首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have indicated that the regulation of innate immunity and energy metabolism are connected together through an antagonistic crosstalk between NF-κB and SIRT1 signaling pathways. NF-κB signaling has a major role in innate immunity defense while SIRT1 regulates the oxidative respiration and cellular survival. However, NF-κB signaling can stimulate glycolytic energy flux during acute inflammation, whereas SIRT1 activation inhibits NF-κB signaling and enhances oxidative metabolism and the resolution of inflammation. SIRT1 inhibits NF-κB signaling directly by deacetylating the p65 subunit of NF-κB complex. SIRT1 stimulates oxidative energy production via the activation of AMPK, PPARα and PGC-1α and simultaneously, these factors inhibit NF-κB signaling and suppress inflammation. On the other hand, NF-κB signaling down-regulates SIRT1 activity through the expression of miR-34a, IFNγ, and reactive oxygen species. The inhibition of SIRT1 disrupts oxidative energy metabolism and stimulates the NF-κB-induced inflammatory responses present in many chronic metabolic and age-related diseases. We will examine the molecular mechanisms of the antagonistic signaling between NF-κB and SIRT1 and describe how this crosstalk controls inflammatory process and energy metabolism. In addition, we will discuss how disturbances in this signaling crosstalk induce the appearance of chronic inflammation in metabolic diseases.  相似文献   

2.
Sirtuin 1(SIRT1)是组蛋白去乙酰化酶的代表性成员,除可调节代谢、衰老、凋亡外,SIRT1还可通过催化组蛋白及核因子κB(NF-κB)、激活蛋白1(AP-1)等的去乙酰化,从而改变染色质构象、降低转录因子活性、下调炎症基因转录。临床研究已揭示SIRT1在某些炎症性疾病中含量明显降低,而动物实验证实白藜芦醇、SRT1720等SIRT1激活剂可有效减轻炎症损伤。因而,SIRT1有望成为抗炎治疗的新靶点。  相似文献   

3.
4.
Sirtuins are highly conserved NAD+-dependent protein deacetylases and/or ADP-ribosyltransferases that can extend the lifespan of several lower model organisms including yeast, worms and flies. The seven mammalian sirtuins, SIRT1 to SIRT7, have emerged as key metabolic sensors that directly link environmental signals to mammalian metabolic homeostasis and stress response. Recent studies have shed light on the critical roles of sirtuins in mammalian energy metabolism in response to nutrient signals. This review focuses on the involvement of two nuclear sirtuins, SIRT1 and SIRT6, and three mitochondrial sirtuins, SIRT3, SIRT4, and SIRT5, in regulation of diverse metabolic processes.  相似文献   

5.
Sirtuins are recently redefined as a family of nicotinamide adenine dinucleotide (NAD)-dependent deacylases. Sirtuins in mammals including human have seven members, which are SIRT1-7. Compared to other sirtuin members, not much study is focused on mitochondrial sirtuins (SIRT3-5). In mitochondrial sirtuins, SIRT4 was the last of less well-understood mitochondrial sirtuins especially for its robust enzymatic activity. This makes SIRT4 become the last puzzle of mitochondrial sirtuins, and thus brings some obstacles for studying SIRT4 biological functions or developing SIRT4 modulators. In this review, we will summarize and discuss the current findings for substrates, biological functions and possible enzymatic activities of SIRT4. The purpose of this review is to facilitate in discovering the robust enzymatic activity of SIRT4 and eventually finish this last puzzle of mitochondrial sirtuins.  相似文献   

6.
7.
8.
As the increased acetylation of p65 is linked to nuclear factor-κB (NF-κB) activation, the regulation of p65 acetylation can be a potential target for the treatment of inflammatory injury. Cisplatin-induced nephrotoxicity is an important issue in chemotherapy of cancer patients. SIRT1, nicotinamide adenine dinucleotide (NAD(+))-dependent protein deacetylase, has been implicated in a variety of cellular processes such as inflammatory injury and the control of multidrug resistance in cancer. However, there is no report on the effect of SIRT1 overexpression on cisplatin-induced acetylation of p65 subunit of NF-κB and cell injury. To investigate the effect of SIRT1 in on cisplatin-induced acetylation of p65 subunit of NF-κB and cell injury, HK2 cells were exposed with SIRT1 overexpression, LacZ adenovirus or dominant negative adenovirus after treatment with cisplatin. While protein expression of SIRT1 was decreased by cisplatin treatment compared with control buffer treatment, acetylation of NF-κB p65 subunit was significantly increased after treatment with cisplatin. Overexpression of SIRT1 ameliorated the increased acetylation of p65 of NF-κB during cisplatin treatment and cisplatin-induced cytotoxicity. Further, treatment of cisplatin-treated HK2 cells with resveratrol, a SIRT1 activator, also decreased acetylation of NF-κB p65 subunit and cisplatin-induced increase of the cell viability in HK2 cells. Our findings suggests that the regulation of acetylation of p65 of NF-κB through SIRT1 can be a possible target to attenuate cisplatin-induced renal cell damage.  相似文献   

