首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saccharomyces cerevisiae has increasingly been engineered as a cell factory for efficient and economic production of fuels and chemicals from renewable resources. Notably, a wide variety of industrially important products are derived from the same precursor metabolite, acetyl-CoA. However, the limited supply of acetyl-CoA in the cytosol, where biosynthesis generally happens, often leads to low titer and yield of the desired products in yeast. In the present work, combined strategies of disrupting competing pathways and introducing heterologous biosynthetic pathways were carried out to increase acetyl-CoA levels by using the CoA-dependent n-butanol production as a reporter. By inactivating ADH1 and ADH4 for ethanol formation and GPD1 and GPD2 for glycerol production, the glycolytic flux was redirected towards acetyl-CoA, resulting in 4-fold improvement in n-butanol production. Subsequent introduction of heterologous acetyl-CoA biosynthetic pathways, including pyruvate dehydrogenase (PDH), ATP-dependent citrate lyase (ACL), and PDH-bypass, further increased n-butanol production. Recombinant PDHs localized in the cytosol (cytoPDHs) were found to be the most efficient, which increased n-butanol production by additional 3 fold. In total, n-butanol titer and acetyl-CoA concentration were increased more than 12 fold and 3 fold, respectively. By combining the most effective and complementary acetyl-CoA pathways, more than 100 mg/L n-butanol could be produced using high cell density fermentation, which represents the highest titer ever reported in yeast using the clostridial CoA-dependent pathway.  相似文献   

2.
Microbial production of higher alcohols from renewable feedstock has attracted intensive attention thanks to its potential as a source for next-generation gasoline substitutes. Here we report the discovery, characterization and engineering of an endogenous 1-butanol pathway in Saccharomyces cerevisiae. Upon introduction of a single gene deletion adh1Δ, S. cerevisiae was able to accumulate more than 120 mg/L 1-butanol from glucose in rich medium. Precursor feeding, 13C-isotope labeling and gene deletion experiments demonstrated that the endogenous 1-butanol production was dependent on catabolism of threonine in a manner similar to fusel alcohol production by the Ehrlich pathway. Specifically, the leucine biosynthesis pathway was engaged in the conversion of key 2-keto acid intermediates. Overexpression of the pathway enzymes and elimination of competing pathways achieved the highest reported 1-butanol titer in S. cerevisiae (242.8 mg/L).  相似文献   

3.
Synthesis of polyketides at high titer and yield is important for producing pharmaceuticals and biorenewable chemical precursors. In this work, we engineered cofactor and transport pathways in Saccharomyces cerevisiae to increase acetyl-CoA, an important polyketide building block. The highly regulated yeast pyruvate dehydrogenase bypass pathway was supplemented by overexpressing a modified Escherichia coli pyruvate dehydrogenase complex (PDHm) that accepts NADP+ for acetyl-CoA production. After 24 h of cultivation, a 3.7-fold increase in NADPH/NADP+ ratio was observed relative to the base strain, and a 2.2-fold increase relative to introduction of the native E. coli PDH. Both E. coli pathways increased acetyl-CoA levels approximately 2-fold relative to the yeast base strain. Combining PDHm with a ZWF1 deletion to block the major yeast NADPH biosynthesis pathway resulted in a 12-fold NADPH boost and a 2.2-fold increase in acetyl-CoA. At 48 h, only this coupled approach showed increased acetyl-CoA levels, 3.0-fold higher than that of the base strain. The impact on polyketide synthesis was evaluated in a S. cerevisiae strain expressing the Gerbera hybrida 2-pyrone synthase (2-PS) for the production of the polyketide triacetic acid lactone (TAL). Titers of TAL relative to the base strain improved only 30% with the native E. coli PDH, but 3.0-fold with PDHm and 4.4-fold with PDHm in the Δzwf1 strain. Carbon was further routed toward TAL production by reducing mitochondrial transport of pyruvate and acetyl-CoA; deletions in genes POR2, MPC2, PDA1, or YAT2 each increased titer 2–3-fold over the base strain (up to 0.8 g/L), and in combination to 1.4 g/L. Combining the two approaches (NADPH-generating acetyl-CoA pathway plus reduced metabolite flux into the mitochondria) resulted in a final TAL titer of 1.6 g/L, a 6.4-fold increase over the non-engineered yeast strain, and 35% of theoretical yield (0.16 g/g glucose), the highest reported to date. These biological driving forces present new avenues for improving high-yield production of acetyl-CoA derived compounds.  相似文献   

