首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We investigated the effects of neck flexion on contingent negative variation (CNV) and anticipatory postural control using an arm flexion task in standing. CNV was adopted to evaluate the state of activation of brain areas related to anticipatory postural control. Subjects were required to flex the arms in response to a sound stimulus preceded by a warning sound stimulus. Two different intervals (2.0 and 3.5 s) between these two stimuli were used in neck position in quiet standing (neck resting) and neck position at 80% angle of maximal neck flexion. The mean amplitude of CNV 100-ms before the response stimulus, recorded from a Cz electrode, was calculated. Onset timing of activation of the postural muscles (lumbar paraspinal, biceps femoris and gastrocnemius) with respect to the anterior deltoid was analyzed. Reaction time at the anterior deltoid was significantly shorter in the 2.0 s period than in the 3.5 s period, and in the neck flexion than in the neck resting in both periods. In the 2.0 s, but not in the 3.5 s period, neck flexion resulted in an increased CNV amplitude and an increased duration of preceding activation of the postural muscles, and the correlation between these increases was significant.  相似文献   

2.
The pelvis functions to transmit upper body loads to the lower limbs and is critical in human locomotion. Semi-automated, landmark-based finite element (FE) morphing and mapping techniques eliminate the need for segmentation and have shown to accelerate the generation of multiple specimen-specific pelvic FE models to enable the study of pelvic mechanical behaviour. The purpose of this research was to produce an experimentally validated cohort of specimen-specific FE models of the human pelvis and to use this cohort to analyze pelvic strain patterns during gait. Using an initially segmented specimen-specific pelvic FE model as a source model, four more specimen-specific pelvic FE models were generated from target clinical CT scans using landmark-based morphing and mapping techniques. FE strains from the five models were compared to the experimental strains obtained from cadaveric testing via linear regression analysis, (R2 values ranging from 0.70 to 0.93). Inter-specimen variability in FE strain distributions was seen among the five specimen-specific pelvic FE models. The validated cohort of specimen-specific pelvic FE models was utilized to examine pelvic strains at different phases of the gait cycle. Each validated specimen-specific FE model was reconfigured into gait cycle phases representing heel-strike/heel-off and midstance/midswing. No significant difference was found in the double-leg stance and heel-strike/heel-off models (p = 0.40). A trend was observed between double-leg stance and midstance/midswing models (p = 0.07), and a significant difference was found between heel-strike/heel-off models and midstance/midswing models (p = 0.02). Significant differences were also found in comparing right vs. left models (heel-strike/heel-off p = 0.14, midstance/midswing p = 0.04).  相似文献   

3.
Osteoporosis and related bone fractures are an increasing global burden in our ageing society. Areal bone mineral density assessed through dual energy X-ray absorptiometry (DEXA), the clinically accepted and most used method, is not sufficient to assess fracture risk individually. Finite element (FE) modelling has shown improvements in prediction of fracture risk, better than aBMD from DEXA, but is not practical for widespread clinical use. The aim of this study was to develop an adaptive neural network (ANN)-based surrogate model to predict femoral neck strains and fracture loads obtained from a previously developed population-based FE model. The surrogate model performance was assessed in simulating two loading conditions: the stance phase of gait and a fall.The surrogate model successfully predicted strains estimated by FE (r2 = 0.90–0.98 for level gait load case, r2 = 0.92–0.96 for the fall load case). Moreover, an ANN model based on three measurements obtainable in clinics (femoral neck length (level gait) or maximum femoral neck diameter (fall), femoral neck bone mass, body weight) was able to give reasonable predictions (r2 = 0.84–0.94) for all of the strain metrics and the estimated femoral neck fracture load. Overall, the surrogate model has potential for clinical applications as they are based on simple measures of geometry and bone mass which can be derived from DEXA images, accurately predicting FE model outcomes, with advantages over FE models as they are quicker and easier to perform.  相似文献   

