首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genome-scale metabolic models (GEMs) provide a powerful framework for simulating the entire set of biochemical reactions in a cell using a constraint-based modeling strategy called flux balance analysis (FBA). FBA relies on an assumed metabolic objective for generating metabolic fluxes using GEMs. But, the most appropriate metabolic objective is not always obvious for a given condition and is likely context-specific, which often complicate the estimation of metabolic flux alterations between conditions. Here, we propose a new method, called ΔFBA (deltaFBA), that integrates differential gene expression data to evaluate directly metabolic flux differences between two conditions. Notably, ΔFBA does not require specifying the cellular objective. Rather, ΔFBA seeks to maximize the consistency and minimize inconsistency between the predicted flux differences and differential gene expression. We showcased the performance of ΔFBA through several case studies involving the prediction of metabolic alterations caused by genetic and environmental perturbations in Escherichia coli and caused by Type-2 diabetes in human muscle. Importantly, in comparison to existing methods, ΔFBA gives a more accurate prediction of flux differences.  相似文献   

2.
Metagenomic analyses of microbial communities have revealed a large degree of interspecies and intraspecies genetic diversity through the reconstruction of metagenome assembled genomes (MAGs). Yet, metabolic modeling efforts mainly rely on reference genomes as the starting point for reconstruction and simulation of genome scale metabolic models (GEMs), neglecting the immense intra- and inter-species diversity present in microbial communities. Here, we present metaGEM (https://github.com/franciscozorrilla/metaGEM), an end-to-end pipeline enabling metabolic modeling of multi-species communities directly from metagenomes. The pipeline automates all steps from the extraction of context-specific prokaryotic GEMs from MAGs to community level flux balance analysis (FBA) simulations. To demonstrate the capabilities of metaGEM, we analyzed 483 samples spanning lab culture, human gut, plant-associated, soil, and ocean metagenomes, reconstructing over 14,000 GEMs. We show that GEMs reconstructed from metagenomes have fully represented metabolism comparable to isolated genomes. We demonstrate that metagenomic GEMs capture intraspecies metabolic diversity and identify potential differences in the progression of type 2 diabetes at the level of gut bacterial metabolic exchanges. Overall, metaGEM enables FBA-ready metabolic model reconstruction directly from metagenomes, provides a resource of metabolic models, and showcases community-level modeling of microbiomes associated with disease conditions allowing generation of mechanistic hypotheses.  相似文献   

3.
Altered metabolism is linked to the appearance of various human diseases and a better understanding of disease-associated metabolic changes may lead to the identification of novel prognostic biomarkers and the development of new therapies. Genome-scale metabolic models (GEMs) have been employed for studying human metabolism in a systematic manner, as well as for understanding complex human diseases. In the past decade, such metabolic models – one of the fundamental aspects of systems biology – have started contributing to the understanding of the mechanistic relationship between genotype and phenotype. In this review, we focus on the construction of the Human Metabolic Reaction database, the generation of healthy cell type- and cancer-specific GEMs using different procedures, and the potential applications of these developments in the study of human metabolism and in the identification of metabolic changes associated with various disorders. We further examine how in silico genome-scale reconstructions can be employed to simulate metabolic flux distributions and how high-throughput omics data can be analyzed in a context-dependent fashion. Insights yielded from this mechanistic modeling approach can be used for identifying new therapeutic agents and drug targets as well as for the discovery of novel biomarkers. Finally, recent advancements in genome-scale modeling and the future challenge of developing a model of whole-body metabolism are presented. The emergent contribution of GEMs to personalized and translational medicine is also discussed.  相似文献   

4.
Genome-scale metabolic models (GEMs) are comprehensive knowledge bases of cellular metabolism and serve as mathematical tools for studying biological phenotypes and metabolic states or conditions in various organisms and cell types. Given the sheer size and complexity of human metabolism, selecting parameters for existing analysis methods such as metabolic objective functions and model constraints is not straightforward in human GEMs. In particular, comparing several conditions in large GEMs to identify condition- or disease-specific metabolic features is challenging. In this study, we showcase a scalable, model-driven approach for an in-depth investigation and comparison of metabolic states in large GEMs which enables identifying the underlying functional differences. Using a combination of flux space sampling and network analysis, our approach enables extraction and visualisation of metabolically distinct network modules. Importantly, it does not rely on known or assumed objective functions. We apply this novel approach to extract the biochemical differences in adipocytes arising due to unlimited vs blocked uptake of branched-chain amino acids (BCAAs, considered as biomarkers in obesity) using a human adipocyte GEM (iAdipocytes1809). The biological significance of our approach is corroborated by literature reports confirming our identified metabolic processes (TCA cycle and Fatty acid metabolism) to be functionally related to BCAA metabolism. Additionally, our analysis predicts a specific altered uptake and secretion profile indicating a compensation for the unavailability of BCAAs. Taken together, our approach facilitates determining functional differences between any metabolic conditions of interest by offering a versatile platform for analysing and comparing flux spaces of large metabolic networks.  相似文献   

