首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Signalling pathways from NADPH oxidase-4 to idiopathic pulmonary fibrosis   总被引:1,自引:0,他引:1  
This review focuses on the roles of NADPH oxidase/NOX proteins in idiopathic pulmonary fibrosis (IPF) pathophysiology and in the signalling pathways involved in IPF. NOX proteins are membrane-associated multi-unit enzymes that catalyze the reduction of oxygen using NADPH as an electron donor. Recent studies indicate that NOX4 is induced in pulmonary fibroblasts in response to TGF-β. TGF-β or PDGF induce myofibroblast proliferation, differentiation, migration, contractility and extracellular matrix production, through NOX4 and reactive oxygen species dependent SMAD2/3 phosphorylation. NOX4 is increased in pulmonary fibroblasts from IPF patients and deletion of Nox4 in mice prevents bleomycin-induced pulmonary fibrosis. These data strongly suggest that targeting of NOX4 could be a step forward in the treatment of fibrotic lung diseases, by specifically targeting myofibroblasts, a major player in this disease.  相似文献   

2.
Idiopathic pulmonary fibrosis (IPF) is a progressive fibroproliferative disease characterized by an accumulation of fibroblasts and myofibroblasts in the alveolar wall. Even though the pathogenesis of this fatal disorder remains unclear, transforming growth factor-β (TGF-β)-induced differentiation and proliferation of myofibroblasts is recognized as a primary event. The molecular pathways involved in TGF-β signalling are generally Smad-dependent yet Smad-independent pathways, including phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), have been recently proposed. In this research we established ex-vivo cultures of human lung fibroblasts and we investigated the role of the PI3K/Akt pathway in two critical stages of the fibrotic process induced by TGF-β: fibroblast proliferation and differentiation into myofibroblasts. Here we show that the pan-inhibitor of PI3Ks LY294002 is able to abrogate the TGF-β-induced increase in cell proliferation, in α- smooth muscle actin expression and in collagen production besides inhibiting Akt phosphorylation, thus demonstrating the centrality of the PI3K/Akt pathway in lung fibroblast proliferation and differentiation. Moreover, for the first time we show that PI3K p110δ and p110γ are functionally expressed in human lung fibroblasts, in addition to the ubiquitously expressed p110α and β. Finally, results obtained with both selective inhibitors and gene knocking-down experiments demonstrate a major role of p110γ and p110α in both TGF-β-induced fibroblast proliferation and differentiation. This finding suggests that specific PI3K isoforms can be pharmacological targets in IPF.  相似文献   

3.
Renal fibrosis is a common irreversible process of chronic kidney disease (CKD) characterized by uncontrolled deposits of extracellular matrix, replacement of cellular parenchyma and progressive loss of renal function. Recent evidence suggests that a series of phenotypic transformations of resident renal cells are responsible for the formation of interstitial myofibroblasts, cells that play a key role in the fibrotic process. In the renal glomerulus transformation of mesangial cells to myofibroblasts is an event that orchestrates glomerulosclerosis and the participation of other cells types has also been suggested. Recent findings clarify the role of tubular epithelium in mediating the generation of ECM producing cells in the tubule interstitium. Also, crosstalk between injured cells and myofibroblasts for amplification of the fibrogenic cascade in CKD occurs. The crucial conductor of these changes in the kidney is the transforming growth factor-β (TGF-β). Thus, this review focuses on the control of this cytokines signaling mechanisms and their dysregulation in CKD. Further, some of the promising interventional alternatives targeting TGF-β are also discussed.  相似文献   

4.
5.
6.
Transforming growth factor-β (TGF-β) plays a pivotal role in the fibrogenic action involved in the induction of connective tissue growth factor (CTGF), extracellular matrix and fibroblast transformation. Smad3 mediates TGF-β signaling related to the fibrotic response. In human lung fibroblasts or bronchial smooth muscle cells, we demonstrated that an increase in the intracellular glutathione level suppressed TGF-β1-induced phosphorylation of Smad3, while inhibiting TGF-β1-induced expressions of CTGF, collagen type1, fibronectin and transformation into myofibroblasts, which are characterized by the expression of α-smooth muscle actin. These data indicate that the intracellular glutathione redox status regulates TGF-β-induced fibrogenic effects through Smad3 activation.  相似文献   

