首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative importance of nitrogen inputs from atmospheric deposition and biological fixation is reviewed in a number of diverse, non-agricultural terrestrial ecosystems. Bulk precipitation inputs of N (l–l2 kg N ha–1 yr–1) are the same order of magnitude as, or frequently larger than, the usual range of inputs from nonsymbiotic fixation (< 1=" –=" 5=" kg=" n=">–1 yr–1), especially in areas influenced by industrial activity. Bulk precipitation measurements may underestimate total atmospheric deposition by 30–40% because they generally do not include all forms of wet and dry deposition. Symbiotic fixation generally ranges from 10–160 kg N ha–1 yr–1) in ecosystems where N-fixing species are present during early successional stages, and may exceed the range under unusual conditions.Rates of both symbiotic and nonsymbiotic fixation appear to be greater during early successional stages of forest development, where they have major impacts on nitrogen dynamics and ecosystem productivity. Fates and impacts of these nitrogen inputs are important considerations that are inadequately understood. These input processes are highly variable in space and time, and few sites have adequate comparative information on both nitrogen deposition and fixation.
–  - more intensive studies of total atmospheric deposition, especially of dry deposition, are needed over a wide range of ecosystems;
–  - additional studies of symbiotic fixation are needed that carefully quantify variation over space and time, examine more factors regulating fixation, and focus upon the availability of N and its effects upon productivity and other nutrient cycling processes;
–  - process-level studies of associative N-fixation should be conducted over a range of ecosystems to determine the universal importance of rhizosphere fixation;
–  - further examination of the role of free-living fixation in wood decomposition and soil organic matter genesis is needed, with attention upon spatial and temporal variation; and
–  - investigations of long-term biogeochemical impacts of these inputs must be integrated with process-level studies using modern modelling techniques.
  相似文献   

2.
研究了内生多粘类芽孢杆菌(Paenibacillus polymyxa)S-7对甜菜叶片光合参数和产量的影响.结果表明:接种内生多粘类芽孢杆菌S-7能显著促进甜菜光合作用,其中叶片净光合速率(Pn)、气孔限制值(Ls)、气孔导度(Gs)和蒸腾速率(Tr )的平均值分别提高了16.11%、23.82%、41.91%和34.80%;叶片胞间CO2浓度(Ci)平均值降低了21.09%.生物学产量和含糖率分别提高了25.63%和17.46%,促进了甜菜产量和品质提高.表明内生菌不仅影响甜菜光合参数,而且对甜菜产量和品质的提高具有明显的促进作用.  相似文献   

3.
The impact of atmospheric nitrogen deposition on forest ecosystems depends in large part on its fate. Past tracer studies show that litter and soils dominate the short‐term fate of added 15N, yet few have examined its longer term dynamics or differences among forest types. This study examined the fate of a 15N‐ tracer over 5–6 years in a mixed deciduous stand that was evenly composed of trees with ectomycorrhizal and arbuscular mycorrhizal associations. The tracer was expected to slowly mineralize from its main initial fate in litter and surface soil, with some 15N moving to trees, some to deeper soil, and some net losses. Recovery of added 15N in trees and litterfall totaled 11.3% both 1 and 5–6 years after the tracer addition, as 15N redistributed from fine and especially coarse roots into cumulative litterfall and small accumulations in woody tissues. Estimates of potential carbon sequestration from tree 15N recovery amounted to 12–14 kg C per kg of N deposition. Tree 15N acquisition occurred within the first year after the tracer addition, with no subsequent additional net transfer of 15N from detrital to plant pools. In both years, ectomycorrhizal trees gained 50% more of the tracer than did trees with arbuscular mycorrhizae. Much of the 15N recovered in wood occurred in tree rings formed prior to the 15N addition, demonstrating the mobility of N in wood. Tracer recovery rapidly decreased over time in surface litter material and accumulated in both shallow and deep soil, perhaps through mixing by earthworms. Overall, results showed redistribution of tracer 15N through trees and surface soils without any losses, as whole‐ecosystem recovery remained constant between 1 and 5–6 years at 70% of the 15N addition. These results demonstrate the persistent ecosystem retention of N deposition even as it redistributes, without additional plant uptake over this timescale.  相似文献   