5.
The efficiency of carbon and energy flows throughout metabolism defines the potential for growth and reproductive success of plants. Understanding the basis for metabolic efficiency requires relevant definitions of efficiency as well as measurements of biochemical functions through metabolism. Here insights into the basis of efficiency provided by (13)C-based metabolic flux analysis (MFA) as well as the uses and limitations of efficiency in predictive flux balance analysis (FBA) are highlighted. (13)C-MFA studies have revealed unusual features of central metabolism in developing green seeds for the efficient use of light to conserve carbon and identified metabolic inefficiencies in plant metabolism due to dissipation of ATP by substrate cycling. Constraints-based FBA has used efficiency to guide the prediction of the growth and actual internal flux distribution of plant systems. Comparisons in a few cases have been made between flux maps measured by (13)C-based MFA and those predicted by FBA assuming one or more maximal efficiency parameters. These studies suggest that developing plant seeds and photoautotrophic microorganisms may indeed have patterns of metabolic flux that maximize efficiency. MFA and FBA are synergistic toolsets for uncovering and explaining the metabolic basis of efficiencies and inefficiencies in plant systems.  相似文献   

6.
The gut microbiota has been proposed as an environmental factor that promotes the progression of metabolic diseases. Here, we investigated how the gut microbiota modulates the global metabolic differences in duodenum, jejunum, ileum, colon, liver, and two white adipose tissue depots obtained from conventionally raised (CONV‐R) and germ‐free (GF) mice using gene expression data and tissue‐specific genome‐scale metabolic models (GEMs). We created a generic mouse metabolic reaction (MMR) GEM, reconstructed 28 tissue‐specific GEMs based on proteomics data, and manually curated GEMs for small intestine, colon, liver, and adipose tissues. We used these functional models to determine the global metabolic differences between CONV‐R and GF mice. Based on gene expression data, we found that the gut microbiota affects the host amino acid (AA) metabolism, which leads to modifications in glutathione metabolism. To validate our predictions, we measured the level of AAs and N‐acetylated AAs in the hepatic portal vein of CONV‐R and GF mice. Finally, we simulated the metabolic differences between the small intestine of the CONV‐R and GF mice accounting for the content of the diet and relative gene expression differences. Our analyses revealed that the gut microbiota influences host amino acid and glutathione metabolism in mice.  相似文献   

7.
Flux Balance Analysis (FBA) has been used in the past to analyze microbial metabolic networks. Typically, FBA is used to study the metabolic flux at a particular steady state of the system. However, there are many situations where the reprogramming of the metabolic network is important. Therefore, the dynamics of these metabolic networks have to be studied. In this paper, we have extended FBA to account for dynamics and present two different formulations for dynamic FBA. These two approaches were used in the analysis of diauxic growth in Escherichia coli. Dynamic FBA was used to simulate the batch growth of E. coli on glucose, and the predictions were found to qualitatively match experimental data. The dynamic FBA formalism was also used to study the sensitivity to the objective function. It was found that an instantaneous objective function resulted in better predictions than a terminal-type objective function. The constraints that govern the growth at different phases in the batch culture were also identified. Therefore, dynamic FBA provides a framework for analyzing the transience of metabolism due to metabolic reprogramming and for obtaining insights for the design of metabolic networks.  相似文献   

8.
9.
Rational engineering of metabolism is important for bio-production using microorganisms. Metabolic design based on in silico simulations and experimental validation of the metabolic state in the engineered strain helps in accomplishing systematic metabolic engineering. Flux balance analysis (FBA) is a method for the prediction of metabolic phenotype, and many applications have been developed using FBA to design metabolic networks. Elementary mode analysis (EMA) and ensemble modeling techniques are also useful tools for in silico strain design. The metabolome and flux distribution of the metabolic pathways enable us to evaluate the metabolic state and provide useful clues to improve target productivity. Here, we reviewed several computational applications for metabolic engineering by using genome-scale metabolic models of microorganisms. We also discussed the recent progress made in the field of metabolomics and 13C-metabolic flux analysis techniques, and reviewed these applications pertaining to bio-production development. Because these in silico or experimental approaches have their respective advantages and disadvantages, the combined usage of these methods is complementary and effective for metabolic engineering.  相似文献   