7.
Tubular epithelial-to-mesenchymal transition (EMT) plays a crucial role in the progression of renal tubular interstitial fibrosis (TIF), which subsequently leads to chronic kidney disease (CKD) and eventually, end-stage renal disease (ESRD). We propose that augmenter of liver regeneration (ALR), a member of the newly discovered ALR/Erv1 protein family shown to ameliorate hepatic fibrosis, plays a similar protective role in renal tubular cells and has potential as a new treatment option for CKD. Here, we showed that recombinant human ALR (rhALR) inhibits EMT in renal tubular cells by antagonizing activation of the transforming growth factor-β1 (TGF-β1) signaling pathway. Further investigation revealed that rhALR suppresses the expression of TGF-β receptor type II (TβR II) and significantly alleviates TGF-β1-induced phosphorylation of Smad2 and nuclear factor-κB (NF-κB). No apparent adverse effects were observed upon the addition of rhALR alone to cells. These findings collectively suggest that ALR plays a role in inhibiting progression of renal tubular EMT, supporting its potential utility as an effective antifibrotic strategy to reverse TIF in CKD.  相似文献   

8.
Transforming growth factor-beta (TGF-β) plays a central role in the development of fibrosis by stimulating extracellular matrix accumulation, and signals either directly or indirectly through types I, II, and III (TβRI, II, and III) TGF-β receptor complexes. Ginsan, a polysaccharide extracted from Panax ginseng, has multiple immunomodulatory effects. Here, we examine whether ginsan regulates the fibrogenic process by interfering with TGF-β signaling pathways. TGF-β treatment of murine or human normal lung fibroblasts enhanced the levels of several fibrotic markers, including smooth muscle alpha actin (α-SMA), collagen-1, and fibronectin. Interestingly, ginsan treatment either before or after TGF-β administration led to significant reductions in all of α-SMA, collagen-1, and fibronectin expression levels. Ginsan not only inhibited phosphorylation of Smad2 and Smad3, but also attenuated pERK and pAKT signaling induced by TGF-β. Moreover, ginsan restored TβRIII protein expression, which was significantly downregulated by TGF-β, but reduced TβRI and TβRII protein levels. In a murine model of bleomycin (BLM)-induced pulmonary fibrosis, ginsan significantly suppressed accumulation of collagen, α-SMA, and TGF-β. These data collectively suggest that ginsan acts as an effective anti-fibrotic agent in the treatment of pulmonary fibrosis by blocking multiple TGF-β signaling pathways.  相似文献   

9.
Pulmonary fibrosis is a devastating condition resulting from excess extracellular matrix deposition that leads to progressive lung destruction and scarring. In the pathogenesis of fibrotic diseases, activation of myofibroblasts by transforming growth factor-β (TGF-β) plays a crucial role. Since no effective therapy for pulmonary fibrosis is currently recognized, finding an effective antifibrotic agent is an important objective. One approach might be through identification of agents that inactivate myofibroblasts. In the current study we examined the potential of conditioned medium obtained from several types of cells to exhibit myofibroblast inactivating activity. Conditioned media from lung cancer cell lines A549 and PC9 were found to have this action, as shown by its ability to decrease α-smooth muscle actin expression in MRC-5 cells. Subsequently the inhibitory factor was purified from the medium and identified as 5'-deoxy-5'-methylthioadenosine (MTA), and its mechanism of action elucidated. Activation of protein kinase A and cAMP responsive element binding protein (CREB) were detected. MTA inhibited TGF-β-induced mitogen-activated protein kinase activation. Furthermore, the gain-of-function mutant CREB caused inactivation of myofibroblasts. These results show that A549 and PC9 conditioned media have the ability to inactivate myofibroblasts, and that CREB-phosphorylation plays a central role in this process.  相似文献   

