首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mevalonate pathway is a highly conserved metabolic cascade and provides isoprenoid building blocks for the biosynthesis of vital cellular products such as cholesterol or prenyl pyrophosphates that serve as substrates for the posttranslational prenylation of numerous proteins. The pathway, which is frequently hyperactive in cancer cells, is considered an important target in cancer therapy, since prenylated members of the Ras superfamily are crucially involved in the control of proliferation, survival, invasion and metastasis of tumour cells. Upstream accumulation and downstream depletion of mevalonate pathway intermediates as induced for instance by aminobisphosphonates translate into different effects in cancer and immune cells. Thus, mevalonate pathway regulation can affect tumour biology either directly or exhibit indirect antitumour effects through stimulating cancer immune surveillance. The present review summarizes major effects of pharmacologic mevalonate pathway regulation in cancer and immune cells that may collaboratively contribute to the efficacy of cancer therapy.  相似文献   

2.
Death-associated protein kinase 2 (DAPK2/DRP-1) belongs to a family of five related serine/threonine kinases that mediate a range of cellular processes, including membrane blebbing, apoptosis, and autophagy, and possess tumour suppressive functions. The three most conserved family members DAPK1/DAPK, DAPK2 and DAPK3/ZIPK share a high degree of homology in their catalytic domain, but differ significantly in their extra-catalytic structures and tissue-expression profiles. Hence, each orthologue binds to various unique interaction partners, localizes to different subcellular regions and controls some dissimilar cellular functions. In recent years, mechanistic studies have broadened our knowledge of the molecular mechanisms that activate DAPK2 and that execute DAPK2-mediated apoptosis, autophagy and inflammation. In this “molecules in focus” review on DAPK2, the structure, modes of regulation and various cellular functions of DAPK2 will be summarized and discussed.  相似文献   

3.
The production of terpenoids from engineered microbes contributes markedly to the bioeconomy by providing essential medicines, sustainable materials, and renewable fuels. The mevalonate pathway leading to the synthesis of terpenoid precursors has been extensively targeted for engineering. Nevertheless, the importance of individual pathway enzymes to the overall pathway flux and final terpenoid yield is less known, especially enzymes that are thought to be non-rate-limiting. To investigate the individual contribution of the five non-rate-limiting enzymes in the mevalonate pathway, we created a combinatorial library of 243 Saccharomyces cerevisiae strains, each having an extra copy of the mevalonate pathway integrated into the genome and expressing the non-rate-limiting enzymes from a unique combination of promoters. High-throughput screening combined with machine learning algorithms revealed that the mevalonate kinase, Erg12p, stands out as the critical enzyme that influences product titer. ERG12 is ideally expressed from a medium-strength promoter which is the ‘sweet spot’ resulting in high product yield. Additionally, a platform strain was created by targeting the mevalonate pathway to both the cytosol and peroxisomes. The dual localization synergistically increased terpenoid production and implied that some mevalonate pathway intermediates, such as mevalonate, isopentyl pyrophosphate (IPP), and dimethylallyl pyrophosphate (DMAPP), are diffusible across peroxisome membranes. The platform strain resulted in 94-fold, 60-fold, and 35-fold improved titer of monoterpene geraniol, sesquiterpene α-humulene, and triterpene squalene, respectively. The terpenoid platform strain will serve as a chassis for producing any terpenoids and terpene derivatives.  相似文献   

