some cyanobacterial species into surface waters. This study presents important environmentally-relevant information on total retinoid-like activity of field cyanobacterial biomasses and their surrounding waters. Intracellular and extracellular levels of total retinoid-like activity and retinoic acids have been investigated at a set of independent sites with the occurrence of water bloom dominated by widespread species Microcystis aeruginosa. Twelve samples of biomass and surrounding water from seven localities affected by blooms were studied in comparison with samples from M. aeruginosa laboratory cultures. The method for biomass extraction was optimized and final extracts and samples of surrounding water concentrated by solid phase extraction were assessed using in vitro reporter gene bioassay and chemical analyses for all-trans-retinoic acid (ATRA), 9-cis retinoic acid (9-cis RA) and microcystins RR, LR and YR. Methanol was the most efficient solvent for the extraction of compounds with retinoid-like activity. An in vitro bioassay with the P19/A15 transgenic cell line revealed retinoid-like activity in all cyanobacterial biomasses in the range of 356–2838 ng of retinoid acid equivalents (REQ)/g dry mass (dm), while only three of surrounding water samples exhibited detectable retinoid-like activity, in the range of 12.8–28.7 ng REQ/L. Microcystins were detected in all samples, but they elicited no detectable retinoid-like activity up to 10 mg/L. Chemical analyses detected concentrations up to 340 ng/g dm of all-trans-retinoic acid (ATRA) and 84 ng/g dm 9-cis retinoic acid (9-cis RA) in bloom extracts, and up to 19 ng/L ATRA and 2.2 ng/L 9-cis RA in surrounding water. In most samples, ATRA and 9-cis RA contributed relatively little to the total REQs, which indicates the presence of significant amounts of other compounds with retinoic acid receptor-mediated modes of action. The impact of retinoid-like cyanobacterial metabolites could be of importance namely in smaller water bodies with dense water blooms and low dilution.  相似文献   

13.
Enzyme hydrolysis of pretreated cellulosic materials slows as the concentration of solid biomass material increases, even though the ratio of enzyme to cellulose is kept constant. This form of inhibition is distinct from substrate and product inhibition, and has been noted for lignocellulosic materials including wood, corn stover, switch grass, and corn wet cake at solids concentrations greater than 10 g/L. Identification of enzyme inhibitors and moderation of their effects is of considerable practical importance since favorable ethanol production economics require that at least 200 g/L of cellulosic substrates be used to enable monosaccharide concentrations of 100 g/L, which result in ethanol titers of 50 g/L. Below about 45 g/L ethanol, distillation becomes energy inefficient. This work confirms that the phenols: vanillin, syringaldehyde, trans-cinnamic acid, and hydroxybenzoic acid, inhibit cellulose hydrolysis in wet cake by endo- and exo-cellulases, and cellobiose hydrolysis by β-glucosidase. A ratio of 4 mg of vanillin to 1 mg protein (0.5 FPU) reduces the rate of cellulose hydrolysis by 50%. β-Glucosidases from Trichoderma reesei and Aspergillus niger are less susceptible to inhibition and require about 10× and 100× higher concentrations of phenols for the same levels of inhibition. Phenols introduced with pretreated cellulose must be removed to maximize enzyme activity.  相似文献   

14.
《Process Biochemistry》2014,49(4):617-622
ω-Hydroxyundec-9-enoic acid and n-heptanoic acid are valuable building blocks for the production of flavors and antifungal agents as well as bioplastics such as polyamides and polyesters. However, a biosynthetic process to allow high productivity and product yield has not been reported. In the present study, we engineered an Escherichia coli-based biocatalytic process to efficiently produce ω-hydroxyundec-9-enoic acid and n-heptanoic acid from a renewable fatty acid (i.e., ricinoleic acid). Expression systems for catalytic enzymes (i.e., an alcohol dehydrogenase of Micrococcus luteus, a Baeyer–Villiger monooxygenase of Pseudomonas putida KT2440, an esterase of Pseudomonas fluorescens SIK WI) and biotransformation conditions were investigated. Biotransformation during stationary growth phase of recombinant E. coli in a bioreactor allowed to produce ω-hydroxyundec-9-enoic acid and n-heptanoic acid at a rate of 3.2 mM/h resulting in a final product concentration of ca. 20 mM. The total amount of ω-hydroxyundec-9-enoic acid and n-heptanoic acid produced reached 6.5 g/L (4.0 g/L of ω-hydroxyundec-9-enoic acid and 2.5 g/L of n-heptanoic acid). These results indicate that the high value carboxylic acids ω-hydroxyundec-9-enoic acid and n-heptanoic acid can be produced from a renewable fatty acid via whole-cell biotransformation.  相似文献   