4.
Introduction, objectiveGait analysis has provided important information about the variability of gait for patients prior to and after total hip arthroplasty (THA). The objective of this research was to clarify how the method of exposure in total hip arthroplasty affects the variability of gait.Materials and methodGait analysis was performed at 0.8 m/s, 1.0 m/s, and 1.2 m/s on 25 patients with direct-lateral exposure (DL), 22 with antero-lateral exposure (AL) and 25 with posterior exposure (P) during total hip arthroplasty. The control group was represented by 45 healthy subjects of identical age. Gait analysis was performed pre-operatively and 3 and 6 months after the surgery. Gait parameter variability was characterized by the coefficient of variance (CV) of spatial–temporal parameters and by the mean coefficient of variance (MeanCV) of angular parameters.ResultsThe variability of gait tends to reach control values during the first 6 months of the postoperative period in all three patient groups. Six months after THA, in patients operated with DL and AL exposure the variability of gait differs significantly from control values; however, in patients operated with P exposure, the variability of spatial–temporal and angular parameters – except the rotation of pelvis – was similar to that of controls.Discussion, conclusionThe type of surgical technique significantly influences the variability of gait. Difference in the variability of angular parameters predicts gait instability and increased risk of falling after THA without the joint capsule preserved. Joint capsule preservation ensures a recovery of gait variability. It should be taken into account when compiling rehabilitation protocols. Differences related to the method of exposure should be considered when abandoning therapeutic aids.  相似文献   

5.
Computed tomography angiography (CTA) has become the most valuable imaging modality for the diagnosis of blood vessel diseases; however, patients are exposed to high radiation doses and the probability of cancer and other biological effects is increased. The objectives of this study were to measure the patient radiation dose during a CTA procedure and to estimate the radiation dose and biological effects.The study was conducted in two radiology departments equipped with 64-slice CT machines (Aquilion) calibrated according to international protocols. A total of 152 patients underwent brain, lower limb, chest, abdomen, and pelvis examinations. The effective radiation dose was estimated using ImPACT scan software. Cancer and biological risks were estimated using the International Commission on Radiological Protection (ICRP) conversion factors.The mean patient dose value per procedure (dose length product [DLP], mGy·cm) for all examinations was 437.8 ± 166, 568.8 ± 194, 516.0 ± 228, 581.8 ± 175, and 1082.9 ± 290 for the lower limbs, pelvis, abdomen, chest, and cerebral, respectively. The lens of the eye, uterus, and ovaries received high radiation doses compared to thyroid and testis. The overall patient risk per CTA procedure ranged between 15 and 36 cancer risks per 1 million procedures. Patient risk from CTA procedures is high during neck and abdomen procedures. Special concern should be provided to the lens of the eye and thyroid during brain CTA procedures. Patient dose reduction is an important consideration; thus, staff should optimize the radiation dose during CTA procedures.  相似文献   

6.
Metal-on-metal hip resurfacing patients demonstrate hip biomechanics closer to normal in comparison to total hip arthroplasty during gait. However, it is not clear how symmetric is the gait of hip resurfacing patients. Biomechanical data of 12 unilateral metal-on-metal hip resurfacing participants were collected during gait at a mean time of 45 months (SD 24) after surgery. Ankle, knee, hip, pelvis and trunk kinematics and kinetics of both sides were measured with a motion and force-capture system. Principal component analysis and mean hypothesis’ tests were used to compare the operated and healthy sides. The operated side had prolonged ankle eversion angle during late stance and delayed increased ankle inversion angle during early swing (p = 0.008; effect size = 0.70), increased ankle inversion moment during late stance (p = 0.001; effect size = 0.78), increased knee adduction angle during swing (p = 0.044; effect size = 0.57), decreased knee abduction moment during stance (p = 0.05; effect size = 0.40), decreased hip range of motion in the sagittal plane (p = 0.046; effect size = 0.56), decreased range of hip abduction moment during stance (p = 0.02; effect size = 0.63), increased hip range of motion in the transverse plane (p = 0.02; effect size = 0.62), decreased hip internal rotation moment during the transition from loading response to midstance (p = 0.001; effect size = 0.81) and increased trunk ipsilateral lean (p = 0.03; effect size = 0.60). Therefore, hip resurfacing patients have some degree of asymmetry in long term, which may be related to hip weakness and decreased range of motion, to foot misalignments and to strategies implemented to reduce loading on the operated hip. Interventions such as muscle strengthening and stretching, insoles and gait feedback training may help improving symmetry following hip resurfacing.  相似文献   