4.
Expression of foreign pathways often results in suboptimal performance due to unintended factors such as introduction of toxic metabolites, cofactor imbalances or poor expression of pathway components. In this study we report a 120% improvement in the production of the isoprenoid-derived sesquiterpene, amorphadiene, produced by an engineered strain of Escherichia coli developed to express the native seven-gene mevalonate pathway from Saccharomyces cerevisiae (Martin et al. 2003). This substantial improvement was made by varying only a single component of the pathway (HMG-CoA reductase) and subsequent host optimization to improve cofactor availability. We characterized and tested five variant HMG-CoA reductases obtained from publicly available genome databases with differing kinetic properties and cofactor requirements. The results of our in vitro and in vivo analyses of these enzymes implicate substrate inhibition of mevalonate kinase as an important factor in optimization of the engineered mevalonate pathway. Consequently, the NADH-dependent HMG-CoA reductase from Delftia acidovorans, which appeared to have the optimal kinetic parameters to balance HMG-CoA levels below the cellular toxicity threshold of E. coli and those of mevalonate below inhibitory concentrations for mevalonate kinase, was identified as the best producer for amorphadiene (54% improvement over the native pathway enzyme, resulting in 2.5 mM or 520 mg/L of amorphadiene after 48 h). We further enhanced performance of the strain bearing the D. acidovorans HMG-CoA reductase by increasing the intracellular levels of its preferred cofactor (NADH) using a NAD+-dependent formate dehydrogenase from Candida boidinii, along with formate supplementation. This resulted in an overall improvement of the system by 120% resulting in 3.5 mM or 700 mg/L amorphadiene after 48 h of fermentation. This comprehensive study incorporated analysis of several key parameters for metabolic design such as in vitro and in vivo kinetic performance of variant enzymes, intracellular levels of protein expression, in-pathway substrate inhibition and cofactor management to enable the observed improvements. These metrics may be applied to a broad range of heterologous pathways for improving the production of biologically derived compounds.  相似文献   

5.
6.
Isoprene, a key building block of synthetic rubber, is currently produced entirely from petrochemical sources. In this work, we engineered both the methylerythritol phosphate (MEP) pathway and the mevalonate (MVA) pathway for isoprene production in E. coli. The synergy between the MEP pathway and the MVA pathway was demonstrated by the production experiment, in which overexpression of both pathways improved the isoprene yield about 20-fold and 3-fold, respectively, compared to overexpression of the MEP pathway or the MVA pathway alone. The 13C metabolic flux analysis revealed that simultaneous utilization of the two pathways resulted in a 4.8-fold increase in the MEP pathway flux and a 1.5-fold increase in the MVA pathway flux. The synergy of the dual pathway was further verified by quantifying intracellular flux responses of the MEP pathway and the MVA pathway to fosmidomycin treatment and mevalonate supplementation. Our results strongly suggest that coupling of the complementary reducing equivalent demand and ATP requirement plays an important role in the synergy of the dual pathway. Fed-batch cultivation of the engineered strain overexpressing the dual pathway resulted in production of 24.0 g/L isoprene with a yield of 0.267 g/g of glucose. The synergy of the MEP pathway and the MVA pathway also successfully increased the lycopene productivity in E. coli, which demonstrates that it can be used to improve the production of a broad range of terpenoids in microorganisms.  相似文献   

7.
Akt plays a role in protecting macrophages from apoptosis induced by some oxysterols. Previously we observed enhanced degradation of Akt in P388D1 moncocyte/macrophages following treatment with 25-hydroxycholesterol (25-OH) or 7-ketocholesterol (7-KC). In the present report we examine the role of the ubiquitin proteasomal pathway in this process. We show that treatment with 25-OH or 7-KC results in the accumulation of poly-ubiquitinated Akt, an effect that is enhanced by co-treatment with the proteasome inhibitor MG-132. Modification of Akt by the addition of a Gly-Ala repeat (GAr), a domain known to block ubiquitin-dependent targeting of proteins to the proteasome, resulted in a chimeric protein that is resistant to turn-over induced by 25-OH or 7-KC and provides protection from apoptosis induced by these oxysterols. These results uncover a new aspect of oxysterol regulation of Akt in macrophages; oxysterol-stimulated poly-ubiquitination of Akt and degradation by the proteasomal pathway.  相似文献   