4.
Jenkinson  D. S. 《Plant and Soil》2001,228(1):3-15
The 6 billion people alive today consume about 25 million tonnes of protein nitrogen each year, a requirement that could well increase to 40–45 million tonnes by 2050. Most of them ultimately depend on the Haber-Bosch process to fix the atmospheric N2 needed to grow at least part of their protein and, over the earth as a whole, this dependency is likely to increase. Humans now fix some 160 million tonnes of nitrogen per year, of which 98 are fixed industrially by the Haber-Bosch process (83 for use as agricultural fertilizer, 15 for industry), 22 during combustion and the rest is fixed during the cultivation of leguminous crops and fodders. These 160 million tonnes have markedly increased the burden of combined nitrogen entering rivers, lakes and shallow seas, as well as increasing the input of NH3, N2O, NO and NO2 to the atmosphere. Nitrogen fertilizers give large economic gains in modern farming systems and under favourable conditions can be used very efficiently. Losses of nitrogen occur from all systems of agriculture, with organic manures being particularly difficult to use efficiently. Although nitrate leaching has received much attention as an economic loss, a cause of eutrophication and a health hazard, gaseous emissions may eventually prove to be the most serious environmentally. Scientists working on the use and fate of nitrogen fertilizers must be careful, clear headed and vigilant in looking for unexpected side effects.  相似文献   

5.
Measurements of the deposition rates of atmospheric trace constituents to forest ecosystems in Austria have shown that the deposition of plant utilizable nitrogen compounds is in the range from 12 kg N to more than 30 kg N ha-1 a-1. Locally, even higher deposition rates are encountered as a consequence of point sources or special deposition mechanisms such as fog interception, hoar frost formation, and accumulation in snow drifts. In order to place these values into perspective, they are compared with the nitrogen demand of past and present forest land use and with natural processes of nitrogen depletion and accumulation in forest ecosystems. During wind erosion of forest litter, woody material with a wide C/N-ratio remains on the windward side of ridges, while nutrient-rich material with a narrow C/N-ratio is deposited on the leeward side. As a result, total nitrogen storage in the forest soil as well as overall C/N-ratios change dramatically along a transect over a ridge, thus indicating a strong influence of litter C/N ratio on nitrogen retention in the forest soil. A study of nitrogen stores in the soil of beech ecosystems of the same yield class in the Vienna Woods showed a significant correlation of total N-content with base saturation. These results suggest that nitrogen storage capacity of forest soils may be managed by liming and tree species selection. As knowledge is still meagre, a special study on factors which determine nitrogen storage in forest soils is proposed within the FERN-programme.  相似文献   

6.
Nitrogen Retention, Removal, and Saturation in Lotic Ecosystems   总被引:5,自引:0,他引:5  
Increased nitrogen (N) loading to lotic ecosystems may cause fundamental changes in the ability of streams and rivers to retain or remove N due to the potential for N saturation. Lotic ecosystems will saturate with sustained increases in the N load, but it is unclear at what point saturation will occur. Rates of N transformation in lotic ecosystems will vary depending on the total N load and whether it is an acute or chronic N load. Nitrogen saturation may not occur with only pulsed or short-term increases in N. Overall, saturation of microbial uptake will occur prior to saturation of denitrification of N and denitrification will become saturated prior to nitrification, exacerbating increases in nitrate concentrations and in N export downstream. The rate of N export to downstream ecosystems will increase proportionally to the N load once saturation occurs. Long term data sets showed that smaller lotic ecosystems have a greater capacity to remove in-stream N loads, relative to larger systems. Thus, denitrification is likely to become less important as a N loss mechanism as the stream size increases. There is a great need for long-term studies of N additions in lotic ecosystems and clear distinctions need to be made between ecosystem responses to short-term or periodic increases in N loading and alterations in ecosystem functions due to chronic N loading.  相似文献   

