首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Postural control on single and double seesaws was investigated in young healthy adults required to stand as still as possible on two side-by-side seesaws favoring pitch motion and lying on two separate force platforms. The device offers the possibility to get associated or dissociated seesaws and, if dissociated, to induce asymmetric patterns for the centers-of-pressure (CP) under both left and right feet by using different radii for the two seesaws. Substituting a parallelepiped volume to one seesaw offering a firm contact to one foot is also possible. The results indicated that dissociating the two seesaws led to increased resultant CP (CPRes) and vertically projected center-of-gravity movements (CGv) only along the mediolateral axis, whereas a slight decreasing tendency characterized these movements along the antero-posterior axis. When standing on two independent seesaws with different radii, significantly larger CP displacements were seen along the antero-posterior axis under the foot lying on the more stable support, i.e., the seesaw with the longer radius or the parallelepiped volume. In these two asymmetrical conditions, the CPRes output results from a compensatory mechanism, i.e. larger movements under one foot to compensate for the decreased movements occurring under the opposite foot. This postural control strategy is aimed at allowing sufficient CPRes displacements in order to appropriately secure balance. Because of the complex sensorimotor coordination induced, involving differentially in certain cases both legs, the double seesaw device can be viewed as a possible tool for challenging postural control by inducing asymmetrical patterns between left and right feet CP movements.  相似文献   

2.
Postural control requires the coordination of multiple muscles to achieve both endpoint force production and postural stability. Multiple muscle activation patterns can produce the required force for standing, but the mechanical stability associated with any given pattern may vary, and has implications for the degree of delayed neural feedback necessary for postural stability. We hypothesized that muscular redundancy is reduced when muscle activation patterns are chosen with respect to intrinsic musculoskeletal stability as well as endpoint force production. We used a three-dimensional musculoskeletal model of the cat hindlimb with 31 muscles to determine the possible contributions of intrinsic muscle properties to limb stability during isometric force generation. Using dynamic stability analysis we demonstrate that within the large set of activation patterns that satisfy the force requirement for posture, only a reduced subset produce a mechanically stable limb configuration. Greater stability in the frontal-plane suggests that neural control mechanisms are more highly active for sagittal-plane and for ankle joint control. Even when the limb was unstable, the time-constants of instability were sufficiently great to allow long-latency neural feedback mechanisms to intervene, which may be preferential for movements requiring maneuverability versus stability. Local joint stiffness of muscles was determined by the stabilizing or destabilizing effects of moment-arm versus joint angle relationships. By preferentially activating muscles with high local stiffness, muscle activation patterns with feedforward stabilizing properties could be selected. Such a strategy may increase intrinsic postural stability without co-contraction, and may be useful criteria in the force-sharing problem.  相似文献   

3.
Both center-of-pressure (CP) displacements under each foot and relative body-weight distribution intervene in the production of resultant CP movements. To better understand their respective involvement, a protocol was set up for young healthy individuals consisting in standing on a double seesaw, favoring pitch motions and laying on a dual-force platform. The postural control effects induced by two types of asymmetry, weight-bearing and the CP movement patterns, were investigated. These asymmetries were achieved by associating two seesaws with two different lengths for the radii of the ridges and by requiring specific body-weight distributions. The results indicate that the postural strategies, aimed at controlling anteroposterior sway, are related to the subjects’ capacity to minimize the CP displacements under the less stable support, whatever load is applied. In contrast, the degree of involvement of the more stable support must be viewed as a complement used to secure the appropriate motor output, i.e., the resultant CP movements. Within this objective, both the applied load and the CP amplitudes under the more stable support are taken into account. These data provide additional insights into the compensatory mechanisms between the interactions between the two feet, which are used to produce the adequate resultant CP movements and therefore upright stance control. The specificity of the double seesaw that can induce asymmetric CP patterns and/or asymmetric body-weight distribution makes it a legitimate contender to be used as a rehabilitation device for patients with neurological and/or traumatic diseases.  相似文献   

4.
Postural control research describes ankle-, hip-, or multi-joint strategies as mechanisms to control upright posture. The objectives of this study were, first, development of an analysis technique facilitating a direct comparison of the structure of such multi-segment postural movement patterns between subjects; second, comparison of the complexity of postural movements between three stances of different difficulty levels; and third, investigation of between-subject differences in the structure of postural movements and of factors that may contribute to these differences.  相似文献   