15.
Coniferyl alcohol is one of the major precursors of lignin; the most abundant aromatic compound and a natural resource currently receiving attention because of the value-added metabolites resulting from its degradation. Growth study of Streptomyces albogriseolus KF977548 (strain AOB) isolated from decaying wood residues in a tropical estuarine ecosystem was carried out using coniferyl alcohol as a sole carbon source. Cell growth and metabolite production were monitored at 24 h interval by dry weight measurements and HPLC, LC–MS-DAD analyses. Biochemical and PCR assays were carried out to detect the major catabolic enzymes of interest. Strain AOB utilized coniferyl alcohol completely within 72 h (μ = 0.204 h−1, Td = 3.4 h). Laccase and peroxidase were released into the growth medium up to 0.099 and 98 μmol/mL respectively. Protocatechuate 3, 4-dioxygenase and demethylase were detected in the genome whilst ortho-adipate pathway was clearly indicated. Growth on coniferyl alcohol or caffeic acid as mono substrates resulted in the production of secondary metabolites identified by HPLC–MS as 1-caffeoylquinic and 3,4,5-tricaffeoylquinic acids, known as chlorogenic acids, in the culture medium. The microbial production of chlorogenic acids from a lignin-related substrate base by strain AOB could arouse a plausible biotechnological process.  相似文献   

16.
To determine the biomarkers of exposure to xylene, urinary 2-, 3- and 4-methyl-hippuric acids, a new HPLC/DAD analytical method has been developed, which uses β-cyclodextrin as an additive for elution; its complexing abilities are exploited to achieve complete chromatographic separation of the three isomers. The mobile phase was a 3% aqueous solution of β-cyclodextrin, pH 3, and methanol, 80:20, in isocratic conditions, with a flow rate of 1 mL/min. To optimize quantitative analysis three wavelengths were employed for detection: λ = 198 nm, λ = 200 nm, and λ = 202 nm. SPE was applied for the extraction from urine samples of analytes. Validation parameters show recoveries always above 82%; LOD was set at 1 μg/mL with an LOQ of 3 μg/mL. The linear dynamic range (from 4 to 100 μg/mL) showed excellent correspondence. This method is rapid and inexpensive and can be applied to several samples simultaneously using a manifold for SPE extraction. The analytes were separated completely and could be fully quantified. The method was used for the analysis of urine samples from 54 workers exposed to xylene in hospital laboratories and showed a good applicability while allowing quantification even at low doses.  相似文献   

17.
《Process Biochemistry》2010,45(8):1299-1306
Neutralized hydrolysate and pretreated rice straw obtained from a 2% (w/v) sulfuric acid pretreatment were mixed at 10% (w/v) and subjected to simultaneous saccharification and co-fermentation (SSCF), with cellulase, β-glucosidase, and Candida tropicalis cells at 15 FPU/g-ds, 15 IU/g-ds and 1 × 109 cells/ml, respectively. A 36-h SSCF with adapted cells resulted in YP/S and ethanol volumetric productivity of 0.36 g/g and 0.57 g/l/h, respectively. In addition to ethanol, insignificant amounts of glycerol and xylitol were also produced. Adapted C. tropicalis cells produced nearly 1.6 times more ethanol than non-adapted cells. Ethanol yield (Yp/s), ethanol volumetric productivity and a xylitol concentration of 0.48 g/g, 0.33 g/l/h and 0.89 g/l, respectively, were produced from fermentation of remaining hydrolysate with adapted C. tropicalis cells. The 0.20 g/g ethanol yield and 77% production efficiency from SSCF of pretreated rice straw indicate scale-up potential for the process. This study demonstrated that C. tropicalis produced ethanol and xylitol from a mixed-sugar stream, although cell adaptation affected ethanol and xylitol yields. Scanning electron microscopy indicated agglomeration of cellulose microfibrils and globular deposition of lignin in acid-pretreated rice straw.  相似文献   