7.
Ratios of nitrogen (N) isotopes in leaves could elucidate underlying patterns of N cycling across ecological gradients. To better understand global-scale patterns of N cycling, we compiled data on foliar N isotope ratios (δ15N), foliar N concentrations, mycorrhizal type and climate for over 11 000 plants worldwide. Arbuscular mycorrhizal, ectomycorrhizal, and ericoid mycorrhizal plants were depleted in foliar δ15N by 2‰, 3.2‰, 5.9‰, respectively, relative to nonmycorrhizal plants. Foliar δ15N increased with decreasing mean annual precipitation and with increasing mean annual temperature (MAT) across sites with MAT ≥ −0.5°C, but was invariant with MAT across sites with MAT < −0.5°C. In independent landscape-level to regional-level studies, foliar δ15N increased with increasing N availability; at the global scale, foliar δ15N increased with increasing foliar N concentrations and decreasing foliar phosphorus (P) concentrations. Together, these results suggest that warm, dry ecosystems have the highest N availability, while plants with high N concentrations, on average, occupy sites with higher N availability than plants with low N concentrations. Global-scale comparisons of other components of the N cycle are still required for better mechanistic understanding of the determinants of variation in foliar δ15N and ultimately global patterns in N cycling.  相似文献   

8.
萌生更新是种子植物更新策略的重要组成部分,对于维持森林群落的稳定性起着重要的作用。本研究以弄岗北热带喀斯特季节性雨林15 hm2动态监测样地第1次普查数据中萌枝(根萌和枝萌)数据为研究对象,采用Torus-translation检验法分析了萌生能力在不同生境类型中的差异性,及其与不同环境因子的关联性。结果表明:样地中有190个物种具有萌生现象,平均每公顷1831株萌生个体;不同生境类型间萌生能力差异明显,总体表现为山顶周围萌生能力较强,山坡周围萌生能力较弱,此外萌生能力的生境关联性还与萌枝的径级大小有关;萌生能力与海拔、凹凸度、坡度和坡向的余弦值呈显著正相关,而与个体胸高断面积之和呈显著负相关。喀斯特季节性雨林中萌生更新较为普遍,其分布格局与环境因子间存在一定关联。为了深入揭示萌生更新格局形成的潜在生态学过程和维持机制,长期动态监测尤为必要。  相似文献   

9.
Nitrogen retention in soil organic matter (SOM) is a key process influencing the accumulation and loss of N in forest ecosystems, but the rates and mechanisms of inorganic N retention in soils are not well understood. The primary objectives of this study were to compare ammonium (NH4+), nitrite (NO2?), and nitrate (NO3?) immobilization among soils developed under different tree species in the Catskill Mountains of New York State, and to determine the relative roles of biotic or abiotic processes in soil N retention. A laboratory experiment was performed, where 15N was added as NH4+, NO2?, or NO3? to live and mercury‐treated O horizon soils from three tree species (American beech, northern red oak, sugar maple), and 15N recoveries were determined in the SOM pool. Mercuric chloride was used to treat soils as this chemical inhibits microbial metabolism without significantly altering the chemistry of SOM. The recovery of 15N in SOM was almost always greater for NH4+ (mean 20%) and NO2? (47%) than for NO3? (10%). Ammonium immobilization occurred primarily by biotic processes, with mean recoveries in live soils increasing from 9% at 15 min to 53% after 28 days of incubation. The incorporation of NO2? into SOM occurred rapidly (<15 min) via abiotic processes. Abiotic immobilization of NO2? (mean recovery 58%) was significantly greater than abiotic immobilization of NH4+ (7%) or NO3? (7%). The incorporation of NO2? into SOM did not vary significantly among tree species, so this mechanism likely does not contribute to differences in soil NO3? dynamics among species. As over 30% of the 15NO2? label was recovered in SOM within 15 min in live soils, and the products of NO2? incorporation into SOM remained relatively stable throughout the 28‐day incubation, our results suggest that NO2? incorporation into SOM may be an important mechanism of N retention in forest soils. The importance of NO2? immobilization for N retention in field soils, however, will depend on the competition between incorporation into SOM and nitrification for transiently available NO2?. Further research is required to determine the importance of this process in field environments.  相似文献   

