首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Process Biochemistry》2014,49(12):2078-2085
As an important feedstock in petrochemistry, isoprene is used in a wide range of industrial applications. It is produced almost entirely from petrochemical sources; however, these sources are being progressively depleted. A reliable biological process for isoprene production utilizing renewable feedstocks would be an industry-redefining development. There are two biosynthetic pathways producing isoprene: the mevalonate (MVA) pathway and the methyl erythritol 1-phosphate (MEP) pathway. In this study, the MEP pathway was modified in Escherichia coli BL21 (DE3) to produce isoprene. The isoprene synthase (IspS) gene chemically synthesized from Populus alba after codon optimization for expression in E. coli was heterologously expressed. The endogenous genes of 1-deoxy-d-xylulose-5-phosphate synthase (DXS) and 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) were over-expressed. The isopentenyl pyrophosphate isomerase (Idi) gene from Streptococcus pneumoniae was exogenously over-expressed, and farnesyl diphosphate synthase (ispA) was weakened to enhance the yield. The control strain harboring empty plasmids did not emit any isoprene. The over-expression of the DXR gene only had little impact on the yield of isoprene. Idi from S. pneumoniae played a significant role in the improvement of isoprene production. The highest yield was achieved by an ispA-weakened DXS-IDI-IspS recombinant with 19.9 mg/l isoprene, which resulted in a 33-fold enhancement of the isoprene yield from the IspS recombinant.  相似文献   

2.
Isoprenoids are important fine chemicals as material monomers, advanced fuels and pharmaceuticals. A variety of natural isoprenoids can be synthesized by engineered microbial strains. This work established a process by dividing the current isoprenoid pathway into the upstream fermentation process, from sugar to mevalonate (MVA), and the downstream process, from MVA to the target isoprenoids. The results showed that significant differences existed in the process conditions between the upstream and downstream fermentations. After individually optimizing the process conditions, the upstream MVA production (84.0 g/L, 34.0% and 1.8 g/ L/h) and downstream isoprene production (11.0 g/L and 0.23 g/L/h) were greatly improved in this two-step process. Flask fermentation experiments also confirmed that two-step route can significantly improve the sabinene titer to 150 mg/L (6.5-fold of the sabinene titer in an earlier flask study of our lab). Therefore, the two-step route proposed in this study may have potential benefits towards the current isoprenoids production directly from glucose. The high titer and yield of MVA indicate that MVA has great potential to be more broadly utilized as starting precursor in synthetic biology.  相似文献   

3.
The developed tandem biotransformation process for the directional biosynthesis of a designed compound 4-(2,3,5,6-tetramethylpyrazine-1)-4′-demethylepipodophyllotoxin (4-TMP-DMEP) by Alternaria alternata S-f6 was systematically optimized. 28 °C of culture temperature and 120 rpm of rotary shaker speed were suitable for the accumulation of 4-TMP-DMEP. The production (i.e., 11.1 ± 1.4 mg/L) of 4-TMP-DMEP was remarkably improved by using an initial yeast extract concentration of 2.5 g/L. 2.0 g/L of Span 80 was beneficial for the 4-TMP-DMEP production (i.e., 25.0 ± 1.5 mg/L). Furthermore, the 4-TMP-DMEP production was remarkably improved by one pulse feeding of 50 mg/L of DMEP on day 6 and two pulse feedings of 40 mg/L of TMP on days 8 and 14 when its residual level was below 50 mg/L and 10 mg/L, respectively. The 4-TMP-DMEP production of 45.1 ± 1.6 mg/L was obtained in the fed-batch biotransformation process, which was enhanced by 726% and 256%, comparing to that (i.e., 5.4 ± 0.4 mg/L and 0.9 mg/L/day) obtained in the batch biotransformation before optimization.  相似文献   

4.
5.
Terrein has potential application in the fields of medicine, cosmetology and agriculture, however, the chemical synthesis of terrein with single configuration is a difficult task, and the biosynthesis of terrein always results in low production (ca. 0.33–400 mg/L). In this study, we reported an Aspergillus terreus strain PF26 which could produce (+)-terrein on a high level. After the selection of a suitable basic medium, the component concentrations were optimized using Plackett–Burman design and response surface methodology. Consequently, an optimal medium containing 28.41 g glucose, 23.18 g maltose, 20.00 g mannitol, 8.52 g malt extract, 10.00 g monosodium glutamate 10.00 g NH4Cl in 1 L ASW was obtained, and a high (+)-terrein production of 3.71 g/L fermentation broth was achieved, which represents the highest fermentation production of (+)-terrein to date. The result highlighted the industry's potential of A. terreus strain PF26 in the production of bioactive (+)-terrein on a large-scale.  相似文献   