10.
11.
Constraint-based modeling methods, such as Flux Balance Analysis (FBA), have been extensively used to decipher complex, information rich -omics datasets to elicit system-wide behavioral patterns of cellular metabolism. FBA has been successfully used to gain insight in a wide range of applications, such as range of substrate utilization, product yields and to design metabolic engineering strategies to improve bioprocess performance. A well-known challenge associated with large genome-scale metabolic networks is that they result in underdetermined problem formulations. Consequently, rather than unique solutions, FBA and related methods examine ranges of reaction flux values that are consistent with the studied physiological conditions. The wider the reported flux ranges, the higher the uncertainty in the determination of basic reaction properties, limiting interpretability of and confidence in the results. Herein, we propose a new, computationally efficient approach that refines flux range predictions by constraining reaction fluxes on the basis of the elemental balance of carbon. We compared carbon constraint FBA (ccFBA) against experimentally-measured intracellular fluxes using the latest CHO GEM (iCHO1766) and were able to substantially improve the accuracy of predicted flux values compared with FBA. ccFBA can be used as a stand-alone method but is also compatible with and complimentary to other constraint-based approaches.  相似文献   

12.
Cyanobacteria have potential to produce drop-in bio-fuels such as ethanol via photoautotrophic metabolism. Although model cyanobacterial strains have been engineered to produce such products, systematic metabolic engineering studies to identify optimal strains for the same have not been performed. In this work, we identify optimal ethanol producing mutants corresponding to appropriate gene deletions that result in a suitable redirection in the carbon flux. In particular, we systematically simulate exhaustive single and double gene deletions considering a genome scale metabolic model of a mutant strain of the unicellular cyanobacterium Synechocystis species strain PCC 6803. Various optimization based metabolic modeling techniques, such as flux balance analysis (FBA), method of minimization of metabolic adjustment (MOMA) and regulatory on/off minimization (ROOM) were used for this analysis. For single gene deletion MOMA simulations, the Pareto front with biomass and ethanol fluxes as the two objectives to be maximized was obtained and analyzed. Points on the Pareto front represent maximal utilization of resources constrained by substrate uptake thereby representing an optimal trade-off between the two fluxes. Pareto analysis was also performed for double gene deletion MOMA and single and double gene deletion ROOM simulations. Based on these analyses, two mutants, with combined gene deletions in ethanol and purine metabolism pathways, were identified as promising candidates for ethanol production. The relevant genes were adk, pta and ackA. An ethanol productivity of approximately 0.15 mmol/(gDW h) was predicted for these mutants which appears to be reasonable based on experimentally reported values in literature for other strains.  相似文献   

13.
14.
Genome‐scale flux balance analysis (FBA) is a powerful systems biology tool to characterize intracellular reaction fluxes during cell cultures. FBA estimates intracellular reaction rates by optimizing an objective function, subject to the constraints of a metabolic model and media uptake/excretion rates. A dynamic extension to FBA, dynamic flux balance analysis (DFBA), can calculate intracellular reaction fluxes as they change during cell cultures. In a previous study by Read et al. (2013), a series of informed amino acid supplementation experiments were performed on twelve parallel murine hybridoma cell cultures, and this data was leveraged for further analysis (Read et al., Biotechnol Prog. 2013;29:745–753). In order to understand the effects of media changes on the model murine hybridoma cell line, a systems biology approach is applied in the current study. Dynamic flux balance analysis was performed using a genome‐scale mouse metabolic model, and multivariate data analysis was used for interpretation. The calculated reaction fluxes were examined using partial least squares and partial least squares discriminant analysis. The results indicate media supplementation increases product yield because it raises nutrient levels extending the growth phase, and the increased cell density allows for greater culture performance. At the same time, the directed supplementation does not change the overall metabolism of the cells. This supports the conclusion that product quality, as measured by glycoform assays, remains unchanged because the metabolism remains in a similar state. Additionally, the DFBA shows that metabolic state varies more at the beginning of the culture but less by the middle of the growth phase, possibly due to stress on the cells during inoculation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1163–1173, 2016  相似文献   

15.
16.
In the past decade, computational methods have been shown to be well suited to unraveling the complex web of metabolic reactions in biological systems. Methods based on flux–balance analysis (FBA) and bi‐level optimization have been used to great effect in aiding metabolic engineering. These methods predict the result of genetic manipulations and allow for the best set of manipulations to be found computationally. Bi‐level FBA is, however, limited in applicability because the required computational time and resources scale poorly as the size of the metabolic system and the number of genetic manipulations increase. To overcome these limitations, we have developed Genetic Design through Local Search (GDLS), a scalable, heuristic, algorithmic method that employs an approach based on local search with multiple search paths, which results in effective, low‐complexity search of the space of genetic manipulations. Thus, GDLS is able to find genetic designs with greater in silico production of desired metabolites than can feasibly be found using a globally optimal search and performs favorably in comparison with heuristic searches based on evolutionary algorithms and simulated annealing.  相似文献   