10.
Li WJ  Xia YQ  Yang XY  Guo M  Yan XY 《应用生态学报》2011,22(9):2331-2336
在苏南太湖地区开展田间试验,研究了施氮和肥料添加剂对水稻产量、氮素吸收转运及利用的影响.结果表明:施氮对水稻产量、各生育时期植株累积吸氮量、阶段氮累积量和花后氮素转运量具有显著的促进作用(P<0.01),当施氮量高于200 kg·hm-2时,增施氮肥的增产效应不显著(P>0.05);花后氮素转运率和氮肥利用率均随施氮量的增加而降低.施用肥料添加剂可进一步提高水稻产量、累积吸氮量、花后氮素转运量和氮肥利用率,且该效应在高施氮量( ≥200 kg·hm-2)条件下表现更明显.本试验条件下不施用肥料添加剂时,施氮150kg·hm-2可同时获得较高的产量和氮肥利用率.  相似文献   

11.
Microbial activity under alpine snowpacks, Niwot Ridge, Colorado   总被引:19,自引:9,他引:10  
Experiments were conducted during 1993 at Niwot Ridge in the Colorado Front Range to determine if the insulating effect of winter snow cover allows soil microbial activity to significantly affect nitrogen inputs and outputs in alpine systems. Soil surface temperatures under seasonal snowpacks warmed from –14 °C in January to 0 °C by May 4th. Snowmelt began in mid-May and the sites were snow free by mid June. Heterotrophic microbial activity in snow-covered soils, measured as C02 production, was first identified on March 4, 1993. Net C02 flux increased from 55 mg CO2-C m–2 day–1 in early March to greater than 824 mg CO2-C m-2 day–1 by the middle of May. Carbon dioxide production decreased in late May as soils became saturated during snowmelt. Soil inorganic N concentrations increased before snowmelt, peaking between 101 and 276 mg kg–1 soil in May, and then decreasing as soils became saturated with melt water. Net N mineralization for the period of March 3 to May 4 ranged from 2.23 to 6.63 g N m–2, and were approximately two orders of magnitude greater than snowmelt inputs of 50.4 mg N m–2 for NH4 + and 97.2 mg N m–2 for NO3 . Both NO3 and NH4 + concentrations remained at or below detection limits in surface water during snowmelt, indicating the only export of inorganic N from the system was through gaseous losses. Nitrous oxide production under snow was first observed in early April. Production increased as soils warned, peaking at 75 g N2O-N m–2 day–1 in soils saturated with melt water one week before the sites were snow free. These data suggest that microbial activity in snow-covered soils may play a key role in alpine N cycling before plants become active.  相似文献   

12.
本研究分析添加不同种硝化抑制剂及其组合的高效稳定性氯化铵氮肥对红壤硝化作用、玉米产量和氮肥利用率的影响,旨在筛选出适合酸性红壤的高效稳定性氯化铵态氮肥。在氯化铵中分别添加硝化抑制剂2-氯-6-三甲基吡啶(CP)、3,4-二甲基吡唑磷酸盐(DMPP)和双氰胺(DCD)及其组合,制成6种高效稳定性氯化铵态氮肥,以不施氮肥(CK)和施氯化铵(N)为对照,进行等氮量玉米盆栽试验。结果表明: 与N处理相比,CP+DMPP和DMPP+DCD处理红壤中铵态氮含量提高56%~62%,显著高于CP、DMPP和DCD处理;土壤表观硝化率显著降低33%~34%。添加硝化抑制剂及其组合的6个处理均显著提高了玉米生物量和氮肥吸收利用率。与N处理相比,单独添加硝化抑制剂处理生物量均显著高于硝化抑制剂组合处理,平均提高1.3倍;添加DCD处理效果最显著,玉米籽粒产量、吸氮量和氮肥吸收利用率分别显著提高4.1、6.3和4.4倍。为了达到既能低成本又能提高产量和氮肥利用率的效果,在红壤上添加硝化抑制剂DCD是最佳选择。  相似文献   

