首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Preeclampsia (PE) is the leading cause of maternal and perinatal mortality and morbidity. Understanding the molecular mechanisms underlying placentation facilitates the development of better intervention of this disease. MicroRNAs are strongly implicated in the pathogenesis of this syndrome. In current study, we found that miR-125b-1-3p was elevated in placentas derived from preeclampsia patients. Transfection of miR-125b-1-3p mimics significantly inhibited the invasiveness of human trophoblast cells, whereas miR-125b-1-3p inhibitor enhanced trophoblast cell invasion. Luciferase assays identified that S1PR1 was a novel direct target of miR-125b-1-3p in the placenta. Overexpression of S1PR1 could reverse the inhibitory effect of miR-125b-1-3p on the invasion of trophoblast cells. These findings suggested that abnormal expression of miR-125b-1-3p might contribute to the pathogenesis of preeclampsia.  相似文献   

2.
目的:研究miR-218是否通过下调SOX4影响滋养层细胞系HTR-8细胞的迁移和侵袭。方法:妊娠期高血压疾病(HDCP)患者46例,平均年龄(31 ±4.6)岁,收缩期血压≥ 140 mmHg和/或舒张期血压> 90 mmHg;以血压正常孕妇50例为对照,实时荧光定量PCR(RT-PCR)检测两组患者静脉血中miR-218的表达情况。转染miR-218mimic和miR-NC至离体培养的HTR-8细胞中,将细胞分为对照组(加入DMEM)、空质粒组(加入miR-NC)和过表达miR-218组(加入miR-218 mimic)3组,检测细胞的迁移侵袭情况以及细胞中MMP-2和MMP-9的表达,,生物信息学预测miR-218潜在靶基因为SOX4,利用荧光素酶素试验验证SOX4是miR-218的靶基因;再通过转染过表达SOX4的质粒至HTR-8细胞,HTR-8细胞分为过表达miR-218组、过表达miR-218+空质粒组、过表达miR-218+SOX4组,以上方法检测HTR-8细胞的迁移侵袭情况。结果:相比于正常孕妇组,HDCP组患者血清中miR-218表达减少(P <0.01)。相比于空质粒组,转染miR-218mimic后,HTR-8细胞中MMP-2、MMP-9、SOX4的表达减少(P < 0.01),细胞迁移和侵袭能力下降(P < 0.01);荧光素酶试验结果显示,miR-218能够显著降低SOX4-3'-UTR质粒的荧光素活性(P< 0.01);相比于miR-218+空质粒组,转染过表达SOX4质粒后,HTR-8细胞迁移和侵袭能力增加(P < 0.01)。结论:HDCP患者血清中miR-218表达减少,miR-218可以通过下调SOX4从而抑制HTR-8细胞的迁移和侵袭。  相似文献   

3.
《Reproductive biology》2021,21(4):100576
Preeclampsia (PE) is a severe pregnancy-specific disorder. Previous findings indicated that pigment epithelium-derived factor (PEDF) was upregulated in placentas of women with PE. Here, we investigated the role of PEDF in trophoblast function, especially under hypoxia. The effects of hypoxia on the morphology of extravillous trophoblast (EVT)-derived HTR-8Svneo cells were observed under inverted microscope. Transfections with Lipofectamine LTX were performed according to the manufacturer's protocol. The expression of PEDF protein and mRNA were confirmed by immunofluorescence (IF) and quantitative real-time PCR (qPCR). Apoptosis was detected by transferase-mediated dUTP nick end labeling (TUNEL) assay, and proliferation of trophoblast was detected by CCK-8 method. The invasion capacity of trophoblast was assessed by Transwell assay. PEDF was expressed in HTR-8/SVneo under both normoxia and hypoxic stress. However, cells of hypoxia groups had higher expression level of PEDF, increased apoptosis and decreased invasion capability, as compared with normoxia group. Moreover, after transfection with plasmid expressing PEDF gene, overexpression of PEDF modulated trophoblast activities. In addition, PEDF expression was negatively associated with invasion while positively correlated with apoptosis.Our data suggest that PEDF is an important factor to maintain the biological function of trophoblast cells, thus representing a rational therapeutic target in PE.  相似文献   

4.
Thyroid cancer (TC) is one of the primary tumors arisen from endocrine system. The purpose of this study was to investigate the underlying mechanism by which RAP1B (Ras-related protein Rap-1b) modulates microRNA (miR)-206 related effects on TC cells. Expression of miR-206 and RAP1B was analyzed in cells and tissues. miR-206 mimics or inhibitors and RAP1B vector were used in functional experiments to investigate the effects of miR-206 and RAP1B on cell activities including proliferation, migration, and invasion. Luciferase assay was performed to explore the association between miR-206 and RAP1B. The influence of miR-206 on tumorigenesis of TC cells was investigated using an ex vivo model. Our results demonstrated the reduce of miR-206 in TC tissues and cell lines in which RAP1B was increased. Overexpression of miR-206 significantly inhibited the functional capacities of TPC-1 cells including proliferation, invasion, and migration, most likely, through reducing the expression of RAP1B. Xenograft experiment showed that increased miR-206 could effectively inhibit the tumorigenesis of TC cells. Our study showed that miR-206 negatively regulated cell activities of proliferation, invasion, and migration in TC via suppressing RAP1B expression, suggesting that miR-206 exerts a vital role in TC.  相似文献   