7.
《IRBM》2014,35(1):46-52
BackgroundQuantified gait analysis is a rising technology used increasingly to assess motor disorders. Normal reference data are required in order to evaluate patients, but there are no reference data available for the Tunisian healthy population.AimTo assess the features of normal Tunisian gait pattern, and examine the intrinsic reliability of spatio-temporal, kinematic and kinetic parameters within a new specific reference database.MethodsEighteen healthy active-young adults (age: 23.30 ± 2.54 years, height: 1.78 ± 0.04 m and, weight: 70.00 ± 4.80 kg) have participated to five trials of step gait where the dominant lower limb were recorded. Two over the five trials were randomly selected to be further analyzed. Twenty-three spatio-temporal, kinematic and kinetic parameters determined from 3-dimensional gait analysis. The intrinsic reliability was examined for each variable and our results were compared with those available in the literature.ResultsTwelve over 23 parameters have an excellent intrinsic reliability (P > 0.05, ICC > 0.9 and SEM < 5% of the grand mean). There are similarities with other studies (P < 0.05) but we noticed the existence of some specificity (the height of hip extension peak and the low cadence of gait) that could characterize the Tunisian population.ConclusionA specific reference database of the gait cycle has been established for healthy Tunisian active-young adults and excellent inter-trial reliability may be observed for different variables.  相似文献   

8.
Minimum toe clearance (MTC) is thought to quantify the risk of the toe contacting the ground during the swing phase of gait and initiating a trip, but there are methodological issues with this measure and the risk of trip-related falls has been shown to also be associated with gait speed and dynamic stability. This paper proposes and evaluates a new measure, trip risk integral (TRI), that circumvents many issues with MTC as typically calculated at a single point by considering minimum foot clearance across the entire swing phase and taking into account dynamic stability to estimate risk of falling due to a trip rather than risk of the foot contacting the floor. Shoes and floor surfaces were digitized and MTC and TRI calculated for unimpaired younger (N = 14, age = 26 ± 5), unimpaired older (N = 14, age = 73 ± 7), and older adults who had recently fallen (N = 11, age = 72 ± 5) walking on surfaces with no obstacles, visible obstacles, and hidden obstacles at slow, preferred, and fast gait speeds. MTC and TRI had significant (F  5, p  0.005) but differing effects of gait speed and floor surface. As gait speed increased (which increases risk of trip-related falls) MTC indicated less and TRI greater risk, indicating that TRI better quantifies risk of falling due to a trip. While MTC and TRI did not differ by subject group, strong speed-related effects of TRI (F  8, p  0.0007) resulted in improved TRI for fallers due to their slower self-selected preferred gait. This demonstrates that slower gait is both an important covariate and potential intervention for trip-related falls.  相似文献   

9.
PurposeLumbar multifidus is a complex muscle with multi-fascicular morphology shown to be differentially controlled in healthy individuals during sagittal-plane motion. The normal behaviour of multifidus muscle regions during walking has only received modest attention in the literature. This study aimed to determine activation patterns for deep and superficial multifidus in young adults during walking at different speeds and inclination.MethodsThis observational cohort study evaluated ten healthy volunteers in their twenties (three women, seven men) as they walked on a treadmill in eight conditions; at 2 km/h and 4 km/h, each at 0, 1, 5, and 10% inclination. Intramuscular EMG was recorded from the deep and superficial multifidus unilaterally at L5. Activity was characterized by: amplitude of the peak of activation, position of peak within the gait cycle (0–100%), and duration relative to the full gait cycle.ResultsAcross all conditions superficial multifidus showed higher normalised EMG amplitude (p < 0.01); superficial multifidus peak amplitude was 232 ± 115% higher when walking at 4 km/h/10%, versus only 172 ± 77% higher for deeper region (p < 0.01). The percentage of the gait cycle where peak EMG amplitude was detected did not differ between regions (49 ± 13%). Deep multifidus duration of activation was longer when walking at the faster vs slower speed at all inclinations (p < 0.01), which was not evident for superficial multifidus (p < 0.05). Thus, a significantly longer activation of deep multifidus was observed compared to superficial multifidus when walking at 4 km/h (p < 0.05).ConclusionsDifferential activation within lumbar multifidus was shown in young adults during walking. The prolonged, more tonic activation of deep relative to superficial regions of multifidus during gait supports a postural function of deeper fibres.  相似文献   

