首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Relapses remain a major concern in acute leukemia. It is well known that leukemia stem cells (LSCs) hide in hematopoietic niches and escape to the immune system surveillance through the outgrowth of poorly immunogenic tumor-cell variants and the suppression of the active immune response. Despite the introduction of new reagents and new therapeutic approaches, no treatment strategies have been able to definitively eradicate LSCs. However, recent adoptive immunotherapy in cancer is expected to revolutionize our way to fight against this disease, by redirecting the immune system in order to eliminate relapse issues. Initially described at the onset of the 90’s, chimeric antigen receptors (CARs) are recombinant receptors transferred in various T cell subsets, providing specific antigens binding in a non-major histocompatibility complex restricted manner, and effective on a large variety of human leukocyte antigen-divers cell populations. Once transferred, engineered T cells act like an expanding “living drug” specifically targeting the tumor-associated antigen, and ensure long-term anti-tumor memory. Over the last decades, substantial improvements have been made in CARs design. CAR T cells have finally reached the clinical practice and first clinical trials have shown promising results. In acute lymphoblastic leukemia, high rate of complete and prolonged clinical responses have been observed after anti-CD19 CAR T cell therapy, with specific but manageable adverse events. In this review, our goal was to describe CAR structures and functions, and to summarize recent data regarding pre-clinical studies and clinical trials in acute leukemia.  相似文献   

2.
We utilized the gene gun to transfect subcutaneous D5 melanoma and MT-901 mammary carcinoma tumors in situ with a granulocyte/macrophage-colony-stimulating factor (GM-CSF) plasmid complexed to gold particles. There was diminished tumor growth following bombardment with GM-CSF plasmid, which was apparent only during the period of administration. Transgenic GM-CSF was produced by the skin overlying the tumors and not by the tumors themselves. GM-CSF plasmid bombardment resulted in increased cell yields within tumor-draining lymph nodes (TDLN) with at least a 12-fold increase in the percentage of dendritic cells (8.9%) compared to controls (0.7%). Secondarily activated TDLN cells from animals transfected with GM-CSF demonstrated enhanced cytokine release (interferon γ, GM-CSF and interleukin-10) in response to tumor stimulator cells compared to controls, and had an increased capacity to mediate tumor regression in adoptive immunotherapy. There was a small, but detectable, non-specific immune adjuvant effect observed with gold particle bombardment alone, which was less than with GM-CSF plasmid. The adjuvant effect of GM-CSF plasmid required peri-tumoral transgene expression since gene bombardment away from the tumor was ineffective. Received: 27 April 1999 / Accepted: 27 August 1999  相似文献   

3.
Redirecting T cell effector functions towards pre-defined target cells represents an attractive concept in the adoptive immunotherapy of malignant diseases. Our understanding of the mechanisms of T cell activation and costimulation as well as the design of recombinant T cell receptors have made major progress in the last years. Translating recent concepts of T cell stimulation into recombinant protein design provides the basis to engineer T cells with both pre-defined specificity and costimulatory capacity in order to enhance anti-tumor immunity and to break tolerance. Dual signaling immunoreceptors providing the CD3ζ signal simultaneously with an appropriate costimulatory signal moreover allows to modulate the quality of the anti-tumor T cell response in a predicted fashion. This article is a symposium paper from the conference “Cancer Immunotherapy 2006 Meets Strategies for Immune Therapy”, held in Mainz, Germany, on 4–5 May 2006.  相似文献   

4.
Administration of anti-4-1BB mAb has been found to be a potent adjuvant when combined with other therapeutic approaches, e.g. chemotherapy, cytokine therapies, anti-OX40 therapy, and peptide or DC vaccines. However, the adjuvant effect of anti-4-1BB mAb administration in adoptive T cell therapy of cancer has not been fully evaluated. In this report, effector T cells were generated in vitro by anti-CD3/anti-CD28 activation of tumor-draining lymph node (TDLN) cells and used in an adoptive immunotherapy model. While T cells or anti-4-1BB alone showed no therapeutic efficacy in mice bearing macroscopic 10-day pulmonary metastases, T cells plus anti-4-1BB mediated significant tumor regression in an anti-4-1BB dose dependent manner. Mice bearing microscopic 3-day lung metastases treated with T cells alone demonstrated tumor regression which was significantly enhanced by anti-4-1BB administration. NK cell depletion abrogated the augmented therapeutic efficacy rendered by anti-4-1BB. Cell transfer between congenic hosts demonstrated that anti-4-1BB administration increased the survival of adoptively transferred TDLN cells. Using STAT4(-/-) mice, we found that modulated IFN gamma secretion in wt TDLN cells after anti-CD3/CD28/4-1BB activation in vitro was lost in similarly stimulated STAT4(-/-) TDLN cells. Additionally, anti-4-1BB administration failed to augment the therapeutic efficacy of T cell therapy in STAT4(-/-) mice. Together, these results indicate that administered anti-4-1BB mAb can serve as an effective adjuvant to augment the antitumor reactivity of adoptively transferred T cells by recruiting the host NK cells; increasing the persistence of infused effector T cells, and modulating the STAT4 molecular signaling pathway.  相似文献   