8.
Taxol (paclitaxel) is a diterpenoid compound with significant and extensive applications in the treatment of cancer. The production of Taxol and relevant intermediates by engineered microbes is an attractive alternative to the semichemical synthesis of Taxol. In this study, based on a previously developed platform, the authors first established taxadiene production in mutant E. coli T2 and T4 by engineering of the mevalonate (MVA) pathway. The authors then developed an Agrobacterium tumefaciens‐mediated transformation (ATMT) method and verified the strength of heterologous promoters in Alternaria alternata TPF6. The authors next transformed the taxadiene‐producing platform into A. alternata TPF6, and the MVA pathway was engineered, with introduction of the plant taxadiene‐forming gene. Notably, by co‐overexpression of isopentenyl diphosphate isomerase (Idi), a truncated version of 3‐hydroxy‐3‐methylglutaryl‐CoA reductase (tHMG1), and taxadiene synthase (TS), the authors could detect 61.9 ± 6.3 μg/L taxadiene in the engineered strain GB127. This is the first demonstration of taxadiene production in filamentous fungi, and the approach presented in this study provides a new method for microbial production of Taxol. The well‐established ATMT method and the known promoter strengths facilitated further engineering of taxaenes in this fungus.  相似文献   

9.
Wu  Chunxiu  Zhao  Jin  Li  Ruiting  Feng  Fengling  He  Yizi  Li  Yanjun  Huang  Runhan  Li  Guangye  Yang  Heng  Cheng  Genhong  Chen  Ling  Ma  Feng  Li  Pingchao  Sun  Caijun 《中国病毒学》2021,36(5):1197-1209
Virologica Sinica - Cholesterol-25-hydroxylase (CH25H) and its enzymatic product 25-hydroxycholesterol (25HC) exert broadly antiviral activity including inhibiting HIV-1 infection. However, their...  相似文献   

10.
UTP:glucose-1-phospate uridylyltransferase (EC 2.7.7.9) from Saccharomyces cerevisiae transfers the uridylyl moiety of UDP-glucose onto methylenebisphosphonate (pCH2p) yielding uridine 5′-(β,γ-methylenetriphosphate) (UppCH2p). The following bisphosphonates were not acceptors of UMP: alendronate, pamidronate, clodronate and etidronate. UDP-glucose serves as uridylyl donor to triphosphate derivatives of the mevalonate pathway: farnesyl (far-PPP), geranyl (ger-PPP) and isopentenyl (iso-PPP), with formation of farnesyl-tetraphosphouridine (far-ppppU); geranyl-tetraphosphouridine (ger-ppppU) and isopentenyl-tetraphosphouridine (iso-ppppU). The Km (mM) and Vmax (mU/mg protein) values determined for these substrates were: 0.32 ± 0.07 and 4.9 ± 0.6; 0.21 ± 0.06 and 5.7 ± 0.8; 0.51 ± 0.14 and 2.0 ± 0.2, respectively. The Km and Vmax values for methylenebisphosphonate were 1.1 ± 0.2 mM and 4055 ± 96 mU/mg protein, respectively.  相似文献   

11.
In microorganisms and plants, mevalonate kinase is involved in the biosynthesis of isoprenoid derivatives, one of the largest groups of natural products. We subcloned the gene of mevalonate kinase from Methanococcus jannaschii into a bacterial expression vector pLM1 with six continuous histidine codons attached to the 5' end of the gene. A variety of mutant expression plasmids including pMMK(R196K), pMMK(R196Q), pMMK(R196V), pMMK(K272R), and pMMK(K272A) have been constructed using site-directed mutagenesis. The wild-type protein and mutants were overexpressed and purified with a nickel HiTrap chelating metal affinity column to homogeneity. CD spectroscopy of wild-type protein and mutants indicates that none of the above mutations induces significant secondary structural changes. The results from kinetic studies showed that Arg196 is an essential residue for the function of the enzyme. Kinetic studies of Lys272 mutants indicate that salt bridge Lys272-Glu14 plays an important role in maintaining the active site microenvironment that is essential for catalytic activity of the enzyme.  相似文献   