4.
Glycerol has become an ideal feedstock for the microbial production of bio-based chemicals due to its abundance, low cost, and high degree of reduction. We have previously reported the pathways and mechanisms for the utilization of glycerol by Escherichia coli in minimal salts medium under microaerobic conditions. Here we capitalize on such results to engineer E. coli for the production of value-added succinate from glycerol. Through metabolic engineering of E. coli metabolism, succinate production was greatly elevated by (1) blocking pathways for the synthesis of competing by-products lactate, ethanol, and acetate and (2) expressing Lactococcus lactis pyruvate carboxylase to drive the generation of succinate from the pyruvate node (as opposed to that of phosphoenolpyruvate). As such, these metabolic engineering strategies coupled cell growth to succinate production because the synthesis of succinate remained as the primary route of NAD+ regeneration. This feature enabled the operation of the succinate pathway in the absence of selective pressure (e.g. antibiotics). Our biocatalysts demonstrated a maximum specific productivity of ~400 mg succinate/gcell/h and a yield of 0.69 g succinate/g glycerol, on par with the use of glucose as a feedstock.  相似文献   

5.
Redox imbalance has been regarded as the key limitation for anaerobic isobutanol production in metabolically engineered Escherichia coli strains. In this work, the ethanol synthetic pathway was recruited to solve the NADH redundant problem while the pentose phosphate pathway was modulated to solve the NADPH deficient problem for anaerobic isobutanol production. Recruiting the ethanol synthetic pathway in strain AS108 decreased isobutanol yield from 0.66 to 0.29 mol/mol glucose. It was found that there was a negative correlation between aldehyde/alcohol dehydrogenase (AdhE) activity and isobutanol production. Decreasing AdhE activity increased isobutanol yield from 0.29 to 0.6 mol/mol. On the other hand, modulation of the glucose 6-phosphate dehydrogenase gene of the pentose phosphate pathway increased isobutanol yield from 0.29 to 0.41 mol/mol. Combination of these two strategies had a synergistic effect on improving isobutanol production. Isobutanol titer and yield of the best strain ZL021 were 53 mM and 0.74 mol/mol, which were 51 % and 12 % higher than the starting strain AS108, respectively. The total alcohol yield of strain ZL021 was 0.81 mol/mol, which was 23 % higher than strain AS108.  相似文献   

6.
n-Butanol is generated as a natural product of metabolism by several microorganisms, but almost all grow at mesophilic temperatures. A synthetic pathway for n-butanol production from acetyl coenzyme A (acetyl-CoA) that functioned at 70°C was assembled in vitro from enzymes recruited from thermophilic bacteria to inform efforts for engineering butanol production into thermophilic hosts. Recombinant versions of eight thermophilic enzymes (β-ketothiolase [Thl], 3-hydroxybutyryl-CoA dehydrogenase [Hbd], and 3-hydroxybutyryl-CoA dehydratase [Crt] from Caldanaerobacter subterraneus subsp. tengcongensis; trans-2-enoyl-CoA reductase [Ter] from Spirochaeta thermophila; bifunctional acetaldehyde dehydrogenase/alcohol dehydrogenase [AdhE] from Clostridium thermocellum; and AdhE, aldehyde dehydrogenase [Bad], and butanol dehydrogenase [Bdh] from Thermoanaerobacter sp. strain X514) were utilized to examine three possible pathways for n-butanol. These pathways differed in the two steps required to convert butyryl-CoA to n-butanol: Thl-Hbd-Crt-Ter-AdhE (C. thermocellum), Thl-Hbd-Crt-Ter-AdhE (Thermoanaerobacter X514), and Thl-Hbd-Crt-Ter-Bad-Bdh. n-Butanol was produced at 70°C, but with different amounts of ethanol as a coproduct, because of the broad substrate specificities of AdhE, Bad, and Bdh. A reaction kinetics model, validated via comparison to in vitro experiments, was used to determine relative enzyme ratios needed to maximize n-butanol production. By using large relative amounts of Thl and Hbd and small amounts of Bad and Bdh, >70% conversion to n-butanol was observed in vitro, but with a 60% decrease in the predicted pathway flux. With more-selective hypothetical versions of Bad and Bdh, >70% conversion to n-butanol is predicted, with a 19% increase in pathway flux. Thus, more-selective thermophilic versions of Bad, Bdh, and AdhE are needed to fully exploit biocatalytic n-butanol production at elevated temperatures.  相似文献   