10.
ObjectivesThe function of the scapula is important in normal neck function and might be disturbed in patients with neck pain. The surrounding muscular system is important for the function of the scapula. To date, it is not clear if patients with idiopathic neck pain show altered activity of these scapulothoracic muscles. Therefore, the objective of this study was to investigate differences in deeper and superficial lying scapulothoracic muscle activity between patients with idiopathic neck pain and healthy controls during arm elevation, and to identify the influence of scapular dyskinesis on muscle activity.MethodsScapular dyskinesis was rated with the yes/no method. The deeper lying (Levator Scapulae, Pectoralis Minor (Pm) and Rhomboid major) and superficial lying (Trapezius and Serratus Anterior) scapulothoracic muscles’ activity was investigated with fine-wire and surface EMG, respectively, in 19 female subjects with idiopathic neck pain (age 28.3 ± 10.1 years, average duration of neck pain 45.6 ± 36.3 months) and 19 female healthy control subjects (age 29.3 ± 11.7 years) while performing scaption and towel wall slide. Possible interactions or differences between subject groups, scapular dyskinesis groups or phases of the task were studied with a linear mixed model.ResultsHigher Pm activity during the towel wallslide (p = 0.024, mean difference 8.8 ± 3.3% MVIC) was shown in patients with idiopathic neck pain in comparison with healthy controls. For the MT, a significant group 1 dyskinesis interaction effect was found during scaption which revealed that patients with neck pain and scapular dyskinesis showed lower Middle Trapezius (MT) activity in comparison with healthy controls with scapular dyskinesis (p = 0.029, mean difference 5.1 ± 2.2% MVIC).ConclusionsIn the presence of idiopathic neck pain, higher Pm activity during the towel wallslide was found. Patients with neck pain and scapular dyskinesis showed lower MT activity in comparison with healthy controls with scapular dyskinesis during scaption. Scapular dyskinesis did not have a significant influence on scapulothoracic muscle activity.  相似文献   

11.
It is believed that force feedback can modulate lower extremity extensor activity during gait. The purpose of this research was to determine the role of limb loading on knee extensor excitability during the late stance/early swing phase of gait in persons post-stroke. Ten subjects with chronic hemiparesis post-stroke participated in (1) seated isolated quadriceps reflex testing with ankle loads of 0–0.4N m/kg and (2) gait analysis on a treadmill with 0%, 20% or 40% body weight support. Muscle reflex responses were recorded from vastus lateralis (VL), rectus femoris (RF), and vastus medialis (VM) during seated testing. Knee kinematics and quadriceps activity during late stance/early swing phase of gait were compared across loading conditions. Although isolated loading of the ankle plantarflexors at 0.2 N m/kg reduced VM prolonged response (p = 0.04), loading did not alter any other measure of quadriceps excitability (all p > 0.08). During gait, the use of BWS did not influence knee kinematics (p = 0.18) or muscle activity (all p > 0.17) during late stance/early swing phase. This information suggests that load sensed at the ankle has minimal effect on the ipsilateral quadriceps of individuals post-stroke during late stance. It appears that adjusting limb loading during rehabilitation may not be an effective tool to address stiff-knee gait following stroke.  相似文献   

12.
《Theriogenology》2009,71(9):1516-1524
Gonadectomy not only affects hormonal homeostasis but also alters the turnover of different components of the extracellular matrix in urogenital tissues. Collagen is an important component of the bladder and urethral walls and thus crucial for the mechanical properties of normal lower urinary tract (LUT) functions. This study aimed at investigating the possibility of differences in the proportion of collagen and muscle tissues in the LUT of intact and gonadectomised male and female dogs. Twenty clinically healthy dogs were used including 10 sexually intact dogs (5 males, 5 anoestrus females) and 10 gonadectomised dogs (4 males and 6 females). Four regions of the LUT, i.e. body and neck of the bladder as well as proximal and distal urethra were collected. The tissue sections were stained with Masson's Trichrome. Quantitative evaluation of the blue-stained area for collagen and red-counterstained area for muscle was performed using colour image analysis. The relative proportion of collagen and muscle significantly differed with the gonadal status, the gender and the region. Overall, gonadectomised dogs had a higher (P < 0.001) proportion of collagen and consequently a lower (P < 0.001) proportion of muscle than intact dogs. Regardless of gonadal statuses, females had a higher (P < 0.05) proportion of collagen and a lower (P < 0.05) proportion of muscle tissues than males. Gender differences were found in all four regions of the LUT in intact dogs but only in proximal urethra in gonadectomised dogs where spayed females had a higher (P < 0.05) proportion of collagen and less muscle (P < 0.05). Regional differences were observed in females; a higher proportion of collagen and therefore less muscle were found in the urethra compared with the bladder. Proportional differences in collagen and muscle between intact and gonadectomised animals suggest a relation of different hormonal statuses to structural changes in the canine LUT. Excessive collagen deposits and less muscular volume may impair structural and functional integrity of the LUT which may associate with the development of post-neutering urinary incontinence in the dog.  相似文献   