5.
The present study investigates the mechanisms underlying changes in postural strategy that occur to compensate for mechanical ankle joint restrictions induced by wearing ski-boots during postural exercises. Fourteen experienced skiers were asked to stand as still as possible in a stable (STA) posture and in 2 postures with instability in the medio/lateral and antero/posterior (ML and AP postures) direction. Postural tasks were performed with eyes open or closed and while wearing or not wearing ski-boots. The electromyographic (EMG) activity of representative lower limb muscles and positions of centre-of-foot pressure (COP) were recorded and analyzed. Our results illustrated enhanced postural performances with ski-boots in the STA posture, whereas postural performances remained unchanged when wearing ski-boots in the ML and AP postures. Analysis of COP sways in the frequency domain did not illustrate any modification in the contribution of different neuronal loops when the study subjects wore ski-boots. EMG showed that the mechanical effects of wearing ski-boots were compensated by changes in postural strategy through the reorganization of muscle coordination, made possible by inherent redundancies in the human body. The preservation of postural performances, despite restrictions of ankle degrees-of-freedom induced by ski-boots, emphasizes the subjects’ capacity to exploit the additional support provided by ski-boots by adequately adjusting muscle coordination to control posture in different balance conditions.  相似文献   

6.
The experiment was setup to investigate the coordination and control of the degrees of freedom (DFs) of human standing posture with particular reference to the identification of the collective and component variables. Subjects stood in 3 postural tasks: feet side by side, single left foot quiet stance and single left foot stance with body rocking at the ankle joint in the sagittal plane. All three postural tasks showed very high coherence (∼1) of center of pressure (COP) - center of mass (COM) in the low frequency range. The ankle and hip coherence was mid range (∼.5) with the tasks having different ankle/hip compensatory cophase patterns. The findings support the view that the in-phase relation of the low frequency components of the COP-COM dynamic is the collective variable in the postural tasks investigated. The motions of the individual joints (ankle, knee, hip, neck) and couplings of pair wise joint synergies (e.g., ankle-hip) provide a supporting cooperative role to the preservation of the collective variable in maintaining the COM within the stability region of the base of support (BOS) and minimizing the amount of body motion consistent with the task constraint.  相似文献   

7.
The postural oscillations of a standing subject during an additional manual motor task consisting in holding a movable ball in the center of a flat box were studied. The movements of the center of pressure (CP) in the frontal and sagittal planes were studied when subjects were standing on a stable rigid support and on a movable unstable support. The effect of the additional motor task on the movement of the CP depended on the stability of the support. When the additional task was performed, the sagittal movements of the CP increased in the case a movable support and did not increase when the support was stable. The additional task decreased the frontal movements of CP in the case of a stable support, and it did not change the frontal movements of CP when the support was unstable. Thus, the performance of an additional motor task led to a reduction of the efficiency of the postural control system in maintaining equilibrium on an unstable support. This decrease may be due to a greater cortical influence on the posture control system in subjects standing on a movable support in comparison with this influence in the case of a stable support.  相似文献   

8.
The transition among hominids from quadrupedalism to bipedalism resulted in modifications in their musculoskeletal morphology. It is unclear, however, whether changes in the circuitry of the CNS were also necessary in order to accommodate the unique balance requirements of two-limb support. This study addresses the issue of modifications in control strategies by investigating the rapid, automatic postural responses of feline and human subjects to sudden disturbances of balance in the anteroposterior (AP) direction while they stand quadrupedally and bipedally on movable platforms. Postural responses are characterized in terms of segmental adjustments, generated AP shear forces, and electromyographic activity. Feline and human subjects correct posture similarly when standing quadrupedally. Furthermore, both species correct stance primarily with their hindlimbs and use their forelimbs as supportive struts. In contrast, both species use completely different correctional strategies when standing bipedally. Morphological restrictions, however, prevent cats from adopting the pillar-like plantigrade posture of human beings. Thus, the correctional strategies of bipedal cats are distinct from those of bipedal human subjects. It is concluded that 1) automatic postural response patterns of quadrupedal Felis and bipedal Homo reflect the different biomechanical characteristics of the initial postures rather than species differences in CNS circuitry controlling stance; 2) hindlimb-dominated posture control is probably a common and relatively ancient pattern; and 3) reorganization of hominid CNS circuitry was probably unnecessary because hindlimb control was already a feature of the system.  相似文献   