18.
The efficient fermentative production of solvents (acetone, n-butanol, and ethanol) from a lignocellulosic feedstock using a single process microorganism has yet to be demonstrated. Herein, we developed a consolidated bioprocessing (CBP) based on a twin-clostridial consortium composed of Clostridium cellulovorans and Clostridium beijerinckii capable of producing cellulosic butanol from alkali-extracted, deshelled corn cobs (AECC). To accomplish this a genetic system was developed for C. cellulovorans and used to knock out the genes encoding acetate kinase (Clocel_1892) and lactate dehydrogenase (Clocel_1533), and to overexpress the gene encoding butyrate kinase (Clocel_3674), thereby pulling carbon flux towards butyrate production. In parallel, to enhance ethanol production, the expression of a putative hydrogenase gene (Clocel_2243) was down-regulated using CRISPR interference (CRISPRi). Simultaneously, genes involved in organic acids reassimilation (ctfAB, cbei_3833/3834) and pentose utilization (xylR, cbei_2385 and xylT, cbei_0109) were engineered in C. beijerinckii to enhance solvent production. The engineered twin-clostridia consortium was shown to decompose 83.2 g/L of AECC and produce 22.1 g/L of solvents (4.25 g/L acetone, 11.5 g/L butanol and 6.37 g/L ethanol). This titer of acetone-butanol-ethanol (ABE) approximates to that achieved from a starchy feedstock. The developed twin-clostridial consortium serves as a promising platform for ABE fermentation from lignocellulose by CBP.  相似文献   

19.
This study was aimed to evaluate antioxidative activities of the ethanol, methanol and water extracts of Pulicaria gnaphalodes in vegetable oil during the storage period. Different concentrations (0, 200, 400 and 800 ppm) of ethanol, methanol and water extracts and beta-hydroxy toluene (BHT; 100, 200 ppm) were added to soybean oil and incubated for 35 days at 65 °C. Peroxide values (PVs) and thiobarbituric acid-reactive substance (TBARS) levels were measured every week during the period of the study. Moreover, antioxidant capacities of the extracts were determined using DPPH and β-carotene–linoleic acid methods. Values were compared among groups in each incubation time points using ANOVA. Results showed that DPPH and β-carotene–linoleic acid assay findings on the P. gnaphalodes extracts were comparable to those found on BHT. Moreover, during incubation time, P. gnaphalodes extracts lowered PVs and TBARS levels when compared to the control (p < 0.001). In this respect, water extract was more potent than the ethanol and methanol extracts. It seems that water extract of P. gnaphalodes is a potent antioxidant which makes it as a potential antioxidant for oil and oily products during storage.  相似文献   

20.
DHA status of vegetarians   总被引:1,自引:1,他引:0  
The aim of the present study was to evaluate the influence of pregnancy in adolescents on the fatty acid composition of the erythrocyte membrane, which was used as a proxy for status of n-3 and n-6 polyunsaturated fatty acids (PUFA), and also on the composition of plasma non-esterified fatty acids (NEFA) mobilized from the adipose tissue. Two matched groups of healthy adolescents (14–19 years) from Rio de Janeiro, Brazil, were compared: pregnant (n=26; 32.7±3.9 weeks of gestation, mean±SD) and non-pregnant (n=20). Blood samples were collected after an overnight fast. Mean dietary intakes of total fat and n-3 and n-6 PUFA (energy %) were not different between pregnant and non-pregnant adolescents, and the consumption of food sources of docosahexaenoic acid (DHA) was low. Fasting total NEFA and NEFA 18:2n-6, 18:3n-6 and 20:4n-6 (g/100 g fatty acids) were higher in pregnant than in non-pregnant adolescents. Although erythrocyte 20:4n-6 was lower in pregnant adolescents, there were no differences in DHA (g/100 g fatty acids), in DHA status indices (22:5n-6/22:4n-6 and 22:6n-3/22:5n-6 ratios) and in the index of n-3+n-6 PUFA status ([Σn-3+Σn-6]/[Σn-7+Σn-9]) in erythrocytes as compared with those of non-pregnant adolescents. In conclusion, pregnancy did not have an adverse effect on erythrocyte DHA content or on DHA and n-3+n-6 PUFA status indices in the adolescents studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号