13.
People with non-specific low back pain (LBP) show hampered performance of dynamic tasks such as sit-to-stance-to-sit movement. However, the underlying mechanisms remain obscure. Therefore, the aim of this study was to assess if proprioceptive impairments influence the performance of the sit-to-stance-to-sit movement.First, the proprioceptive steering of 20 healthy subjects and 106 persons with mild LBP was identified during standing using muscle vibration. Second, five sit-to-stance-to-sit repetitions on a stable support and on foam were performed as fast as possible. Total duration, phase duration, center of pressure (COP) displacement, pelvic and thoracic kinematics were analyzed.People with LBP used less lumbar proprioceptive afference for postural control compared to healthy people (P < 0.0001) and needed more time to perform the five repetitions in both postural conditions (P < 0.05). These time differences were determined in the stance and sit phases (transition phases), but not in the focal movement phases. Moreover, later onsets of anterior pelvic rotation initiation were recorded to start both movement sequences (P < 0.05) and to move from sit-to-stance on foam (P < 0.05).Decreased use of lumbar proprioceptive afference in people with LBP seemed to have a negative influence on the sit-to-stance-to-sit performance and more specifically on the transition phases which demand more control (i.e. sit and stance). Furthermore, slower onsets to initiate the pelvis rotation to move from sit-to-stance illustrate a decrease in pelvic preparatory movement in the LBP group.  相似文献   

14.
ObjectiveInvestigate the influence of apprehensive gait on activation and cocontraction of lower limb muscles of younger and older female adults.MethodsData of 17 younger (21.47 ± 2.06 yr) and 18 older women (65.33 ± 3.14 yr) were considered for this study. Participants walked on the treadmill at two different conditions: normal gait and apprehensive gait. The surface electromyographic signals (EMG) were recorded during both conditions on: rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), biceps femoris (BF), tibialis anterior (TA), gastrocnemius lateralis (GL), and soleus (SO).ResultsApprehensive gait promoted greater activation of thigh muscles than normal gait (F = 5.34 and p = 0.007, for significant main effect of condition; RF, p = 0.002; VM, p < 0.001; VL, p = 0.003; and BF, p = 0.001). Older adults had greater cocontraction of knee and ankle stabilizer muscles than younger women (F = 4.05 and p = 0.019, for significant main effect of groups; VM/BF, p = 0.010; TA/GL, p = 0.007; and TA/SO, p = 0.002).ConclusionApprehensive gait promoted greater activation of thigh muscles and older adults had greater cocontraction of knee and ankle stabilizer muscles. Thus, apprehensive gait may leads to increased percentage of neuromuscular capacity, which is associated with greater cocontraction and contribute to the onset of fatigue and increased risk of falling in older people.  相似文献   

15.
ObjectiveMale pattern androgenetic alopecia is characterized by progressive hair loss from the scalp. It is known that imbalances of some trace elements play a role in the pathomechanism of many forms of alopecia. The aim of this study was to evaluate the levels of zinc and copper in hair, serum and urine samples of Turkish males with male pattern androgenetic alopecia and to compare with healthy controls.Material and methods116 males with male pattern androgenetic alopecia and 100 controls were involved in this study.ResultsLevels of zinc and copper in hair were decreased significantly in the patients (p < 0.05), although zinc and copper levels of serum and urine were not different between patients and controls (p > 0.05). Body mass index of patients were higher than control group. In addition, in the group with body mass index of 25 and lower zinc level in hair and urine, copper level in serum were significantly higher (p < 0.05). Body mass index was negatively correlated with hair zinc levels.ConclusionWe thought that decreased zinc and copper levels in hair may play a role in the etiology of male pattern androgenetic alopecia. In addition, obesity by making changes in the balance of the trace elements in hair, serum and urine may play a role in male pattern androgenetic alopecia. Hence, assessing the levels of trace elements in hair of male pattern androgenetic alopecia patients may be more valuable compared to serum and urine for treatment planning.  相似文献   