9.
10.
11.
12.
Sirtuins have emerged as important proteins in aging, stress resistance and metabolic regulation. Three sirtuins, SIRT3, 4 and 5, are located within the mitochondrial matrix. SIRT3 and SIRT5 are NAD+-dependent deacetylases that remove acetyl groups from acetyllysine-modified proteins and yield 2′-O-acetyl-ADP-ribose and nicotinamide. SIRT4 can transfer the ADP-ribose group from NAD+ onto acceptor proteins. Recent findings reveal that a large fraction of mitochondrial proteins are acetylated and that mitochondrial protein acetylation is modulated by nutritional status. This and the identification of targets for SIRT3, 4 and 5 support the model that mitochondrial sirtuins are metabolic sensors that modulate the activity of metabolic enzymes via protein deacetylation or mono-ADP-ribosylation. Here, we review and discuss recent progress in the study of mitochondrial sirtuins and their targets.  相似文献   

13.
We have previously shown that GABA protects pancreatic islet cells against apoptosis and exerts anti-inflammatory effects. Notably, GABA inhibited the activation of NF-κB in both islet cells and lymphocytes. NF-κB activation is detrimental to beta cells by promoting apoptosis. However, the mechanisms by which GABA mediates these effects are unknown. Because the above-mentioned effects mimic the activity of sirtuin 1 (SIRT1) in beta cells, we investigated whether it is involved. SIRT1 is an NAD+-dependent deacetylase that enhances insulin secretion, and counteracts inflammatory signals in beta cells. We found that the incubation of a clonal beta-cell line (rat INS-1) with GABA increased the expression of SIRT1, as did GABA receptor agonists acting on either type A or B receptors. NAD+ (an essential cofactor of SIRT1) was also increased. GABA augmented SIRT1 enzymatic activity, which resulted in deacetylation of the p65 component of NF-κB, and this is known to interfere with the activation this pathway. GABA increased insulin production and reduced drug-induced apoptosis, and these actions were reversed by SIRT1 inhibitors. We examined whether SIRT1 is similarly induced in newly isolated human islet cells. Indeed, GABA increased both NAD+ and SIRT1 (but not sirtuins 2, 3 and 6). It protected human islet cells against spontaneous apoptosis in culture, and this was negated by a SIRT1 inhibitor. Thus, our findings suggest that major beneficial effects of GABA on beta cells are due to increased SIRT1 and NAD+, and point to a new pathway for diabetes therapy.  相似文献   