13.
The nutrient status of Lake Naivasha, a freshwater lake in southeastern Kenya, has been rising since at least 1982. A potential effect of increases in nutrient supply to the lake's floating papyrus is increasing of the plants’ investment in above–water material and reduction of the amount of energy invested in uptake and storage. Biomass and its allocation between culms, panicles, roots, and rhizomes was measured in 17 sites around the 150–km2 lake. Although above–water biomass was greatest in sites closest to the lake's major nutrient inflow, the River Malewa, there was little evidence of corresponding decreases in the biomass of uptake and storage tissues. In August 1995, the average ± SD biomass of papyrus in the lake was 11,540 ± 3020 g/m2, with the papyrus containing about 4500 ± 1900 g total carbon/m2 and about 100 ± 70 g total nitrogen/m2. Plant nitrogen contents did not vary with distance from the main external nutrient supply. Together with low nitrogen concentrations in the plants (0.60 ± 0.26 in culms and 0.99 ± 0.50% in rhizomes), very high carbon to nitrogen ratios (49 ± 20:1) and nitrogen fixation in the rhizosphere explaining only about half of the plants’ nitrogen, papyrus is a likely net sink for nitrogen supplied from the lake's increasingly cultivated watershed. Despite this role, clearance of papyrus in favor of agriculture partly explains the reductions in the area of papyrus within the lake basin from 48 km2 in the late 1960s to 14 km2 in 1995.  相似文献   

14.
Nitrogen Cycles: Past, Present, and Future   总被引:136,自引:18,他引:136  
This paper contrasts the natural and anthropogenic controls on the conversion of unreactive N2 to more reactive forms of nitrogen (Nr). A variety of data sets are used to construct global N budgets for 1860 and the early 1990s and to make projections for the global N budget in 2050. Regional N budgets for Asia, North America, and other major regions for the early 1990s, as well as the marine N budget, are presented to Highlight the dominant fluxes of nitrogen in each region. Important findings are that human activities increasingly dominate the N budget at the global and at most regional scales, the terrestrial and open ocean N budgets are essentially disconnected, and the fixed forms of N are accumulating in most environmental reservoirs. The largest uncertainties in our understanding of the N budget at most scales are the rates of natural biological nitrogen fixation, the amount of Nr storage in most environmental reservoirs, and the production rates of N2 by denitrification.  相似文献   

15.
16.
西藏林芝大气有机氮沉降   总被引:4,自引:1,他引:4  
邵伟  张颖  宋玲  贾钧彦  刘学军  蔡晓布 《生态学报》2009,29(10):5586-5591
2005~2007年,利用雨量器在西藏林芝地区定点采集雨样,研究了该地区降雨中有机氮浓度、沉降量的月、季动态变化.结果表明:西藏林芝地区雨水有机氮月均浓度和沉降量分别为0.21 mg/L和0.50 kg/hm2.不同月份比较,监测期内,2006年7、8月份有机氮浓度平均为1.26 mg/L,明显高于其它年份同时期水平.2007年各月有机氮浓度在0.15~0.53 mg/L之间,变化幅度较小.不同季节内,有机氮浓度差异不大,春\,夏季较高,浓度变化受降雨量影响较小.有机氮湿沉降量与降雨量呈线性正相关,3a的相关系数分别为0.46(p=0.019)、0.69(p=0.001)、0.77(p=0.001).各月沉降量差异较大,2006年6、7两个月有机氮输入量明显偏高,月均达到1.32 kg/hm2,2007年有机氮沉降主要集中在6、7、9月份3个月.四季有机氮沉降量与降雨量呈线性正相关,相关系数0.99(p=0.01).四季中,夏季沉降量最高,为0.93 kg/hm2,占全年的46%.在整个监测期内,有机氮占雨水总氮的比例平均为62%,是大气氮沉降的重要组分.  相似文献   

17.
Srivastava  A.C.  Khanna  Y.P.  Meena  R.C.  Pal  Madan  Sengupta  U.K. 《Photosynthetica》2002,40(2):221-225
The diurnal changes in leaf net photosynthetic rate (P N) and sugar and nitrogen contents in wheat [Triticum aestivum (L.) cv. HD 2285] and mungbean [Vigna radiata (L.) Wilczek cv. PS 16] were analysed under ambient, AC [350±25 µmol mol–1] and elevated, EC [600±50 µmol mol–1] CO2 concentrations. In both mungbean and wheat P N of AC- and EC-grown plants compared at the same CO2 concentration showed that P N was higher under EC. However, increased P N in EC-plants declined in the afternoon and approached P N of AC-plants. Depression in P N, however, was less in mungbean compared with the large depression in wheat. Greater down regulation of P N in wheat was associated with the accumulation of large amount of sugars and low nitrogen content in wheat leaves. Mungbean leaves accumulated mostly starch under EC and the difference in N content in AC- and EC-plants was relatively less than in wheat.  相似文献   