5.
MieroRNAs (miRNAs) function as negative regulators of gene expression involved in cancer metastasis. The aim of this study is to investigate the potential roles of miR-218 in non-small cell lung cancer and validate its regulation mech- anism. Functional studies showed that miR-218 overexpres- sion inhibited cell migration and invasion, but had no effect on cell viability. Enhanced green fluorescent protein reporter assay, real-time polymerase chain reaction and western blot analysis confirmed that miR-218 suppressed the expression of high mobility group box-1 (HMGB1) by directly targeting its 31-untranslated region. Accordingly, silencing of HMGBI accorded with the effects of miR-218 on cell migration and invasion, and overexpression of HMGB1 can restore cell migration and invasion which were reduced by miR-218. In conclusion, these findings demon- strate that miR-218 functions as a tumor suppressor in lung cancer. Furthermore, miR-218 may act as a potential thera- peutic biomarker for metastatic lung cancer patients.  相似文献   

6.
Oral squamous cell carcinoma (OSCC), the most common pathological type of oral cancer, is still a frequent malignancy with unsatisfactory prognosis. Accumulating studies have proven some microRNAs (miRNAs) can function as oncogenes in OSCC by targeting tumor suppressors. In this study, we first investigated the expression and role of tumor suppressor bridging integrator-1 (BIN1) in OSCC tissues and cells. Our results indicated that BIN1 was low expressed in the OSCC tissues and cell lines (SCC6, SCC9, SCC25, HN4, and HN6) along with miR-211 was highly expressed in OSCC tissues and cell lines, and BIN1 overexpression could evidently inhibit their proliferation, migration, and invasion abilities. Next, we used bioinformation algorithms to predict the potential miRNA targeting BIN1 and chose miR-211 for further study. miR-211, a highly expressed miRNA in OSCC cells, could specifically bind with the 3′-untranslated region (3′-UTR) of BIN1 to trigger its degradation. Addition of miR-211 inhibitor could evidently suppress the malignant behaviors of OSCC cells by upregulating BIN1 expression and inhibit the activation of the EGFR/MAPK pathway. Taken together the findings of the study indicated that miR-211 mediated BIN1 downregulation had crucial significances in OSCC, suggesting the miR-211 might be a novel potential therapeutic target for the OSCC treatment.  相似文献   

7.
Cytokines’ secretion from the decidua and trophoblast cells has been known to regulate trophoblast cell functions, such as Extravillous trophoblasts (EVTs) cell migration and invasion and remodeling of spiral arteries. Defective angiogenesis and spiral arteries transformation are mainly caused by proinflammatory cytokines and excessive thrombin generation during preeclampsia. Monocyte chemotactic protein-1 (MCP-1), a crucial cytokine, has a role in maintaining normal pregnancy. In this study, we explored whether thrombin regulates the secretion of MCP-1 in HTR-8/SVneo cells; if yes, what is its function? We used HTR-8/SVneo cells, developed from ?rst trimester villous explants of early pregnancy, as the model of EVTs. MCP-1 gene silencing was performed using gene-specific siRNA. qPCR and ELISA were performed to estimate the expression and secretion of MCP-1. Here, we found that thrombin enhanced the secretion of MCP-1 in HTR-8/SVneo cells. Proteinase-activated receptor-1 (PAR-1) was found as the primary receptor, regulating MCP-1 secretion in these cells. Furthermore, MCP-1 secretion is modulated via protein kinase C (PKC) α, β, and Rho/Rho-kinase-dependent pathways. Thrombin negatively regulates HTR-8/SVneo cells’ ability to mimic tube formation in an MCP-1 dependent manner. In conclusion, we propose that thrombin-controlled MCP-1 secretion may play an essential role in normal placental development and successful pregnancy maintenance. Improper thrombin production and MCP-1 secretion during pregnancy might cause inadequate vascular formation and transformation of spiral arteries, which may contribute to pregnancy disorders, such as preeclampsia.  相似文献   