14.
15.
摘要 已有研究证明,沉默信息调节子1(silent information regulator , SIRT1)和核因子κB(nuclear factor-κB, NF-κB)参与多种炎性反应调节;SIRT1激活剂——白藜芦醇(resveratrol)可通过依赖或不依赖于SIRT1的途径抑制炎症反应。然而,SIRT1及白藜芦醇在妊娠期肝内胆汁瘀积症(intrahepatic cholestasis of pregnancy, ICP)炎性反应中的作用在国内外尚未见报道。本研究证明,白藜芦醇可通过上调SIRT1表达,下调NF-κB及肿瘤坏死因子α(tumor necrosis factor-alpha, TNF-α)表达保护牛磺胆酸 (taurocholic acid, TCA)引起的胎盘合体滋养细胞HTR-8炎性损伤。免疫组化及Western印迹显示,SIRT1蛋白在正常胎盘组织的表达水平明显高于妊娠期ICP胎盘组织,而NF-κB蛋白表达在正常胎盘组织的表达低于ICP胎盘组织。Western印迹揭示,SIRT1蛋白在HTR-8细胞中的表达水平随暴露的TCA浓度增高而降低;相反,NF-κB和TNF-α蛋白质水平随TCA浓度增高而升高。采用白藜芦醇处理HTR-8细胞,该差异可被逆转;且白藜芦醇这一作用可被Ex-527(一种SIRT1 抑制剂)阻断。上述结果证明,在ICP胎盘合体滋养细胞炎性反应中SIRT1表达下调,而NF-κB表达上调;其可能的机制是ICP高浓度胆汁酸干扰胎盘合体滋养细胞SIRT1-NF-κB通路,诱导炎症反应。上述结果还提示,SIRT1激动剂——白藜芦醇可通过诱导SIRT1表达,抑制NF-κB及TNF-α表达,保护牛磺胆酸诱导的胎盘合体滋养细胞的炎性损伤。本研究为白藜芦醇临床治疗(妊娠期)肝内胆汁瘀积症提供了新的证据。至于白藜芦醇是否可直接抑制NF-κB的表达还有待进一步探讨。  相似文献   

16.
17.
《遗传学报》2022,49(4):287-298
Maintaining metabolic homeostasis is essential for cellular and organismal health throughout life. Multiple signaling pathways that regulate metabolism also play critical roles in aging, such as PI3K/AKT, mTOR, AMPK, and sirtuins (SIRTs). Among them, sirtuins are known as a protein family with versatile functions, such as metabolic control, epigenetic modification and lifespan extension. Therefore, by understanding how sirtuins regulate metabolic processes, we can start to understand how they slow down or accelerate biological aging from the perspectives of metabolic regulation. Here, we review the biology of SIRT3, SIRT4, and SIRT5, known as the mitochondrial sirtuins due to their localization in the mitochondrial matrix. First, we will discuss canonical pathways that regulate metabolism more broadly and how these are integrated with aging regulation. Then, we will summarize the current knowledge about functional differences between SIRT3, SIRT4, and SIRT5 in metabolic control and integration in signaling networks. Finally, we will discuss how mitochondrial sirtuins regulate processes associated with aging and aging-related diseases.  相似文献   

18.
The silent information regulator 2 (Sir2) family of proteins (sirtuins or SIRTs), which belong to class III histone/protein deacetylases, have been implicated in calorie restriction, aging, and inflammation. We hypothesized that cigarette smoke-mediated proinflammatory cytokine release is regulated by SIRT1 by its interaction with NF-kappaB in a monocyte-macrophage cell line (MonoMac6) and in inflammatory cells of rat lungs. Cigarette smoke extract (CSE) exposure to MonoMac6 cells caused dose- and time-dependent decreases in SIRT1 activity and levels, which was concomitant to increased NF-kappaB-dependent proinflammatory mediator release. Similar decrements in SIRT1 were also observed in inflammatory cells in the lungs of rats exposed to cigarette smoke as well as with increased levels of several NF-kappaB-dependent proinflammatory mediators in bronchoalveolar lavage fluid and in lungs. Sirtinol, an inhibitor of SIRT1, augmented, whereas resveratrol, an activator of SIRT1, inhibited CSE-mediated proinflammatory cytokine release. CSE-mediated inhibition of SIRT1 was associated with increased NF-kappaB levels. Furthermore, we showed that SIRT1 interacts with the RelA/p65 subunit of NF-kappaB, which was disrupted by cigarette smoke, leading to increased acetylation RelA/p65 in MonoMac6 cells. Thus our data show that SIRT1 regulates cigarette smoke-mediated proinflammatory mediator release via NF-kappaB, implicating a role of SIRT1 in sustained inflammation and aging of the lungs.  相似文献   

19.
20.
In the current study, two cyclic tripeptides respectively harboring a thiourea-type and a carboxamide-type of catalytic mechanism-based sirtuin inhibitory warheads as the central residue were found to behave as potent (low μM level) inhibitors against the tRNA-activated human SIRT7 deacetylase activity. Despite exhibiting a potent pan-inhibition against the deacylase activities of the five tested human sirtuins (i.e. SIRT1/2/3/6/7), these two compounds represent the first examples of potent SIRT7 inhibitors ever identified thus far, and their identification could facilitate the future development of more potent and selective SIRT7 inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号