7.
A synthetic metabolic pathway suitable for the production of chorismate derivatives was designed in Escherichia coli. An L-phenylalanine-overproducing E. coli strain was engineered to enhance the availability of phosphoenolpyruvate (PEP), which is a key precursor in the biosynthesis of aromatic compounds in microbes. Two major reactions converting PEP to pyruvate were inactivated. Using this modified E.coli as a base strain, we tested our system by carrying out the production of salicylate, a high-demand aromatic chemical. The titer of salicylate reached 11.5 g/L in batch culture after 48 h cultivation in a 2-liter jar fermentor, and the yield from glucose as the sole carbon source exceeded 40% (mol/mol). In this test case, we found that pyruvate was synthesized primarily via salicylate formation and the reaction converting oxaloacetate to pyruvate. In order to demonstrate the generality of our designed strain, we employed this platform for the production of each of 7 different chorismate derivatives. Each of these industrially important chemicals was successfully produced to levels of 1–3 g/L in test tube-scale culture.  相似文献   

8.
Metabolons in nature have evolved to facilitate more efficient catalysis of multistep reactions through the co-localization of functionally related enzymes to cellular organelles or membrane structures. To mimic the natural metabolon architecture, we present a novel artificial metabolon that was created by targeting multi-enzyme cascade reactions onto inclusion body (IB) in Escherichia coli. The utility of this system was examined by co-localizing four heterologous enzymes of the 1-butanol pathway onto an IB that was formed in E. coli through overexpression of the cellulose binding domain (CBD) of Cellulomonas fimi exoglucanase. To target the 1-butanol pathway enzymes to the CBD IB, we utilized a peptide-peptide interaction between leucine zipper (LZ) peptides. We genetically fused the LZ peptide to the N-termini of four heterologous genes involved in the synthetic 1-butanol pathway, whereas an antiparallel LZ peptide was fused to the CBD gene. The in vivo activity of the CBD IB-based metabolon was examined through the determination of 1-butanol synthesis using E. coli transformed with two plasmids containing the LZ-fused CBD and LZ-fused 1-butanol pathway genes, respectively. In vivo synthesis of 1-butanol using the engineered E. coli yielded 1.98 g/L of 1-butanol from glucose, representing a 1.5-fold increase over that obtained from E. coli expressing the LZ-fused 1-butanol pathway genes alone. In an attempt to examine the in vitro 1-butanol productivity, we reconstituted CBD IB-based metabolon using CBD IB and individual enzymes of 1-butanol pathway. The 1-butanol productivity of in vitro reconstituted CBD IB-based metabolon using acetoacetyl-CoA as the starting material was 2.29 mg/L/h, 7.9-fold higher than that obtained from metabolon-free enzymes of 1-butanol pathway. Therefore, this novel CBD-based artificial metabolon may prove useful in metabolic engineering both in vivo and in vitro for the efficient production of desired products.  相似文献   