5.
CD4+8 T lymphocytes with potent antitumor activity in vivo were obtained in peritoneal exudate cells by immunizing mice with irradiated MM48 tumor cells admixed with OK-432. These immune CD4+ T cells were used in adoptive immunotherapy for prevention of lymph node metastases after removal of the primary tumor. Complete cure of metastases was obtained by adoptive transfer of CD4+ T cells admixed with irradiated MM48 tumor cells, but not by CD4+ T cells alone. To analyze the curative effect of admixing tumor cells on the prevention of metastases, a model of 1-day tumor inoculated with macrophages was used. Administration of immune CD4+ T cells alone resulted in the regression of local tumor in more than half of the mice, although all of them eventually died of lymph node metastases. On the other hand, adoptive transfer of immune CD4+ T cells plus irradiated tumor cells resulted in the complete regression of local tumors in all the mice, which survived without any sign of metastasis. The curative effect of the immune CD4+ T cells obtained by admixing irradiated tumor cells was tumor-specific. Macrophages induced by OK-432 (tumoricidal), implanted together with tumor, assisted tumor regression more than did macrophages elicited by proteose peptone (nontumoricidal) in the same adoptive transfer system. Administration of recombinant interleukin-2 instead of stimulant tumor cells did not enhance, but rather eliminated the constitutive antitumor activity of CD4+ T cells. On the other hand, exogenous recombinant interleukin-1 was more effective in the enhancement of antitumor activity of the CD4+ T cells as compared with stimulant tumor cell administration. In this case, the activating states of macrophages at the implanted tumor site had no influence on the therapeutic efficacy. A possible role of macrophages for induction of tumor-specific cytotoxic T cells that were mediated by tumor-specific CD4+ T cells is discussed.  相似文献   

6.
Tumor cell vaccines have been successful at inducing immunity in naïve mice, but only in a few reports has vaccination alone induced regression of established tumors and, generally, only when they are very small. Clinically, vaccinations alone may not be able to cause regression of established human cancers, which tend to be weakly immunogenic. We hypothesized that pharmacologic ex vivo amplification of a vaccination-induced immune response with subsequent adoptive immunotherapy (AIT) to tumor-bearing animals would be more effective in treatment of these animals than vaccination alone. The 4T1 and 4T07 mammary carcinomas are derived from the same parental cell line, but 4T1 is much less immunogenic and more aggressive than 4T07. Vaccination with either 4T1, 4T1-IL-2, or 4T07-IL-2 was not effective as treatment for established 4T1 tumors. However, 4T1 or 4T07-IL-2-vaccine-sensitized draining lymph node (DLN) cells, activated ex vivo with bryostatin 1 and ionomycin and expanded in culture, induced complete tumor regressions when adoptively transferred to 4T1 tumor-bearing animals. This was effective against small tumors as well as more advanced tumors, 10 days after tumor cell inoculation. Furthermore, as would be required for this approach to be used clinically, vaccine-DLN cells obtained from mice with established progressive 4T1 tumors (inoculated 10 days before vaccination) also induced regression of 4T1 tumors in an adoptive host. In none of these experiments was exogenous IL-2 required to induce tumor regression. The response to tumor cell vaccine can be amplified by ex vivo pharmacologic activation of sensitized T cells, which can then cure an established, weakly immunogenic and highly aggressive tumor that was resistant to vaccination alone.  相似文献   

7.
Recently, it has become more and more obvious that not only CD8+ cytotoxic T lymphocytes, but also CD4+ T helper cells are required for the induction of an optimal, long-lasting anti-tumor immune response. CD4+ T helper cells, and in particular IFN-gamma-secreting type 1 T helper cells, have been shown to fulfill a critical function in the mounting of a cancer-specific response. Consequently, targeting antigens into MHC class II molecules would greatly enhance the efficacy of an anti-cancer vaccine. The dissection of the MHC class II presentation pathway has paved the way for rational approaches to achieve this goal: novel systems have been developed to genetically manipulate the MHC class II presentation pathway. First, different genetic approaches have been used for the delivery of known epitopes into the MHC class II processing pathway or directly onto the peptide-binding groove of the MHC molecules. Second, several strategies exist for the targeting of whole tumor antigens, containing both MHC class I and class II restricted epitopes, to the MHC class II processing pathway. We review these data and describe how this knowledge is currently applied in vaccine development.  相似文献   