17.
Genome‐scale metabolic models (GEMs) have proven useful as scaffolds for the integration of omics data for understanding the genotype–phenotype relationship in a mechanistic manner. Here, we evaluated the presence/absence of proteins encoded by 15,841 genes in 27 hepatocellular carcinoma (HCC) patients using immunohistochemistry. We used this information to reconstruct personalized GEMs for six HCC patients based on the proteomics data, HMR 2.0, and a task‐driven model reconstruction algorithm (tINIT). The personalized GEMs were employed to identify anticancer drugs using the concept of antimetabolites; i.e., drugs that are structural analogs to metabolites. The toxicity of each antimetabolite was predicted by assessing the in silico functionality of 83 healthy cell type‐specific GEMs, which were also reconstructed with the tINIT algorithm. We predicted 101 antimetabolites that could be effective in preventing tumor growth in all HCC patients, and 46 antimetabolites which were specific to individual patients. Twenty‐two of the 101 predicted antimetabolites have already been used in different cancer treatment strategies, while the remaining antimetabolites represent new potential drugs. Finally, one of the identified targets was validated experimentally, and it was confirmed to attenuate growth of the HepG2 cell line.  相似文献   

18.
Mitochondrial metabolism is a critical component in the functioning and maintenance of cellular organs. The stoichiometry of biochemical reaction networks imposes constraints on mitochondrial function. A modeling framework, flux-balance analysis (FBA), was used to characterize the optimal flux distributions for maximal ATP production in the mitochondrion. The model predicted the expected ATP yields for glucose, lactate, and palmitate. Genetic defects that affect mitochondrial functions have been implicated in several human diseases. FBA can characterize the metabolic behavior due to genetic deletions at the metabolic level, and the effect of mutations in the tricarboxylic acid (TCA) cycle on mitochondrial ATP production was simulated. The mitochondrial ATP production is severely affected by TCA-cycle mutations. In addition, the model predicts the secretion of TCA-cycle intermediates, which is observed in clinical studies of mitochondriopathies such as those associated with fumarase deficiency. The model provides a systemic perspective to characterize the effect of stoichiometric constraints and specific metabolic fluxes on mitochondrial function.  相似文献   

19.
Genome-based Flux Balance Analysis (FBA) and steady-state isotopic-labeling-based Metabolic Flux Analysis (MFA) are complimentary approaches to predicting and measuring the operation and regulation of metabolic networks. Here, genome-derived models of Escherichia coli (E. coli) metabolism were used for FBA and 13C-MFA analyses of aerobic and anaerobic growths of wild-type E. coli (K-12 MG1655) cells. Validated MFA flux maps reveal that the fraction of maintenance ATP consumption in total ATP production is about 14% higher under anaerobic (51.1%) than aerobic conditions (37.2%). FBA revealed that an increased ATP utilization is consumed by ATP synthase to secrete protons from fermentation. The TCA cycle is shown to be incomplete in aerobically growing cells and submaximal growth is due to limited oxidative phosphorylation. An FBA was successful in predicting product secretion rates in aerobic culture if both glucose and oxygen uptake measurement were constrained, but the most-frequently predicted values of internal fluxes yielded from sampling the feasible space differ substantially from MFA-derived fluxes.  相似文献   

20.
Metabolic pathway engineering is constrained by the thermodynamic and stoichiometric feasibility of enzymatic activities of introduced genes. Engineering of xylose metabolism in Saccharomyces cerevisiae has focused on introducing genes for the initial xylose assimilation steps from Pichia stipitis, a xylose-fermenting yeast, into S. cerevisiae, a yeast traditionally used in ethanol production from hexose. However, recombinant S. cerevisiae created in several laboratories have used xylose oxidatively rather than in the fermentative manner that this yeast metabolizes glucose. To understand the differences between glucose and engineered xylose metabolic networks, we performed a flux balance analysis (FBA) and calculated extreme pathways using a stoichiometric model that describes the biochemistry of yeast cell growth. FBA predicted that the ethanol yield from xylose exhibits a maximum under oxygen-limited conditions, and a fermentation experiment confirmed this finding. Fermentation results were largely consistent with in silico phenotypes based on calculated extreme pathways, which displayed several phases of metabolic phenotype with respect to oxygen availability from anaerobic to aerobic conditions. However, in contrast to the model prediction, xylitol production continued even after the optimum aeration level for ethanol production was attained. These results suggest that oxygen (or some other electron accepting system) is required to resolve the redox imbalance caused by cofactor difference between xylose reductase and xylitol dehydrogenase, and that other factors limit glycolytic flux when xylose is the sole carbon source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号