8.
9.
The role of miRNAs (microRNAs) has been implicated in glioma initiation and progression, although the inherent biochemical mechanisms still remain to be unravelled. This study strived to evaluate the association between CSF-1 and miR-1254 and their effect on advancement of glioma cells. The levels of miR-1254 in glioma cells and tissues were determined by real-time RT-PCR. Proliferation, apoptosis and cell cycle arrest, invasion and migration, were assessed by CCK-8 assay, colony formation assay, flow cytometry, transwell assay and wound-healing assay, respectively. The targeted relationship between miR-1254 and CSF-1 was confirmed by dual-luciferase reporter assay. The effects of CSF-1 on cellular functions were also assessed. The in vivo effect of miR-1254 on the formation of a tumour was explored by using the mouse xenograft model. We found in both glioma tissues and glioma cells, the down-regulated expressions of miR-1254 while that of CSF-1 was abnormally higher than normal level. The target relationship between CSF-1 and miR-1254 was validated by dual-luciferase reporter assay. The CSF-1 down-regulation or miR-1254 overexpression impeded the invasion, proliferation and migratory ability of U251 and U87 glioma cells, concurrently occluded the cell cycle and induced cell apoptosis. Moreover, in vivo tumour development was repressed due to miR-1254 overexpression. Thus, CSF-1 is targeted directly by miR-1254, and the miR-1254/CSF-1 axis may be a potential diagnostic target for malignant glioma.  相似文献   

10.
11.
Recently, there is increasing evidence that microRNAs are related to the development, diagnosis, treatment, and prognosis of glioblastoma. microRNA-210 (miR-210) had been identified in many human cancers, but the specific function of miR-210 remains unclear in glioblastoma. The present study mainly focused on exploring its biological role and potential molecular mechanisms in glioblastoma. We found that miR-210 expression was decreased in glioblastoma, and downregulation of miR-210 was related to worse prognosis in glioblastoma patients. In addition, miR-210 overexpression inhibited the migration and invasion of human glioblastoma cells. At the same time, we found that miR-210 directly targets the brain-derived neurotrophic factor (BDNF) and reduces BDNF expression level. Consistently, BDNF silencing had the same effects as miR-210 overexpression in glioblastoma, and upregulation of BDNF counteracted the inhibitory effect of miR-210 in glioblastoma. In conclusion, miR-210 suppressed the migration and invasion of glioblastoma cells by targeting BDNF.  相似文献   

12.
Cervical cancer (CC) is a common gynecological cancer and a leading cause of cancer-related deaths in women globally. Therefore, this study explores the action of microRNA-205 (miR-205) in the invasion, migration, and angiogenesis of CC through binding to tumor suppressor lung cancer 1 (TSLC1). Initially, the microarray analysis was used to select the candidate gene and the regulatory microRNA. Then, the target relationship between miR-205 and TSLC1 as well as the expression of miR-205, TSLC1, and p-Akt/total Akt in CC cells were determined. Afterwards, CC cell invasion and migration were detected after the treatment of miR-205 mimics/inhibitors and short hairpin RNA against TSLC1. After coculture of cancer cells and vascular endothelial cells, cell proliferation, tube formation, and microvessel density (MVD) were detected to determine the roles of miR-205 in angiogenesis. Finally, tumor growth in nude mice was measured in vivo. TSLC1 was determined as the candidate gene, which was found to be targeted and negatively regulated by miR-205. Then, downregulated miR-205 or forced TSLC1 expression inhibited invasion, migration, and angiogenesis in CC, corresponding to suppressed cell proliferation, tube formation, and expression of IL-8, VEGF, and bFGF, as well as the inhibited activation of the Akt signaling pathway. Furthermore, downregulation of miR-205 was found to exert an inhibitory role in tumor formation and MVD by elevating TSLC1 in CC in vivo. This study demonstrated that downregulated miR-205 inhibited cell invasion, migration, and angiogenesis in CC by inactivating the Akt signaling pathway via TSLC1 upregulation.  相似文献   

13.
14.
15.
In the present study, we investigated the roles and molecular mechanisms of miR-320a in human nasopharyngeal carcinoma (NPC). miR-320a expression was strongly reduced in NPC tissues and cell lines. Overexpression of miR-320a significantly suppressed NPC cell growth, migration, invasion and tumor growth in a xenograft mouse model. A luciferase reporter assay revealed that miR-320a could directly bind to the 3′ UTR of BMI-1. Overexpression of BMI-1 rescued miR-320a-mediated biological function. BMI-1 expression was found to be up-regulated and inversely correlated with miR-320a expression in NPC. Collectively, our data indicate that miR-320a plays a tumor suppressor role in the development and progression of NPC and may be a novel therapeutic target against NPC.  相似文献   