10.
Cardiac fibroblast (CF) differentiation to myofibroblasts expressing α-smooth muscle actin (α-SMA) plays a key role in cardiac fibrosis. Therefore, a study of the mechanism regulating α-SMA expression is a means to understanding the mechanism of fibroblast differentiation and cardiac fibrosis. Previous studies have shown that DNA methylation is associated with gene expression and is related to the development of tissue fibrosis. However, the mechanisms by which CF differentiation is regulated by DNA methylation remain unclear. Here, we explored the epigenetic regulation of α-SMA expression and its relevance in CF differentiation. In this study, we demonstrated that α-SMA was overexpressed and DNMT1 expression was downregulated in the infarct area after myocardial infarction. Treatment of CFs with transforming growth factor-β1 (TGF-β1) in vitro upregulated α-SMA expression via epigenetic modifications. TGF-β1 also inhibited DNMT1 expression and activity during CF differentiation. In addition, α-SMA expression was regulated by DNMT1. Conversely, increasing DNMT1 expression levels rescued the TGF-β1-induced upregulation of α-SMA expression. Finally, TGF-β1 regulated α-SMA expression by inhibiting the DNMT1-mediated DNA methylation of the α-SMA promoter. Taken together, our research showed that inhibition of the DNMT1-mediated DNA methylation of the α-SMA promoter plays an essential role in CF differentiation. In addition, DNMT1 may be a new target for the prevention and treatment of myocardial fibrosis.  相似文献   

11.
12.
Fluorofenidone (FD) is a novel pyridone agent with significant antifibrotic effects in vitro. The purpose of this study is to investigate the effects of FD on renal interstitial fibrosis in rats with obstructive nephropathy caused by unilateral ureteral obstruction (UUO). With pirfenidone (PD, 500 mg/kg/day) and enalapril (10 mg/kg/day) as the positive treatment controls, the rats in different experimental groups were administered with FD (500 mg/kg/day) from day 4 to day 14 after UUO. The tubulointerstitial injury, interstitial collagen deposition, and expression of type I and type III collagen, transforming growth factor-β(1) (TGF-β(1)), connective tissue growth factor (CTGF), platelet-derived growth factor (PDGF), α-smooth muscle actin (α-SMA), and tissue inhibitor of metalloproteinase-1 (TIMP-1) were assessed. FD treatment significantly attenuated the prominently increased scores of tubulointerstitial injury, interstitial collagen deposition, and protein expression of type I and type III collagen in ureter-obstructed kidneys, respectively. As compared with untreated rats, FD also significantly reduced the expression of α-SMA, TGF-β(1), CTGF, PDGF, and inhibitor of TIMP-1 in the obstructed kidneys. Fluorofenidone attenuates renal interstitial fibrosis in the rat model of obstructive nephropathy through its regulation on fibrogenic growth factors, tubular cell transdifferentiation, and extracellular matrix.  相似文献   

13.
Adult cardiac valve endothelial cells (VEC) undergo endothelial to mesenchymal transformation (EndMT) in response to transforming growth factor-β (TGFβ). EndMT has been proposed as a mechanism to replenish interstitial cells that reside within the leaflets and further, as an adaptive response that increases the size of mitral valve leaflets after myocardial infarction. To better understand valvular EndMT, we investigated TGFβ-induced signaling in mitral VEC, and carotid artery endothelial cells (CAEC) as a control. Expression of EndMT target genes α-smooth muscle actin (α-SMA), Snai1, Slug, and MMP-2 were used to monitor EndMT. We show that TGFβ-induced EndMT increases phosphorylation of ERK (p-ERK), and this is blocked by Losartan, an FDA-approved antagonist of the angiotensin II type 1 receptor (AT1), that is known to indirectly inhibit phosphorylation of ERK (p-ERK). Blocking TGF-β-induced p-ERK directly with the MEK1/2 inhibitor RDEA119 was sufficient to prevent EndMT. In mitral VECs, TGFβ had only modest effects on phosphorylation of the canonical TGF-β signaling mediator mothers against decapentaplegic homolog 3 (SMAD3). These results indicate a predominance of the non-canonical p-ERK pathway in TGFβ-mediated EndMT in mitral VECs. AT1 and angiotensin II type 2 (AT2) were detected in mitral VEC, and high concentrations of angiotensin II (AngII) stimulated EndMT, which was blocked by Losartan. The ability of Losartan or MEK1/2 inhibitors to block EndMT suggests these drugs may be useful in manipulating EndMT to prevent excessive growth and fibrosis that occurs in the leaflets after myocardial infarction.  相似文献   