9.
Lower leg amputation generally induces asymmetrical weight-bearing, even after rehabilitation treatment is completed. This is detrimental to the amputees’ long term quality of life. In particular, increasing strains on joint surfaces that receive additional weight load causes back and leg pain, premature wear and tear and arthritis. This pilot study was designed to determine whether subjects with lower leg amputation experience postural post-effects after muscle contraction, a phenomenon already observed in healthy subjects, and whether this could improve the weight-bearing on their prosthesis.Fifteen subjects with a unilateral lower leg amputation and 17 control subjects volunteered to participate in this study. Centre of pressure (CP) position was recorded during standing posture, under eyes closed and open conditions. Recordings were carried out before the subjects performed a 30-s voluntary isometric lateral neck muscle contraction, and again 1 and 4 min after the contraction.Postural post-effects characterized by CP shift, occurred in the medio-lateral plane in the majority of the amputated (7/15 eyes closed, 9/15 eyes open) and control (9/17 eyes closed, 11/17 eyes open) subjects after the contraction. Half of these subjects had a CP shift towards the side of the contraction and the other half towards the opposite side. In four amputated subjects tested 3 months apart, shift direction remained constant. These postural changes occurred without increase in CP velocity.Thus, a 30-s voluntary isometric contraction can change the standing posture of persons with lower leg amputation. The post-effects might result from the adaptation of the postural frame of reference to the proprioceptive messages associated with the isometric contraction.  相似文献   

10.
Joint coordination plays a critical role in maintaining postural stability, yet there is limited existing work describing joint coordination patterns in the time–frequency domain. Here, two-joint coordination was examined during quiet upright stance. A wavelet coherence method was applied to quantify the coherence between ankle–trunk and ankle–head angles in the sagittal and frontal planes. Wavelet coherence results indicated intermittent joint coordination particularly for frequencies of 2.5–4.0 Hz. Coherence results were further processed to estimate mean time intervals between coherence instances, coherence burst frequency, and the ratio of in-phase versus anti-phase behaviors. Time intervals between intermittent coherence were 1.3–1.5 sec, coherence burst frequency was ~0.4 Hz, and phase ratios were ~1.0. Intermittent “bursting” of postural muscles may account for the finding of intermittent coherence in the noted frequency band. Some age and/or gender differences in coherence were found, and may be related to comparable differences in postural control ability or strategies. Results from application of this new method support earlier evidence that kinematic coordination is achieved intermittently rather than continuously during quiet upright stance. This method may provide richer information regarding such coordination, and could be a useful approach in future studies.  相似文献   

11.
Soleus H-reflex reveals down modulation with increased postural difficulty. Role of this posture-related reflex modulation is thought to shift movement control toward higher motor centers in order to facilitate more precise postural control. Present study hypothesized that the ability to modulate H-reflex is related to one’s ability to dynamically balance while in an unstable posture. This study examined the relationship between dynamic balancing ability and soleus H-reflex posture-related modulation. Thirty healthy adults participated. The soleus maximal H-reflex (Hmax), motor response (Mmax), and background EMG activity (bEMG) were obtained during three postural conditions: prone, open-legged standing, and closed-legged standing. Hmax/Mmax ratios were normalized via the corresponding bEMG in order to remove the effects of background muscle activity from the obtained H-reflex. Reflex modulation was calculated as the ratio of the normalized Hmax/Mmax ratios in one postural condition to another posture in a more difficult condition. Dynamic balancing ability was assessed by testing stability while standing on a wobble board. A significant negative correlation was observed between balancing scores and reflex modulation from open-legged standing to closed-legged standing. This suggests that the ability to modulate monosynaptic stretch reflex excitability in response to a changing posture is a significant factor for dynamic balancing.  相似文献   

12.
Impaired sensory, motor and central processing systems combining with biomechanical changes are risk of fall factors in the elderly population. The aim of this study was to assess the auto-adaptation and the regulation of the dynamic control of equilibrium in age-related adaptive strategies, by using a seated position on a seesaw. 15 young adults and 12 healthy middle-aged adults were asked to actively maintain a sitting posture as stable as possible during 12.8 s, on a 1-degree of freedom seesaw (auto-stabilization paradigm), with and without vision. The seesaw was placed in order to allow roll or pitch oscillations. We determine length and surfaces CoP shifts, mean positions and variability, a Postural Performance Index (PI) and a Strategy Organization Ratio (SOR). Our results shows that adopted strategies are plane-dependant during auto-stabilization (parallel and perpendicular axes control is impacted) and age-dependant. PIx during roll seated auto-stabilization tasks appears as the most relevant parameter of aged-related instability. The visual effect, during pitch auto-stabilization, characterizes the postural sensory-motor human behavior. The quantitative and qualitative postural assessment, thanks to seated auto-stabilization task, need to be promoted for long-term health care and probably for the rehabilitation of various disorders.  相似文献   