6.
7.
Fatty alcohols are important components of a vast array of surfactants, lubricants, detergents, pharmaceuticals and cosmetics. We have engineered Saccharomyces cerevisiae to produce 1-hexadecanol by expressing a fatty acyl-CoA reductase (FAR) from barn owl (Tyto alba). In order to improve fatty alcohol production, we have manipulated both the structural genes and the regulatory genes in yeast lipid metabolism. The acetyl-CoA carboxylase gene (ACC1) was over-expressed, which improved 1-hexadecanol production by 56% (from 45 mg/L to 71 mg/L). Knocking out the negative regulator of the INO1 gene in phospholipid metabolism, RPD3, further enhanced 1-hexadecanol production by 98% (from 71 mg/L to 140 mg/L). The cytosolic acetyl-CoA supply was next engineered by expressing a heterologous ATP-dependent citrate lyase, which increased the production of 1-hexadecanol by an additional 136% (from 140 mg/L to 330 mg/L). Through fed-batch fermentation using resting cells, over 1.1 g/L 1-hexadecanol can be produced in glucose minimal medium, which represents the highest titer reported in yeast to date.  相似文献   

8.
Mycophenolic acid (MPA) was produced from Penicillium brevicompactum by solid-state fermentation (SSF) using pearl barley, and submerged fermentation (SmF) using mannitol. It was found that SSF was superior to SmF in terms of MPA concentration (1219 mg/L vs. 60 mg/L after 144 h fermentation), and the product yields were 6.1 mg/g pearl barley for SSF and 1.2 mg/g mannitol for SmF. The volumetric productivities were 8.5 and 0.42 mg/L h for SSF and SmF, respectively.The optimum solid substrate of SSF for MPA production was pearl barley, producing 5470 mg/kg compared with wheat bran (1601 mg/kg), oat (3717 mg/kg) and rice (2597 mg/kg). The optimum moisture content, incubation time and inoculum concentrations were 70%, 144 h and 6%, respectively. Neither the addition of mannitol or (NH4)2HPO4 nor adjustment of media pH within the range of 3–7 significantly enhanced MPA production.MPA production by SSF using a packed-bed bioreactor was performed and an increased maximum production of MPA 6.9 mg/g was achieved at 168 h incubation time. The higher volumetric productivity and concentrations makes SSF an attractive alternative to SmF for MPA production.  相似文献   

9.
A potential myo-inositol oxygenase (ppMIOX) was identified as a functional enzyme and a glucaric acid synthetic pathway was firstly constructed in Pichia pastoris. Coexpression of the native ppMIOX and the urinate dehydrogenase (Udh) from Pseudomonas putida KT2440 led to obvious accumulation of glucaric acid (90.46 ± 0.04 mg/L) from myo-inositol whereas no glucaric acid was detected from glucose. In comparison, coexpression of the heterologous mouse MIOX (mMIOX) and Udh resulted in higher titers of glucaric acid from glucose and myo-inositol, 107.19 ± 11.91 mg/L and 785.4 ± 1.41 mg/L, respectively. By applying a fusion expression strategy with flexible peptides, the mMIOX specific activity and the glucaric acid concentration were significantly increased. Using glucose and myo-inositol as carbon substrates, the production of glucaric acid was substantially enhanced to 6.61 ± 0.30 g/L in fed-batch cultures. To the best of our knowledge, this is the highest reported value to date.  相似文献   

10.
ALA (5-aminolevulinic acid) is an important intermediate in the synthesis of tetrapyrroles and the use of ALA has been gradually increasing in many fields, including medicine and agriculture. In this study, improved biological production of ALA in Corynebacterium glutamicum was achieved by overexpressing glutamate-initiated C5 pathway. For this purpose, copies of the glutamyl t-RNA reductase HemA from several bacteria were mutated by site-directed mutagenesis of which a HemA version from Salmonella typhimurium exhibited the highest ALA production. Cultivation of the HemA-expressing strain produced approximately 204 mg/L of ALA, while co-expression with HemL (glutamate-1-semialdehyde aminotransferase) increased ALA concentration to 457 mg/L, representing 11.6- and 25.9-fold increases over the control strain (17 mg/L of ALA). Further effects of metabolic perturbation were investigated, leading to penicillin addition that further improves ALA production to 584 mg/L. In an optimized flask fermentation, engineered C. glutamicum strains expressing the HemA and hemAL operon produced up to 1.1 and 2.2 g/L ALA, respectively, under glutamate-producing conditions. The final yields represent 10.7- and 22.0-fold increases over the control strain (0.1 g/L of ALA). From these findings, ALA biosynthesis from glucose was successfully demonstrated and this study is the first to report ALA overproduction in C. glutamicum via metabolic engineering.  相似文献   