8.
Purpose Although various types of immunotherapy have been used to improve the prognosis of patients with advanced renal cell carcinoma (RCC), adoptive immunotherapy using gamma-delta (γδ) T cells has not yet been tried. In this study, we designed a pilot study of adoptive immunotherapy using in vitro activated γδ T cells against advanced RCC to evaluate the safety profile and possible anti-tumor effects of this study. Experimental design Patients with advanced RCC after radical nephrectomy were administered via intravenous infusion in vitro-activated autologous γδ T cells every week or every 2 weeks, 6–12 times, with 70 JRU of teceleukin. Adverse events, anti-tumor effects and immunomonitoring were assessed. The anti-tumor effects were evaluated according to tumor doubling time (DT) by computed tomography (CT) and immunomonitoring was performed by flow cytometric analysis. Results Seven advanced RCC patients were entered in this study. The most common adverse events were fever, general fatigue and elevation of hepatobiliary enzymes, but no severe adverse events were seen. Prolongation of tumor DT was seen in three out of five patients; these three patients showed an increase in the number of γδ T cells in peripheral blood and also a high response to the antigen in vitro. Conclusions The results indicated that adoptive immunotherapy using in vitro-activated autologous γδ T cells was well tolerated and induced anti-tumor effects.  相似文献   

9.
Cluster of differentiation 1 (CD1) is a family of cell-surface glycoproteins that present lipid antigens to T cells. Humans have five CD1 isoforms. CD1a is distinguished by the small volume of its antigen-binding groove and its stunted A′ pocket, its high and exclusive expression on Langerhans cells, and its localization in the early endosomal and recycling intracellular trafficking compartments. Its ligands originate from self or foreign sources. There are three modes by which the T-cell receptors of CD1a-restricted T cells interact with the CD1a:lipid complex: they bind to both the CD1a surface and the antigen or to only CD1a itself, which activates the T cell, or they are unable to bind because of bulky motifs protruding from the antigen-binding groove, which might inhibit autoreactive T-cell activation. Recently, several studies have shown that by producing TH2 or TH17 cytokines, CD1a-restricted T cells contribute to inflammatory skin disorders, including atopic dermatitis, psoriasis, allergic contact dermatitis, and wasp/bee venom allergy. They may also participate in other diseases, including pulmonary disorders and cancer, because CD1a-expressing dendritic cells are also located in non-skin tissues. In this mini-review, we discuss the current knowledge regarding the biology of CD1a-reactive T cells and their potential roles in disease.  相似文献   

10.
CD4 T cells play an important role in the initiation and persistence of CD8 T cells responses. In this review, we report on and evaluate the mechanisms by which CD4 T cells contribute to activation of CD8 T cells and the signal pathways of the down-streaming events after CD4 T cell help.  相似文献   

11.
Over the years, the unique capacity of dendritic cells (DC) for efficient activation of naive T cells has led to their extensive use in cancer immunotherapy protocols. In order to be able to fulfil their role as antigen-presenting cells, the antigen of interest needs to be efficiently introduced and subsequently correctly processed and presented by the DC. For this purpose, a variety of both viral and non-viral antigen-delivery systems have been evaluated. Amongst those, HIV-1-derived lentiviral vectors have been used successfully to transduce DC.This review considers the use of HIV-1-derived lentiviral vectors to transduce human and murine DC for cancer immunotherapy. Lentivirally transduced DC have been shown to present antigenic peptides, prime transgene-specific T cells in vitro and elicit a protective cytotoxic T-lymphocyte (CTL) response in animal models. Different parameters determining the efficacy of transduction are considered. The influence of lentiviral transduction on the DC phenotype and function is described and the induction of immune responses by lentivirally transduced DC in vitro and in vivo is discussed in detail. In addition, direct in vivo administration of lentiviral vectors aiming at the induction of antigen-specific immunity is reviewed. This strategy might overcome the need for ex vivo generation and antigen loading of DC. Finally, future perspectives towards the use of lentiviral vectors in cancer immunotherapy are presented.  相似文献   