14.
15.
Accumulation and activation of myofibroblasts are the hallmark of progressive pulmonary fibrosis, and the resident fibroblasts are the major source of myofibroblasts. However, the key factors involved in the transformation of fibroblasts are unknown. Pulmonary microvascular endothelial cells (PMVECs), major effector cells against pathogenesis in early stages of the disease, can secrete cytokines to induce the differentiation of mesenchymal cells. We speculated that PMVECs could secrete pro-fibrotic cytokines and promote the transformation of fibroblasts into myofibroblasts. Accordingly, we established a co-culture system with PMVECs and fibroblasts to examine the specific transformation and collagen synthesis of the co-cultured fibroblasts by FACS and Western blot, prior to and after treatment with neutralizing antibodies against transforming growth factor-beta1 (TGF-β1) and connective tissue growth factor (CTGF). We also analyzed expression of TGF-β1 and CTGF in PMVECs. The synthesis and secretion of TGF-β1 and CTGF protein were up-regulated in PMVECs isolated from bleomycin (BLM)-treated rats, most prominently at 7 days post-instillation. We showed that the PMVECs isolated from BLM-induced rats could induce the transformation of normal fibroblasts and their secretion of collagen I, which was inhibited by both neutralizing anti-TGF-β1 and anti-CTGF antibodies. Therefore, up-regulation of TGF-β1 and CTGF in PMVECs plays an important role in activation, transformation, and collagen synthesis of fibroblasts; in particular, these effects in PMVECs are likely to be the key factors for activation and stimulation of static fibroblasts in lung interstitium in early stages of pulmonary fibrosis disease.  相似文献   

16.
Transforming growth factor-β (TGF-β) signaling pathway is involved in fibrosis in most, if not all forms of cardiac diseases. Here, we evaluate a positive feedback signaling the loop of TGF-β1/promyelocytic leukemia (PML) SUMOylation/Pin1 promoting the cardiac fibrosis. To test this hypothesis, the mice underwent transverse aortic constriction (3 weeks) were developed and the morphological evidence showed obvious interstitial fibrosis with TGF-β1, Pin1 upregulation, and increase in PML SUMOylation. In neonatal mouse cardiac fibroblasts (NMCFs), we found that exogenous TGF-β1 induced the upregulation of TGF-β1 itself in a time- and dose-dependent manner, and also triggered the PML SUMOylation and the formation of PML nuclear bodies (PML-NBs), and consequently recruited Pin1 into nuclear to colocalize with PML. Pharmacological inhibition of TGF-β signal or Pin1 with LY364947 (3 μM) or Juglone (3 μM), the TGF-β1-induced PML SUMOylation was reduced significantly with downregulation of the messenger RNA and protein for TGF-β1 and Pin1. To verify the cellular function of PML by means of gain- or loss-of-function, the positive feedback signaling loop was enhanced or declined, meanwhile, TGF-β-Smad signaling pathway was activated or weakened, respectively. In summary, we uncovered a novel reciprocal loop of TGF-β1/PML SUMOylation/Pin1 leading to myocardial fibrosis.  相似文献   