9.
10.
11.
12.
The yeast Torulopsis glabrata CCTCC M202019, which is used for industrial pyruvate production, was chosen to explore the suitability of engineering this multi-vitamin auxotrophic yeast for increased malate production. Various metabolic engineering strategies were used to manipulate carbon flux from pyruvate to malate: (i) overexpression of pyruvate carboxylase and malate dehydrogenase; (ii) identification of the bottleneck in malate production by model iNX804; (iii) simultaneous overexpression of genes RoPYC, RoMDH and SpMAE1. Using these strategies, 8.5 g L–1 malate was accumulated in the engineered strain T.G-PMS, which was about 10-fold greater than that of the control strain T.G-26. The results presented here suggest that T. glabrata CCTCC M202019 is a promising candidate for industrial malate production.  相似文献   

13.
3-Hydroxypropionate (3HP) is an important platform chemical, and four 3HP biosynthetic routes were reported, in which the malonyl-CoA pathway has some expected advantages but presented the lowest 3HP yield. Here, we demonstrated that this low yield was caused by a serious functional imbalance between MCR-C and MCR-N proteins, responsible for the two-step reduction of malonyl-CoA to 3HP. Then we minimized the enzyme activity imbalance by directed evolution of rate-limiting enzyme MCR-C and fine tuning of MCR-N expression level. Combined with culture conditions optimization, our engineering approaches increased the 3HP titer 270-fold, from 0.15 g/L to 40.6 g/L, representing the highest 3HP production via malonyl-CoA pathway so far. This study not only significantly improved the 3HP productivity of recombinant Escherichia coli strain, but also proved the importance of metabolic balance in a multistep biosynthetic pathway, which should be always considered in any metabolic engineering study.  相似文献   

14.
Mesaconate is an intermediate in the glutamate degradation pathway of microorganisms such as Clostridium tetanomorphum. However, metabolic engineering to produce mesaconate has not been reported previously. In this work, two enzymes involved in mesaconate production, glutamate mutase and 3-methylaspartate ammonia lyase from C. tetanomorphum, were recombinantly expressed in Escherichia coli. To improve mesaconate production, reactivatase of glutamate mutase was discovered and adenosylcobalamin availability was increased. In addition, glutamate mutase was engineered to improve the in vivo activity. These efforts led to efficient mesaconate production at a titer of 7.81 g/L in shake flask with glutamate feeding. Then a full biosynthetic pathway was constructed to produce mesaconate at a titer of 6.96 g/L directly from glucose. In summary, we have engineered an efficient system in E. coli for the biosynthesis of mesaconate.  相似文献   

15.
3-Methyl-1-butanol is a potential fuel additive or substitute. Previously this compound was identified in small quantities in yeast fermentation as one of the fusel alcohols. In this work, we engineered an Escherichia coli strain to produce 3-methyl-1-butanol from glucose via the host's amino acid biosynthetic pathways. Strain improvement with the removal of feedback inhibition and competing pathways increased the selectivity and productivity of 3-methyl-1-butanol. This work demonstrates the feasibility of production of 3-methyl-1-butanol as a biofuel and shows promise in using E. coli as a host for production.  相似文献   

16.
Metabolic engineering and synthetic biology have enabled the use of microbial production platforms for the renewable production of many high-value natural products. Titers and yields, however, are often too low to result in commercially viable processes. Microbial co-cultures have the ability to distribute metabolic burden and allow for modular specific optimization in a way that is not possible through traditional monoculture fermentation methods. Here, we present an Escherichia coli co-culture for the efficient production of flavonoids in vivo, resulting in a 970-fold improvement in titer of flavan-3-ols over previously published monoculture production. To accomplish this improvement in titer, factors such as strain compatibility, carbon source, temperature, induction point, and inoculation ratio were initially optimized. The development of an empirical scaled-Gaussian model based on the initial optimization data was then implemented to predict the optimum point for the system. Experimental verification of the model predictions resulted in a 65% improvement in titer, to 40.7±0.1 mg/L flavan-3-ols, over the previous optimum. Overall, this study demonstrates the first application of the co-culture production of flavonoids, the most in-depth co-culture optimization to date, and the first application of empirical systems modeling for improvement of titers from a co-culture system.  相似文献   