12.
Metabolic regulation has been proven to play a critical role in T cell antitumor immunity.However,cholesterol metabolism as a key component of this regulation remains largely unexplored.Herein,we found that the low-density lipoprotein receptor (LDLR),which has been previously identified as a transporter for cholesterol,plays a pivotal role in regulating CD8+ T cell antitumor activity.Besides the involvement of cholesterol uptake which is mediated by LDLR in T cell priming and clonal expansion,we also found a non-canonical function of LDLR in CD8+ T cells: LDLR interacts with the T-cell receptor (TCR) complex and regulates TCR recycling and signaling,thus facilitating the effector function of cytotoxic T-lymphocytes (CTLs).Furthermore,we found that the tumor microenvironment (TME) downregulates CD8+ T cell LDLR level and TCR signaling via tumor cell-derived proprotein convertase subtilisin/kexin type 9 (PCSK9) which binds to LDLR and prevents the recycling of LDLR and TCR to the plasma membrane thus inhibits the effector function of CTLs.Moreover,genetic deletion or pharmacological inhibition of PCSK9 in tumor cells can enhance the antitumor activity of CD8+ T cells by alleviating the suppressive effect on CD8+ T cells and consequently inhibit tumor progression.While previously established as a hypercholesterolemia target,this study highlights PCSK9/LDLR as a potential target for cancer immunotherapy as well.  相似文献   

13.

Background

T cell receptors (TCRs) can recognize diverse lipid and metabolite antigens presented by MHC-like molecules CD1 and MR1, and the molecular basis of many of these interactions has not been determined. Here we applied our protein docking algorithm TCRFlexDock, previously developed to perform docking of TCRs to peptide-MHC (pMHC) molecules, to predict the binding of αβ and γδ TCRs to CD1 and MR1, starting with the structures of the unbound molecules.

Results

Evaluating against TCR-CD1d complexes with crystal structures, we achieved near-native structures in the top 20 models for two out of four cases, and an acceptable-rated prediction for a third case. We also predicted the structure of an interaction between a MAIT TCR and MR1-antigen that has not been structurally characterized, yielding a top-ranked model that agreed remarkably with a characterized TCR-MR1-antigen structure that has a nearly identical TCR α chain but a different β chain, highlighting the likely dominance of the conserved α chain in MR1-antigen recognition. Docking performance was improved by re-training our scoring function with a set of TCR-pMHC complexes, and for a case with an outlier binding mode, we found that alternative docking start positions improved predictive accuracy. We then performed unbound docking with two mycolyl-lipid specific TCRs that recognize lipid-bound CD1b, which represent a class of interactions that is not structurally characterized. Highly-ranked models of these complexes showed remarkable agreement between their binding topologies, as expected based on their shared germline sequences, while differences in residue-level interactions with their respective antigens point to possible mechanisms underlying their distinct specificities.

Conclusions

Together these results indicate that flexible docking simulations can provide accurate models and atomic-level insights into TCR recognition of MHC-like molecules presenting lipid and other small molecule antigens.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-319) contains supplementary material, which is available to authorized users.  相似文献   

14.
Identification of immunogenic peptides for the generation of cytotoxic T lymphocytes (CTLs) may lead to the development of novel cellular therapies to treat disease relapse in acute myeloid leukemia (AML) patients. The objective of these studies was to evaluate the ability of unique HLA-A2.1-specific nonameric peptides derived from CD33 antigen to generate AML-specific CTLs ex vivo. We present data here on the identification of an immunogeneic HLA-A2.1-specific CD33(65-73) peptide (AIISGDSPV) that was capable of inducing CTLs targeted to AML cells. The CD33-CTLs displayed HLA-A2.1-restricted cytotoxicity against both mononuclear cells from AML patients and the AML cell line. The peptide- as well as AML cell-specificity of CD33-CTLs was demonstrated and the secretion of IFN-gamma by the CTLs was detected in response to CD33(65-73) peptide stimulation. The cultures contained a distinct CD33(65-73) peptide-tetramer(+)/CD8(+) population. Alteration of the native CD33(65-73) peptide at the first amino acid residue from alanine (A) to tyrosine (Y) enhanced the HLA-A2.1 affinity/stability of the modified CD33 peptide (YIISGDSPV) and induced CTLs with increased cytotoxicity against AML cells. These data therefore demonstrate the potential of using immunogenic HLA-A2.1-specific CD33 peptides in developing a cellular immunotherapy for the treatment of AML patients.  相似文献   