11.
12.
《Process Biochemistry》2014,49(12):2279-2284
To study the combination effects of glycometabolic regulator NaF and elicitor methyl jasmonate (MJ) on cephalotaxine production in Cephalotaxus mannii suspension cultures, NaF of 10 mg/L, MJ of 100 μmol/L or both of them (NaF + MJ for short below) were added to the shake-flask cultures of C. mannii cell. It was found that NaF increased the activity of glucose 6-phosphate dehydrogenase (G6PDH), but had no significant effects on phenylalanine ammonium-lyase (PAL) activity and phenols formation. In contrast, MJ could activate PAL activity and led to phenols accumulation, but had no significant effects on G6PDH activity. To explore the effects of NaF and MJ on cephalotaxine biosynthesis, harringtonine and homoharringtonine, the two cephalotaxines, were analyzed in this work. The results obtained indicated that NaF + MJ treatment showed the strongest promotion of production in all tests. Harringtonine yield in NaF + MJ treated cells (7.245 mg/L) was 4.8-fold higher than that in control cells (1.506 mg/L), 1.7-fold that in NaF-treated cells (4.12 mg/L) and 1.6-fold that in MJ-treated cells (4.458 mg/L), respectively. No homoharringtonine was found besides in NaF + MJ treated cells (0.491 mg/L). With respect of the product release rates, they were 0%, 78%, 24% and 62% in control, NaF, MJ and NaF + MJ treatment, respectively. These results suggest that the combination of NaF and MJ had contributed to the synthesis and secretion of cephalotaxine in C. mannii cells.  相似文献   

13.
Chemical or biological synthesis of plant secondary metabolites has attracted increasing interest due to their proven or assumed beneficial properties and health promoting effects. Resveratrol, a stilbenoid, naringenin, a flavanone, genistein, an isoflavone, and the flavonols kaempferol and quercetin have been shown to possess high nutritional and agricultural value. Four metabolically engineered yeast strains harboring plasmids with heterologous genes for enzymes involved in the biosynthesis of these compounds from phenylalanine have been constructed. Time course analyses of precursor utilization and end-product accumulation were carried out establishing the production of 0.29–0.31 mg/L of trans-resveratrol, 8.9–15.6 mg/L of naringenin, 0.1–7.7 mg/L of genistein, 0.9–4.6 mg/L of kaempferol and 0.26–0.38 mg/L of quercetin in defined media under optimal growth conditions. The recombinant yeast strains can be used further for the construction of improved flavonoid- and stilbenoid-overproducers.  相似文献   

14.
2-Keto-l-gulonic acid (2-KLG), the direct precursor of vitamin C, is currently produced by a two-step fermentation route from d-sorbitol. However, this route involves three bacteria, making the mix-culture system complicated and redundant. Thus, replacement of the conventional two-step fermentation process with a one-step process could be revolutionary in vitamin C industry. In this study, different combinations of five l-sorbose dehydrogenases (SDH) and two l-sorbosone dehydrogenases (SNDH) from Ketogulonicigenium vulgare WSH-001 were introduced into Gluconobacter oxydans WSH-003, an industrial strain used for the conversion of d-sorbitol to l-sorbose. The optimum combination produced 4.9 g/L of 2-KLG. In addition, 10 different linker peptides were used for the fusion expression of SDH and SNDH in G. oxydans. The best recombinant strain (G. oxydans/pGUC-k0203-GS-k0095) produced 32.4 g/L of 2-KLG after 168 h. Furthermore, biosynthesis of pyrroloquinoline quinine (PQQ), a cofactor of those dehydrogenases, was enhanced to improve 2-KLG production. With the stepwise metabolic engineering of G. oxydans, the final 2-KLG production was improved to 39.2 g/L, which was 8.0-fold higher than that obtained using independent expression of the dehydrogenases. These results bring us closer to the final one-step industrial-scale production of vitamin C.  相似文献   