17.
Anaerobic biosynthesis of 1-butanol from glucose is investigated in recombinant Escherichia coli strains which form butyryl-CoA using the heterologous enzyme complex of clostridia or as a result of a reversal in the action of native enzymes of the fatty acid β-oxidation pathway. It was revealed that when the basic pathways of acetic and lactic acid formation are inactivated due to deletions of the ackA, pta, poxB, and ldhA genes, the efficiency of butyryl-CoA biosynthesis and its reduced product, i.e., 1-butanol, by two types of recombinant stains is comparable. The limiting factor for 1-butanol production by the obtained strains is the low substrate specificity of the basic CoA-dependent alcohol/aldehyde dehydrogenase AdhE from E. coli to butyryl-CoA. It was concluded that, in order to construct an efficient 1-butanol producer based on a model strain synthesizing butyryl-CoA as a result of reversed action of fatty acid β-oxidation enzymes, it is necessary to provide intensive formation of acetyl-CoA and enhanced activity of alternative alcohol and aldehyde dehydrogenases in the cells of a strain.  相似文献   

18.
Fatty acid short-chain esters (FASEs) are biodiesels that are renewable, nontoxic, and biodegradable biofuels. A novel approach for the biosynthesis of FASEs has been developed using metabolically-engineered E. coli through combination of the fatty acid and 2-keto acid pathways. Several genetic engineering strategies were also developed to increase fatty acyl-CoA availability to improve FASEs production. Fed-batch cultivation of the engineered E. coli resulted in a titer of 1008 mg/L FASEs. Since the fatty acid and 2-keto acid pathways are native microbial synthesis pathways, this strategy can be implemented in a variety of microorganisms to produce various FASEs from cheap and readily-available, renewable, raw materials such as sugars and cellulose in the future.  相似文献   

19.
The anticoccidial salinomycin is a polyketide produced by Streptomyces albus and requires malonyl-CoAs, methylmalonyl-CoAs, and ethylmalonyl-CoAs for the backbone assembly. Genome sequencing of S. albus DSM 41398 revealed a high percentage of genes involved in lipid metabolism, supporting the high salinomycin yield in oil-rich media. Seven PKS/PKS-NRPS gene clusters in the genome were found to be actively transcribed and had been individually deleted, which resulted in significantly improved salinomycin production. However, a combined deletion of PKS-NRPS-2 and PKS-6 showed no further improvement. Whereas the concentrations of malonyl-CoA and methylmalonyl-CoA were increased, the concentration of ethylmalonyl-CoA remained low in the mutants. An endogenous crotonyl-CoA reductase gene (ccr) was overexpressed in the ΔPKS-NRPS-2/ΔPKS-6 mutant, resulting in improved production. Combination of cluster deletions and over-expression of ccr gene led to an overall titer improvement of salinomycin from 0.60 to 6.60 g/L. This engineering strategy can be implemented for various natural polyketides production.  相似文献   

20.
Escherichia coli MG1655 (DE3) with the ability to synthesize butanol from glycerol was constructed by metabolic engineering. The genes thil, adhe2, bcs operon (crt, bcd, etfB, etfA, and hbd) were cloned into the plasmid vectors, pETDuet-1 and pACYCDuet-1, then the two resulting plasmids, pACYC-thl-bcs and pET-adhe2, were transferred to E. coli, and the recombinant strain was able to synthesize up to 18.5 mg/L butanol on a glycerol-containing medium. After the glycerol transport protein gene GlpF was expressed, the butanol production was improved to 22.7 mg/L. The competing pathway of byproducts, such as ethanol, succinate, and lactate, was subsequently deleted to improve the 1-butanol production to 97.9 mg/L. Moreover, a NADH regeneration system was introduced into the E. coli, and finally a 154.0 mg/L butanol titer was achieved in a laboratory-scale shake-flask experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号