16.
17.
A growing body of evidence suggests, that excessive body weight is inseparably connected with postural instability. In none of previous studies, body weight distribution has been considered as a factor, which may affect results of a static posturography. The purpose of the present study is to quantify some center of foot pressure (COP) characteristics in 40 obese women with android type of obesity (waist-to-hip ratio - WHR  0.85, BMI: 37.5 ± 5.4) and 40 obese women with gynoid type of obesity (WHR < 0.85, BMI: 36.9 ± 5.1). Variables of postural sway were acquired while subjects were standing quietly on a force plate with eyes open and closed. Both in the sagittal and frontal plane sway range, average velocity, and maximal velocity of COP were calculated. Moreover, the total average velocity and total maximal velocity of the COP displacement were computed.Women with abdominal obesity showed a larger sway range in the anterior-posterior plane with eyes open (p < 0.0282) and eyes closed conditions (p < 0.0115) and a greater maximal COP velocity to compare with subjects with gynoidal obese type (p < 0.0112) with eyes closed condition.The postural stability in obese women from the biomechanical point of view is strongly dependent on body distribution. Women with the abdominal obesity type may be exposed to a greater risk of postural instability as compare to women with gynoid fat distribution.  相似文献   

18.
The objective of this study was to investigate the reciprocal influences of stance pattern (bilateral stance vs. unilateral stance) and thumb-index precision grip task (static target vs. dynamic target) on postural–suprapostural tasks by manipulating task-load. Fifteen healthy volunteers participated in four postural–suprapostural tasks, including static force-matching in bilateral/unilateral stance (BS_static; US_static), dynamic force-matching in bilateral/unilateral stance (BS_dynamic; US_dynamic), and two control tasks in bilateral and unilateral stances without a finger task. The normalized force error (NFE), reaction time (RT) of the finger tasks, and normalized change in center of pressure sway (ΔNCoP) were measured. For suprapostural task performance, a significant interaction effect between postural and suprapostural tasks on NFE of the finger tasks was noted (static: BS < US; dynamic: BS > US), but RT was not different among the four tasks. For postural task performance, negative ΔNCoP during unilateral stance indicated a spontaneous reduction in postural sway due to added force-matching. In contrast, addition of force-matching tended to increase postural sway during bilateral stance, but postural fluctuations decreased as task-load of suprapostural task increased (BS_dynamic < BS_static). In conclusion, performance of postural–suprapostural tasks was differently modulated by task-load increment. Our observations favored adaptive resource-sharing and implicit expansion of resource capacity for a postural task with a motor suprapostural goal.  相似文献   

19.
Children with cerebral palsy (CP) expend more energy to walk compared to typically-developing peers. One of the most prevalent gait patterns among children with CP, crouch gait, is often singled out as especially exhausting. The dynamics of crouch gait increase external flexion moments and the demand on extensor muscles. This elevated demand is thought to dramatically increase energy expenditure. However, the impact of crouch severity on energy expenditure has not been investigated among children with CP. We evaluated oxygen consumption and gait kinematics for 573 children with bilateral CP. The average net nondimensional oxygen consumption during gait of the children with CP (0.18 ± 0.06) was 2.9 times that of speed-matched typically-developing peers. Crouch severity was only modestly related to oxygen consumption, with measures of knee flexion angle during gait explaining only 5–20% of the variability in oxygen consumption. While knee moment and muscle activity were moderately to strongly correlated with crouch severity (r2 = 0.13–0.73), these variables were only weakly correlated with oxygen consumption (r2 = 0.02–0.04). Thus, although the dynamics of crouch gait increased muscle demand, these effects did not directly result in elevated energy expenditure. In clinical gait analysis, assumptions about an individual’s energy expenditure should not be based upon kinematics or kinetics alone. Identifying patient-specific factors that contribute to increased energy expenditure may provide new pathways to improve gait for children with CP.  相似文献   

20.
The purpose of this study was to determine whether general fatigue induced by incremental maximal exercise test (IMET) affects gait stability and variability in healthy subjects. Twenty-two young healthy male subjects walked in a treadmill at preferred walking speed for 4 min prior (PreT) the test, which was followed by three series of 4 min of walking with 4 min of rest among them. Gait variability was assessed using walk ratio (WR), calculated as step length normalized by step frequency, root mean square (RMSratio) of trunk acceleration, standard deviation of medial-lateral trunk acceleration between strides (VARML), coefficient of variation of step frequency (SFCV), length (SLCV) and width (SWCV). Gait stability was assessed using margin of stability (MoS) and local dynamic stability (λs). VARML, SFCV, SLCV and SWCV increased after the test indicating an increase in gait variability. MoS decreased and λs increased after the test, indicating a decrease in gait stability. All variables showed a trend to return to PreT values, but the 20-min post-test interval appears not to be enough for a complete recovery. The results showed that general fatigue induced by IMET alters negatively the gait, and an interval of at least 20 min should be considered for injury prevention in tasks with similar demands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号