12.
ObjectiveHypertension induces end-organ damage through inflammation, and autophagy plays a crucial role in the regulation of cellular homeostasis. In the present study, we aimed to define the role of autophagy in the development of inflammation and cardiac injury induced by angiotensin II (Ang II).Methods and ResultsAutophagy protein 5 (Atg5) haplodeficiency (Atg5+/−) and age-matched wild-type (WT) C57BL/6 J mice were infused with Ang II (1500 ng/kg/min) or saline for 7 days. Heart sections were stained with hematoxylin and eosin (H&E), Masson's trichrome, and immunohistochemical stains. Cytokine and LC3 levels were measured using real-time PCR or western blot analysis. After Ang II infusion, the WT mice exhibited marked macrophage accumulation, cytokine expression, and reactive oxygen species (ROS) production compared with saline-infused controls. However, these effects induced by Ang II infusion were aggravated in Atg5+/− mice. These effects were associated with Atg5-mediated impaired autophagy, accompanied by increased production of ROS and activation of nuclear factor-κB (NF-κB) in macrophages. Finally, increased cardiac inflammation in Atg5 haplodeficient mice was associated with increased cardiac fibrosis.ConclusionAtg5 deficiency-mediated autophagy increases ROS production and NF-κB activity in macrophages, thereby contributing to cardiac inflammation and injury. Thus, improving autophagy may be a novel therapeutic strategy to ameliorate hypertension-induced inflammation and organ damage.  相似文献   

13.
Sepsis, a widely prevalent disease with increasing morbidity and mortality, is thought to result from uncontrolled inflammatory responses to microbial infection and/or components. However, failure of several experimental anti-inflammatory therapies has necessitated re-evaluation of the paradigm underlying the pathogenesis of this complex disorder. Apoptotic cell death forms a second dominant feature of septic shock in patients and animal models. Anti-apoptotic strategies may protect animals from septic death. However, simultaneous occurrence of apoptosis and inflammation is necessary for septic death. At the cellular level, apoptosis plays a central role in the development of the lymphoid system and regulation of immune responses. Immune activation renders cells refractory to apoptosis while apoptosis of activated lymphocytes is an important immunoregulatory mechanism. Factors such as complement factor 5a, caspase-1 and mitogen-activated protein kinase, which participate in apoptosis as well as pro-inflammatory pathways, may be responsible for simultaneous activation of apoptosis and inflammation in sepsis. Further identification of other similar biochemical events capable of co-activating inflammation and apoptosis may provide new targets for therapy of this hitherto untreatable disease.  相似文献   

14.
Mortalin (mot-2/GRP75/PBP74/mthsp70) is a member of the hsp70 family of proteins and is differentially distributed in normal and immortal cells. It was shown to be involved in pathways to cell senescence and immortalization. To elucidate its functional aspects, a yeast interactive screen for mortalin (mot-2) binding proteins was performed. Mevalonate pyrophosphate decarboxylase (MPD) was identified as one of the mortalin binding partners. The interactions were confirmed in mammalian cells by two-hybrid assay and in vivo coimmunoprecipitation. MPD is known to furnish prenyl groups required for prenylation, protein modification that is essential for the activity of many proteins including p21(Ras) (Ras). We have examined the effect of MPD-mot-2 interactions on the level and activity of p21(Ras) and its downstream effectors, p44 and p42 MAP kinases (ERK1/ERK2), in Ras-Raf pathway. An overexpression of mot-2 resulted in reduced level of Ras and phosphorylated ERK2. These were rescued by co-expression of MPD from an exogenous promoter demonstrating a functional link between mot-2, MPD, and Ras. Ras and its oncogenic forms act as key players in controlling proliferation of normal and cancerous cells. Assigning mot-2 upstream of p21(Ras) offers an important mechanism for influence over cell proliferation.  相似文献   