15.
The process of replicative senescence, which stringently limits the proliferative potential of normal T cells, constitutes a potential problem for cancer immunotherapy. The ability of CD8 T cells to recognize and destroy tumor cells has been well-established, but the requirement for massive, prolonged proliferative T-cell expansion and maintenance of functional integrity poses a significant obstacle to the success of cancer immunotherapy. Cancer immune surveillance may also be compromised by the long-term exposure of T cells to tumor antigens, particularly those of latent viruses, which could drive certain T cells to replicative senescence. This review summarizes the major characteristics of T-cell replicative senescence and raises the possibility that this process has the potential to affect both cancer development and treatment. Experimental strategies aimed at preventing T-cell replicative senescence are discussed in the context of cancer immunotherapy and vaccines.This article forms part of the Symposium in Writing Tumor escape from the immune response, published in Vol. 53.  相似文献   

16.
Fas (CD95/Apo-1) exists both in membrane-bound and in biologically active soluble (s) forms. Ligation of membrane-expressed Fas can induce apoptosis, and Fas-mediated signaling seems to be involved in T-cell-induced apoptosis of human acute myelogenous leukemia (AML) blasts. The local release of sFas by AML blasts may then function as a protective mechanism by competing with membrane-bound Fas for binding sites on the common Fas ligand (FasL). sFas was released by AML blasts during in vitro culture, and this release was modulated by several cytokines that can be secreted by activated T cells. Increased levels of sFas could be detected during in vitro activation of T cells in the presence of native AML accessory cells, and this was observed both for (i) mitogenic activation of CD4+ and CD8+ T cell clones derived from acute leukemia patients with therapy-induced leukopenia and (ii) allostimulated activation of T cells derived from normal donors. However, local in vivo levels of sFas will also be influenced by variations in systemic levels. High serum levels of sFas were detected in acute leukemia patients during chemotherapy-induced cytopenia, but these levels decreased during complicating bacterial infections. In contrast, serum levels of sFasL were normal in leukopenic patients. The present results support the hypothesis that local release of sFas can function as a protective mechanism against AML-reactive T cells, but the effects of this local release are, in addition, modulated by variations in systemic levels of sFas (but not sFasL). Received: 9 March 2000 / Accepted: 25 May 2000  相似文献   

17.
18.
CD8+ cytotoxic T lymphocytes (CTLs) are preferred immune cells for targeting cancer. During cancer progression, CTLs encounter dysfunction and exhaustion due to immunerelated tolerance and immunosuppression within the tumor microenvironment (TME), with all favor adaptive immune-resistance. Cancer-associated fibroblasts (CAFs), macrophage type 2 (M2) cells, and regulatory T cells (Tregs) could make immunologic barriers against CD8 + T cell-mediated antitumor immune responses. Thus, CD8 + T cells are needed to be primed and activated toward effector CTLs in a process called tumor immunity cycle for making durable and efficient antitumor immune responses. The CD8 + T cell priming is directed essentially as a corroboration work between cells of innate immunity including dendritic cells (DCs) and natural killer (NK) cells with CD4 + T cells in adoptive immunity. Upon activation, effector CTLs infiltrate to the core or invading site of the tumor (so-called infiltrated–inflamed [I–I] TME) and take essential roles for killing cancer cells. Exogenous reactivation and/or priming of CD8 + T cells can be possible using rational immunotherapy strategies. The increase of the ratio for costimulatory to coinhibitory mediators using immune checkpoint blockade (ICB) approach. Programmed death-1 receptor (PD-1)–ligand (PD-L1) and CTL-associated antigen 4 (CTLA-4) are checkpoint receptors that can be targeted for relieving exhaustion of CD8 + T cells and renewing their priming, respectively, and thereby eliminating antigen-expressing cancer cells. Due to a diverse relation between CTLs with Tregs, the Treg activity could be dampened for increasing the number and rescuing the functional potential of CTLs to induce immunosensitivity of cancer cells.  相似文献   

19.
20.
The CD155 ligand CD96 is an immunoglobulin-like protein tentatively allocated to the repertoire of human NK receptors. We report here that the CD96/CD155-interaction is preserved between man and mouse although both receptors are only moderately conserved in amino acid sequence. Moreover, murine CD96 (mCD96) binds to nectin-1, a receptor related to CD155. Applying newly generated monoclonal antibodies specifically recognizing mCD96, an expression profile is revealed resembling closely that of human CD96 (hCD96) on cells of hematopoietic origin. A panel of anti-mCD96 but also recently established anti-mCD155 antibodies effectively prevents formation of CD96/CD155-complexes. This was exploited to demonstrate that the only available receptor for mCD96 present on thymocytes is mCD155. Moreover, T cell adhesion to insect cells expressing mCD155 is blocked by these antibodies depending on the T cell subtype. These results suggest a function of the CD96/CD155-adhesion system in T cell biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号