17.
Posttranslational modification of proteins could regulate their multiple biological functions. Transforming growth factor-β receptor I and II (ALK5 and TGF-βRII), which are glycoproteins, play important roles in the renal tubular epithelial-mesenchymal transition (EMT). In the present study, we examined the role of core fucosylation of TGF-βRII and ALK5, which is regulated by α-1,6 fucosyltransferase (Fut8), in the process of EMT of cultured human renal proximal tubular epithelial (HK-2) cells. The typical cell model of EMT induced by TGF-β1 was constructed to address the role of core fucosylation in EMT. Core fucosylation was found to be essential for both TGF-βRII and ALK5 to fulfill their functions, and blocking it with Fut8 small interfering RNA greatly reduced the phosphorylation of Smad2/3 protein, caused the inactivation of TGF-β/Smad2/3 signaling, and resulted in remission of EMT. More importantly, even with high levels of expressions of TGF-β1, TGF-βRII, and ALK5, blocking core fucosylation also could attenuate the EMT of HK-2 cells. Thus blocking core fucosylation of TGF-βRII and ALK5 may attenuate EMT independently of the expression of these proteins. This study may provide new insight into the role of glycosylation in renal interstitial fibrosis. Furthermore, core fucosylation may be a novel potential therapeutic target for treatment of renal tubular EMT.  相似文献   

18.
19.
转化生长因子-β(transforming growth factor-β,TGF-β)受体Ⅲ,又称为β蛋白聚糖(betaglycan),是一种膜锚定蛋白。TGF-β受体Ⅲ是表达最为丰富的TGF-β受体,曾被认为是TGF-β超家族(包括TGF-β、激活素和抑制素等)的辅助受体。后来研究表明,它在介导和调节TGF-β的信号转导中具有非常重要的、不可替代的作用。它通过与TGF-β形成复合体来介导对靶细胞的作用。在没有TGF配体的情况下,TGF-β受体Ⅲ可以激活p38信号,表明这一受体可能与不依赖TGF-β的信号通路相互作用。TGFβ受体Ⅲ还可以结合并调节抑制素的信号转导。TGFβ受体Ⅲ与抑制素A结合,形成一个稳定的高亲和复合物。体外研究表明,TGFβ受体III还结合抑制素B和强化抑制素与Ⅱ型激活素受体的关系。有关报道显示TGFβ受体Ⅲ在卵巢癌中具有肿瘤抑制的作用。研究表明,在上皮源性卵巢癌中,TGFβ受体Ⅲ mRNA和蛋白质表达降低或丢失,丢失的程度与肿瘤分级相关。有很多因素可以影响并调节该受体的表达,如雌激素、卵泡刺激素(FSH)、TGF-β1等,深入开展相关机制的研究,对于癌症的治疗和预防将会起到一定的推动作用。  相似文献   

20.
Pentabromopseudilin (PBrP) is a marine antibiotic isolated from the marine bacteria Pseudomonas bromoutilis and Alteromonas luteoviolaceus. PBrP exhibits antimicrobial, anti-tumour, and phytotoxic activities. In mammalian cells, PBrP is known to act as a reversible and allosteric inhibitor of myosin Va (MyoVa). In this study, we report that PBrP is a potent inhibitor of transforming growth factor-β (TGF-β) activity. PBrP inhibits TGF-β-stimulated Smad2/3 phosphorylation, plasminogen activator inhibitor-1 (PAI-1) protein production and blocks TGF-β-induced epithelial–mesenchymal transition in epithelial cells. PBrP inhibits TGF-β signalling by reducing the cell-surface expression of type II TGF-β receptor (TβRII) and promotes receptor degradation. Gene silencing approaches suggest that MyoVa plays a crucial role in PBrP-induced TβRII turnover and the subsequent reduction of TGF-β signalling. Because, TGF-β signalling is crucial in the regulation of diverse pathophysiological processes such as tissue fibrosis and cancer development, PBrP should be further explored for its therapeutic role in treating fibrotic diseases and cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号