15.
Potassium (K) is a key component of plant nutrition, significantly influencing crop growth. Levels of this nutrient in plants can also influence a number of pest infestations. The brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), is an important pest of rice in Asia. In this study, we examined K contents in rice grown in hydroponic solution, and its relationship to the fecundity and expression of the vitellogenin (Nlvg) gene of N. lugens which was reared on the rice. Our findings indicated that K contents in rice increased with the increasing K concentration within the hydroponic solution, but reduced at the highest K concentration (160 mg/L). The number of eggs laid by N. lugens which was reared on the rice varied significantly with K concentration, and increased by 0.12 and 0.22 fold under 20 mg/L and 160 mg/L K level compared to that of the control (40 mg/L), decreasing by 0.57 fold under 0 mg/L K. Nlvg mRNA expression increased 1.17 and 1.94 fold in individuals which were reared on rice grown in 20 mg/L and 160 mg/L K level, compared to that of the control before mating; and by 3.36 and 2.97 after mating, respectively. However, Nlvg mRNA expression fold decreased by 0.99 under 0 mg/L K level before mating and 0.91 after mating. The variation of eggs may be attributed to the change of Nlvg mRNA expression, because there was a positive correlation between the eggs and Nlvg mRNA expression. These results demonstrated low (20 mg/L) and highest K levels (160 mg/L) in hydroponic solution showed the lower K level in plants than the control, which facilitated the fecundity of N. lugens. The study of the effects of K levels on the fecundity should have significance for insect control.  相似文献   

16.
17.
《Process Biochemistry》2007,42(3):454-458
As a powerful statistical experimental design, uniform design (UD) method has been successfully applied in various fields such as fermentation industry, pharmaceuticals, and others. In this paper, UD was applied to optimize the medium composition for glutathione production in shake-flask culture of Saccharomyces cerevisiae T65. The experiments of nine factors (glucose, yeast extract, peptone, malt extract, molasses, MgSO4, ZnSO4, (NH4)2HPO4 and thiamine) and nine levels were carried out according to the uniform design table U27(99). The experimental data was analyzed to obtain the regression model and the optimal medium composition was achieved by optimization with UD 3.0 software. The optimal medium consisted of 70 g/L glucose, 3 g/L yeast extract, 5 g/L peptone, 70 g/L malt extract, 20 g/L molasses, 5.6 g/L MgSO4, 16 mg/L ZnSO4, 7 g/L (NH4)2HPO4 and 0.2 mg/L thiamine. The GSH yield at the optimal point achieved 74.6 mg/L, which was 1.81 times higher than that of the control. The application of UD method resulted in enhancement in GSH production.  相似文献   

18.
The effect of addition of autoclaved and filter-sterilized culture filtrate of Piriformospora indica (a root endophytic fungus) to the growing Linum album hairy root cultures on growth and lignan production was investigated. The addition resulted in a significant enhancement in lignan production and growth. The podophyllotoxin and 6-methoxypodophyllotoxin (the lignans) concentrations were maximally improved by 3.8 times (233.8 mg/L) and 4.4 times (131.9 mg/L) in comparison to control cultures, respectively, upon addition of 3.0% (v/v) filter-sterilized culture filtrate of P. indica to the hairy root cultures of L. album for exposure time of 48 h. This increase in the lignan content also coincided with the increase in phenylalanine ammonia lyase activity, which was 3.1-fold (371.4 μkat/kg protein) higher compared to control cultures under the same conditions. The maximal increase in hairy root biomass was, however, obtained under different conditions; it was enhanced by 1.4 times (21.8 g/L) in comparison to control cultures, when 2% (v/v) filter-sterilized culture filtrate was in contact with L. album cultures for 96 h.  相似文献   

19.
《Process Biochemistry》2007,42(10):1460-1464
Limiting ergosterol accumulation through metabolic control increased lycopene production by Blakeslea trispora. Lycopene and ergosterol are both biosynthesized from a common precursor, farnesyl diphosphate (FPP). The effects of two ergosterol biosynthesis inhibitors, terbinafine hydrochloride (TH) and ketoconazole, on the production of lycopene by B. trispora were investigated. TH at 0.7 mg/l and ketoconazole at 30 mg/l added to the medium at 48 h of fermentation caused an increase in lycopene content of 23% or 277%, respectively. The timing of addition for both inhibitors at 48 h resulted in the most optimal lycopene productivity, however, compared with TH, ketoconazole was superior in enhancing lycopene production by inhibiting ergosterol biosynthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号