18.
杨文亭  李志贤  舒磊  王建武 《生态学报》2011,31(20):6108-6115
通过田间试验探讨了甘蔗//大豆1 ∶ 1、1 ∶ 2间作模式和施氮(300 kg/hm2,525 kg/hm2)水平对甘蔗鲜重产量、甘蔗单株氮含量、土壤硝态氮、铵态氮以及微生物量氮的影响。结果表明:减量施氮(300 kg/hm2)水平下,间作甘蔗鲜重产量较单作显著下降,但间作的土地当量比均大于1,且大豆产量为1.52和3.25 t/hm2。不同施氮水平对甘蔗鲜重无显著影响,施氮水平和种植模式对甘蔗单株氮吸收量、甘蔗收获后土壤硝态氮和微生物量氮均无显著影响。土壤氮素随甘蔗大豆的不同生长时期而变化,在甘蔗分蘖末期(大豆收获期)达到最低值,此时期减量施氮水平下甘蔗//大豆间作模式(1 ∶ 1)土壤硝态氮显著高于单作。综合以上结果,从提高土地利用率和保护农业生态环境考虑,甘蔗//大豆间作模式下减量施氮具有一定的可行性。  相似文献   

19.
The effects of nitrogen source (N(2), NO(3)(-) and NH(4)(+)) on scytonemin synthesis were investigated in the heterocystous cyanobacterium Nostoc punctiforme PCC 73102. With the required UVA radiation included, Nostoc synthesized three to seven times more scytonemin while fixing nitrogen than when utilizing nitrate or ammonium. A similar increase in scytonemin synthesis occurred when nitrate or ammonium became depleted by growth and Nostoc switched to diazotrophic metabolism with the differentiation of heterocysts. In addition, UVA-exposed cultures grown in medium with both NO(3)(-) and NH(4)(+) synthesized some scytonemin but synthesis increased when NH(4)(+) was depleted and growth had become dependent on NO(3)(-) reduction. Although the mechanism is unclear, these results suggest that the greater the restriction in nitrogen accessibility, the greater the production of scytonemin. Perhaps the entire response may be an interaction between this restriction and a resultant sensitivity to UV radiation that acts as a cue for determining the level of scytonemin synthesis. Scytonemin is a stable UVR screening compound and appears to be synthesized by cyanobacteria as a long-term solution for reducing UVR exposure and damage, but mainly or solely, when metabolic activity is absent. It is likely that during metabolic resurgence, the presence of a dense scytonemin sheath would facilitate the recovery process without the need for active defenses against UV radiation.  相似文献   

20.
Schoenoplectus maritimus (alkali bulrush) has desirable attributes, such as a short growth habit (height of mature stands < 1.5 m) and annual senescence, for a potential alternative to tall (height > 3 m) emergent macrophytes in shallow constructed treatment wetlands treating ammonium‐dominated wastewater. The effects of different ammonium nitrogen (NH4‐N) levels on alkali bulrush growth and its ability to take up nutrients from the wastewater, as well as on mosquito production, across the range of NH4‐N found in constructed wetlands of southern California are unknown. We evaluated the effects of enrichment with NH4‐N on mosquito production and on the nutrient uptake and growth of alkali bulrush in two studies. Overall, significantly greater numbers (> 50%) of immature mosquitoes (mainly Culex tarsalis) were found in mesocosms enriched with NH4‐N than in mesocosms receiving ambient (<0.3 mg/liter) NH4‐N. High NH4‐N enrichment (up to 60 mg/liter) did not adversely impact the height and stem density of S. maritimus, although a significant decrease in biomass was observed at the highest enrichment level. Nitrogen uptake by alkali bulrush increased directly with NH4‐N enrichment, whereas carbon was conserved in the above‐ground biomass across the enrichment gradient. Alkali bulrush is recommended for use as part of integrated mosquito management programs for moderately enriched, multipurpose, constructed treatment wetlands that improve water quality as well as provide wetland habitat for waterfowl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号