15.
Magnesium-deficient rats develop simultaneously a significant lowering of nociceptive threshold and a generalized inflammation. We investigated the relationship between these two phenomena by testing drugs that are able to suppress the inflammation in this model. In weaning rats fed a magnesium-depleted diet for ten days, the nociceptive threshold was assessed by the paw pressure test and the inflammation by a clinical score. A non-steroidal anti-inflammatory drug (piroxicam); antagonists of H1 and H2 receptors (astemizole and cimetidine. respectively); a glucocorticoid (dexamethasone); an inhibitor of mastocyte degranulation (cromoglycate); and estradiol benzoate were used to block the inflammatory response. Dexamethasone and estradiol significantly suppressed the inflammation (p < 0.001 vs control group). Cromoglycate showed a delayed anti-inflammatory effect (p < 0.01 vs control group on D10). The combination of astemizole and cimetidine partially blocked the inflammation process, whereas astemizole and piroxicam were without effect. Regardless of the effect of the test drugs on inflammation, no change in the time course of hyperalgesia was observed. These data support the view that hyperalgesia induced by the magnesium-depleted diet is not a consequence of the inflammatory process.  相似文献   

16.
Labeling experiments using [1-13C]acetate or [1-13C]glucose were performed with opportunistic pathogenic bacteria, with innocuous bacteria related to pathogenic species or with phytopathogenic species. The labeling pattern was determined in the isoprenic moiety of ubiquinone or menaquinone derivatives. These experiments showed that Acinetobacter, Citrobacter, Erwinia, Pseudomonas, Burkholderia, Ralstonia and Mycobacterium synthesize their isoprenoids via the mevalonate-independent glyceraldehyde 3-phosphate/pyruvate route. Enzymes of this novel bacterial metabolic route, which is apparently absent in vertebrates and man, therefore represent potential targets for a novel type of antibacterial drugs.  相似文献   

17.
Myristoylated alanine-rich C kinase substrate (MARCKS) is a widely distributed specific protein kinase C (PKC) substrate and has been implicated in membrane trafficking, cell motility, secretion, cell cycle, and transformation. We found that amyloid beta protein (A beta) (25-35) and A beta (1-40) phosphorylate MARCKS in primary cultured rat microglia. Treatment of microglia with A beta (25-35) at 10 nM or 12-O-tetradecanoylphorbol 13-acetate (1.6 nM) led to phosphorylation of MARCKS, an event inhibited by PKC inhibitors, staurosporine, calphostin C, and chelerythrine. The A beta (25-35)-induced phosphorylation of MARCKS was inhibited by pretreatment with the tyrosine kinase inhibitors genistein and herbimycin A, but not with pertussis toxin. PKC isoforms alpha, delta, and epsilon were identified in microglia by immunocytochemistry and western blots using isoform-specific antibodies. PKC-delta was tyrosine-phosphorylated by the treatment of microglia for 10 min with A beta (25-35) at 10 nM. Other PKC isoforms alpha and epsilon were tyrosine-phosphorylated by A beta (25-35), but only to a small extent. We propose that a tyrosine kinase-activated PKC pathway is involved in the A beta (25-35)-induced phosphorylation of MARCKS in rat microglia.  相似文献   

18.
19.
Osteoclasts are multinucleated giant cells, responsible for bone resorption. Osteoclast differentiation and function requires a series of cytokines to remove the old bone, which coordinates with the induction of bone remodelling by osteoblast-mediated bone formation. Studies have demonstrated that AMP-activated protein kinase (AMPK) play a negative regulatory role in osteoclast differentiation and function. Research involving AMPK, a nutrient and energy sensor, has primarily focused on osteoclast differentiation and function; thus, its role in autophagy, inflammation and immunity remains poorly understood. Autophagy is a conservative homoeostatic mechanism of eukaryotic cells, and response to osteoclast differentiation and function; however, how it interacts with inflammation remains unclear. Additionally, based on the regulatory function of different AMPK subunits for osteoclast differentiation and function, its activation is regulated by upstream factors to perform bone metabolism. This review summarises the critical role of AMPK-mediated autophagy, inflammation and immunity by upstream and downstream signalling during receptor activator of nuclear factor kappa-B ligand-induced osteoclast differentiation and function. This pathway may provide therapeutic targets for bone-related diseases, as well as function as a biomarker for bone homoeostasis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号