13.
Equilibrium maintenance was estimated in a subject standing with the eyes closed while holding a small weight. The experiments were performed on a movable platform in the form of a seesaw. Loads of 200, 500, and 1000 g were held by the subjects between the forefinger and the thumb, with the arm bent at the elbow. The rate of change in the length of the sagittal stabilogram and the root mean square deviation of the center of pressure from the equilibrium position were less when a subject was holding a load while standing on a movable support. The rate of change in the stabilogram length was the lowest (44.5 ± 6.8 mm/s) if the subject stood holding a 1000-g load and was 52.6 ± 9.2 mm/s without a load (p < 0.05, paired T-test). At the same time, when these loads were fixed on a mechanical holder attached to the trunk and simulating an arm bent at the elbow, there was no significant change in stabilogram parameters. Apparently, postural sway reduction is associated with the fact that the system of equilibrium maintenance can control the upright posture using an uncommon afferent input, namely, modulation of afferent signals induced by inertial interaction of an object and the fingers.  相似文献   

14.
The aim of the study was to investigate the effect of different support surfaces on feedforward and feedback components of postural control. Nine healthy subjects were exposed to external perturbations applied to their shoulders while standing on a rigid platform, foam, and wobble board with eyes open or closed.Electrical activity of nine trunk and leg muscles and displacements of the center of pressure were recorded and analyzed during the time frames typical of feedforward and feedback postural adjustments. Feedforward control of posture was characterized by earlier activation of anterior muscles when the subjects stood on foam compared to a wobble board or a firm surface. In addition, the magnitude of feedforward muscle activity was the largest when the foam was used. During the feedback control, anterior muscles were activated prior to posterior muscles irrespective of the nature of surface. Moreover, the largest muscle activity was seen when the supporting surface was foam. Maximum CoP displacement occurred when subjects were standing on a rigid surface.Altering support surface affects both feedforward and feedback components of postural control. This information should be taken into consideration in planning rehabilitation interventions geared towards improvement of balance.  相似文献   

15.
The development of upright postural control has often been investigated using time series of center of foot pressure (COP), which is proportional to the ankle joint torque (i.e., the motor output of a single joint). However, the center of body mass acceleration (COMacc), which can reflect joint motions throughout the body as well as multi-joint coordination, is useful for the assessment of the postural control strategy at the whole-body level. The purpose of the present study was to investigate children’s postural control during quiet standing by using the COMacc. Ten healthy children and 15 healthy young adults were instructed to stand upright quietly on a force platform with their eyes open or closed. The COMacc as well as the COP in the anterior–posterior direction was obtained from ground reaction force measurement. We found that both the COMacc and COP could clearly distinguish the difference between age groups and visual conditions. We also found that the sway frequency of COMacc in children was higher than that in adults, for which differences in biomechanical and/or neural factors between age groups may be responsible. Our results imply that the COMacc can be an alternative force platform measure for assessing developmental changes in upright postural control.  相似文献   

16.
Matheron E  Kapoula Z 《PloS one》2011,6(3):e18110
The purpose of this study was to test postural control during quiet standing in nonspecific chronic low back pain (LBP) subjects with vertical heterophoria (VH) before and after cancellation of VH; also to compare with healthy subjects with, and without VH. Fourteen subjects with LBP took part in this study. The postural performance was measured through the center of pressure displacements with a force platform while the subjects fixated on a target placed at either 40 or 200 cm, before and after VH cancellation with an appropriate prism. Their postural performance was compared to that of 14 healthy subjects with VH and 12 without VH (i.e. vertical orthophoria) studied previously in similar conditions. For LBP subjects, cancellation of VH with a prism improved postural performance. With respect to control subjects (with or without VH), the variance of speed of the center of pressure was higher, suggesting more energy was needed to stabilize their posture in quiet upright stance. Similarly to controls, LBP subjects showed higher postural sway when they were looking at a target at a far distance than at a close distance. The most important finding is that LBP subjects with VH can improve their performance after prism-cancellation of their VH. We suggest that VH reflects mild conflict between sensory and motor inputs involved in postural control i.e. a non optimal integration of the various signals. This could affect the performance of postural control and perhaps lead to pain. Nonspecific chronic back pain may results from such prolonged conflict.  相似文献   

17.
E Park  G Schöner  JP Scholz 《PloS one》2012,7(8):e41583

Background

Studies of human upright posture typically have stressed the need to control ankle and hip joints to achieve postural stability. Recent studies, however, suggest that postural stability involves multi degree-of-freedom (DOF) coordination, especially when performing supra-postural tasks. This study investigated kinematic synergies related to control of the body’s position in space (two, four and six DOF models) and changes in the head’s orientation (six DOF model).