16.
Objectives:MicroRNAs (miRNAs) have been considered as a new class of novel diagnostic and predictive biomarker in many diseases. However, there are few studies on miRNA in osteosarcoma (OS). This study aimed to investigate the roles of miR-30 on OS occurrence and development.Methods:PCR was used to detect mRNA levels of miR-30 and MTA1 in cancer tissues, adjacent non-cancerous tissues from OS patients. Western blot was used to detect MTA1 protein expression in all tissues and cell lines (hFOb1.19,Saos-2, MG63, and U2OS). The correlation between miR-30 and MTA1 was predicted through bioinformatics software, and identified by a luciferase reporting experiment. In vitro, functional test detected the specific effects of miR-30 and MTA1 on the development of OS.Results:miR-30 expression was significantly reduced, while the expression of MTA1 was increased in OS tissues and cells. Luciferase reporting experiment showed that miR-30 sponged MTA1 which was negatively correlated with miR-30 expression. Furthermore, rescue tests revealed that MTA1 restrained the functions of miR-30 on cell proliferation and migration of OS.Conclusion:Our finding showed that miR-30 modulated the proliferation and migration by targeting MTA1 in OS.  相似文献   

17.
Aberrant microRNAs (miRNAs) expressions could contribute to the progression of numerous cancers, including esophageal squamous cell carcinoma, while miR-10a participates in multiple biological processes on cancers. However, the molecular mechanism of miR-10a in esophageal squamous cell carcinoma (ESCC) has not been investigated. Herein, miR-10a was significantly reduced in ESCC clinical tissues and ESCC cell lines (EC109 and TE-3). In addition, immunohistochemistry indicated that the expressions of α-SMA, Ki-67, and PCNA in tumor tissues were higher than that of controls. In vitro, overexpression of miR-10a dramatically suppressed cell proliferation and enhanced cell apoptosis, while the decrease of miR-10a expressed the opposite outcome. Specially, overexpression of miR-10a caused a G0/G1 peak accumulation. Moreover, miR-10a also negatively regulated ESCC cell migration and invasion. Furthermore, targetscan bioinformatics predictions and the dual-luciferase assay confirmed that Tiam1 was a direct target gene of miR-10a. The statistical analysis showed Tiam1 was negatively in correlation with miR-10a in ESCC patient samples. And silencing Tiam1 could lead to a decline on cell growth, invasion, and migration in ESCC cell lines, while it could enhance cell apoptosis and cause a G0/G1 peak accumulation. In vivo, it revealed that miR-10a notably decreased the tumor growth and metastasis in xenograft model and pulmonary metastasis model. And it showed a lower expressions of Tiam1 in the miR-10a mimics group by immunohistochemistry. Taken together the results, they indicated that miR-10a might function as a novel tumor suppressor in vitro and in vivo via targeting Tiam1, suggesting miR-10a to be a candidate biomarker for the ESCC therapy.  相似文献   

18.
Terminal differentiation induced ncRNA (TINCR), a newly identified lncRNA, has been found to be associated with different human cancers including hepatocellular carcinoma (HCC). However, little is known regarding the pathological mechanisms of TINCR in HCC progression. In this study, we confirmed that TINCR expression was upregulated in HCC tumors and cell lines, and high TINCR expression was associated with larger tumor size, advanced tumor node metastasis stage, and poor prognosis. Functionally, knockdown of TINCR facilitated apoptosis and suppressed viability, colony formation and invasion in Huh7 and Hep3B cells. Mechanically, TINCR functioned as competing endogenous RNA (ceRNA) to regulate DEAD-box helicase 5 (DDX5) expression through sponging miR-218-5p. Moreover, the miR-218-5p expression was downregulated and DDX5 expression was upregulated in HCC tumors. The silencing of miR-218-5p or ectopic expression of DDX5 abated the tumor-suppressive effect of TINCR knockdown in vitro. Furthermore, si-TINCR-induced inactivation of AKT signaling was rescued by suppression of miR-218-5p or overexpression of DDX5. Also, the silencing of TINCR resulted in tumor growth inhibition in vivo. In summary, knockdown of TINCR suppressed HCC progression presumably by inactivation of AKT signaling through targeting the miR-218-5p/DDX5 axis, suggesting a novel TINCR/miR-218-5p/DDX5 pathway and therapy target for HCC.  相似文献   

19.
20.
MicroRNAs (miRNAs) play critical roles in breast cancer cell biological processes, including proliferation and apoptosis by inhibiting the expression of their target genes. Herein, we reported that miR-630 overexpression initiates apoptosis, blocks cell cycle progression and suppresses cell proliferation in breast cancer cells. Furthermore, BMI1, a member of polycomb group family, was identified as a direct target of miR-630, and there was a negative correlation between the expression levels of BMI1 and miR-630 in human breast cancer samples. With a series of biology approaches, subsequently, we proved that BMI1 was a functional downstream target of miR-630 and mediated the property of miR-630-dependent inhibition of breast cancer progression. Taken together, these findings provide further evidence on the tumor-suppression function of miR-630 in breast cancer, and clarify BMI1 as a novel functional target gene of miR-630.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号