Methodology/Principal Findings

Subjects either tracked a vertically moving target with a head-mounted laser pointer or fixated a stationary point during 4-min trials. Uncontrolled manifold (UCM) analysis was performed across tracking cycles at each point in time to determine the structure of joint configuration variance related to postural stability or tracking consistency. The effect of simulated removal of covariance among joints on that structure was investigated to further determine the role of multijoint coordination. Results indicated that cervical joint motion was poorly coordinated with other joints to stabilize the position of the body center of mass (CM). However, cervical joints were coordinated in a flexible manner with more caudal joints to achieve consistent changes in head orientation.

Conclusions/Significance

An understanding of multijoint coordination requires reference to the stability/control of important performance variables. The nature of that coordination differs depending on the reference variable. Stability of upright posture primarily involved multijoint coordination of lower extremity and lower trunk joints. Consistent changes in the orientation of the head, however, required flexible coordination of those joints with motion of the cervical spine. A two-segment model of postural control was unable to account for the observed stability of the CM position during the tracking task, further supporting the need to consider multijoint coordination to understand postural stability.  相似文献   

18.
Aging is a critical factor to influence the functional performance during daily life. Without an appropriate posture control response when experiencing an unexpected external perturbation, fall may occur. A novel six-degree-of freedom platform with motion control protocol was designed to provide a real-life simulation of unexpected disturbance in order to discriminate the age-related changes of the balance control and the recovery ability. Twenty older adults and 20 healthy young adults participated in the study. The subjects stood barefoot on the novel movable platform, data of the center of mass (COM) excursion, joint rotation angle and electromyography (EMG) were recorded and compared. The results showed that the older adults had similar patterns of joint movement and COM excursion as the young adults during the balance reactive-recovery. However, larger proximal joint rotation in elderly group induced larger COM sway envelop and therefore loss of the compensatory strategy of posture recovery. The old adults also presented a lower muscle power. In order to keep an adequate joint stability preventing from falling, the EMG activity was increased, but the asymmetric pattern might be the key reason of unstable postural response. This novel design of moveable platform and test protocol comprised the computerized dynamic posturography (CDP) demonstrate its value to assess the possible sensory, motor, and central adaptive impairments to balance control and could be the training tool for posture inability person.  相似文献   

19.
The current study investigated the rhythmic coordination between vocalization and whole-body movement. Previous studies have reported that spatiotemporal stability in rhythmic movement increases when coordinated with a rhythmic auditory stimulus or other effector in a stable coordination pattern. Therefore, the present study conducted two experiments to investigate (1) whether there is a stable coordination pattern between vocalization and whole-body movement and (2) whether a stable coordination pattern reduces variability in whole-body movement and vocalization. In Experiment 1, two coordination patterns between vocalizations and whole-body movement (hip, knee, and ankle joint flexion-on-the-voice vs. joint extension-on-the-voice) in a standing posture were explored at movement frequencies of 80, 130, and 180 beats per minute. At higher movement frequencies, the phase angle in the extension-on-the-voice condition deviated from the intended phase angle. However, the angle of the flexion-on-the-voice was maintained even when movement frequency increased. These results suggest that there was a stable coordination pattern in the flexion-on-the-voice condition. In Experiment 2, variability in whole-body movement and voice-onset intervals was compared between two conditions: one related to tasks performed in the flexion-on-the-voice coordination (coordination condition) that was a stable coordination pattern, and the other related to tasks performed independently (control condition). The results showed that variability in whole-body movement and voice-onset intervals was smaller in the coordination condition than in the control condition. Overall, the present study revealed mutual stabilization between rhythmic vocalization and whole-body movement via coordination within a stable pattern, suggesting that coupled action systems can act as a single functional unit or coordinative structure.  相似文献   

20.
ABSTRACT: To decrease the influence of postural sway during spinal measurements, an instrumented fixation posture (called G) was proposed and tested in comparison with the free standing posture (A) using the DTP-3 system in a group of 70 healthy volunteers. The measurement was performed 5 times on each subject and each position was tested by a newly developed device for non-invasive spinal measurements called DTP-3 system. Changes in postural stability of the spinous processes for each subject/the whole group were evaluated by employing standard statistical tools. Posture G, when compared to posture A, reduced postural sway significantly in all spinous processes from C3 to L5 in both the mediolateral and anterioposterior directions. Posture G also significantly reduced postural sway in the vertical direction in 18 out of 22 spinous processes. Importantly, posture G did not significantly influence the spinal curvature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号