首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectivesQuantify the expected rate of CT radiation dose alerts for three body regions using accepted radiation dose benchmarks and assess key determinants of alert frequency.MethodsThis IRB-approved retrospective cohort study evaluated consecutive CT examinations performed between July and December 2013 within an academic medical system. CTDIvol x-ray tube output metrics were compared to the body-region-specific benchmark levels, Achievable Doses (AD), Diagnostic Reference Levels (DRL), and Dose Notification Values (DNV). A logistic regression model for the simulated alerts was fit as a function of the independent predictors: scanner, body region, gender, weight, and age.ResultsFor 17,000 exams, the proportion of events triggering alerts increased with patient weight. Significant covariates were scanner, body region, patient weight and patient age (all p < 0.0001). Odds of alert generation for the AD, DRL, and DNV benchmarks increased by 7.6%, 6.6% and 2.9% per kilogram, respectively, and by 0.8%, 1.1% and −2.7% per year of age (all p < 0.0001). Compared to the most highly optimized scanner, odds of alert generation varied by a factor of 595 for AD, 1126 for DRL, and 13 for DNV.ConclusionAlert frequency was significantly correlated with weight, age, body region and scanner. Controllable factors include scanner functionality and associated protocol optimization. Patient factors driving alert frequency are predominantly weight, and to a lesser degree, age. Size-agnostic fixed dose thresholds can frequently produce false positive alerts in appropriately performed exams of large patients, while missing opportunities to identify outlier scans of higher-than-expected dose in small patients.  相似文献   

2.
PurposeWe used pediatric and adult anthropomorphic phantoms to compare the radiation dose of low- and standard tube voltage chest and abdominal non-contrast-enhanced computed tomography (CT) scans. We also discuss the optimal low tube voltage for non-contrast-enhanced CT.MethodsUsing a female adult- and three differently-sized pediatric anthropomorphic phantoms we acquired chest and abdominal non-contrast-enhanced scans on a 320-multidetector CT volume scanner. The tube voltage was set at 80-, 100-, and 120 kVp. The tube current was automatically assigned on the CT scanner in response to the set image noise level. On each phantom and at each tube voltage we measured the surface and center dose using high-sensitivity metal-oxide-semiconductor field-effect transistor detectors.ResultsThe mean surface dose of chest and abdominal CT scans in 5-year olds was 4.4 and 5.3 mGy at 80 kVp, 4.5 and 5.4 mGy at 100 kV, and 4.0 and 5.0 mGy at 120 kVp, respectively. These values were similar in our 3-pediatric phantoms (p > 0.05). The mean surface dose in the adult phantom increased from 14.7 to 19.4 mGy for chest- and from 18.7 to 24.8 mGy for abdominal CT as the tube voltage decreased from 120 to 80 kVp (p < 0.01).ConclusionCompared to adults, the surface and center dose for pediatric patients is almost the same despite a decrease in the tube voltage and the low tube voltage technique can be used for non-contrast-enhanced chest- and abdominal scanning.  相似文献   

3.
PurposeTo investigate the dose variation between follow-up CT examinations, when a patient is examined several times on the same scanner with the identical scan protocol which comprised automated exposure control.ResultsThe median percentage difference in DLP between follow-up examinations was 9.6% for CH-CT, 10.3% for LI-CT, and 10.1% for AB-CT; the median percentage difference in CTDIvol 8.3% for CH-CT, 7.4% for LI-CT and 7.7% for AB-CT (p<0.0001 for all values). The maximum difference in DLP between follow-up examinations was 67.5% for CH-CT, 50.8% for LI-CT and 74.3% for AB-CT; the maximum difference in CTDIvol 62.9% for CH-CT, 47.2% for LI-CT, and 49% for AB-CT.ConclusionA significant variance in the radiation dose occurs between follow-up CT examinations when the same CT scanner and the identical imaging protocol are used in combination with automated exposure control.  相似文献   

4.
Micro computed tomography (µCT) scanners are used to create high-resolution images and to quantify properties of the scanned objects. While modern µCT scanners benefit from the cone beam geometry, they are compromised by scatter radiation. This work aims to develop a Monte Carlo (MC) model of a µCT scanner in order to characterize the scatter radiation in the detector plane.The EGS++ framework with the MC code EGSnrc was used to simulate the particle transport through the main components of the XtremeCT (SCANCO Medical AG, Switzerland). The developed MC model was based on specific information of the manufacturer and was validated against measurements. The primary and the scatter radiation were analyzed and by implementing a dedicated tracing method, the scatter radiation was subdivided into different scatter components.The comparisons of measured and simulated transmission values for different absorber and filter combinations result in a mean difference of 0.2% ± 1.4%, with a maximal local difference of 3.4%. The reconstructed image of the phantom based on measurements agrees well with the image reconstructed using the MC model. The local contribution of scattered radiation is up to 10% of the total radiation in the detector plane and most of the scattered particles result from interactions in the scanned object. The MC simulations show that scatter radiation contains information about the structure of the object.In conclusion, a MC model for a µCT scanner was successfully validated and applied to analyze the characteristics of the scatter radiation for a µCT scanner.  相似文献   

5.
The operation of the bowtie filter in x-ray CT is correct if the object being scanned is properly centered in the scanner’s field-of-view. Otherwise, the dose delivered to the patient and image noise will deviate from optimal setting. We investigate the effect of miscentering on image noise and surface dose on three commercial CT scanners. Six cylindrical phantoms with different size and material were scanned on each scanner. The phantoms were positioned at 0, 2, 4 and 6 cm below the isocenter of the scanner’s field-of-view. Regression models of surface dose and noise were produced as a function of miscentering magnitude and phantom’s size. 480 patients were assessed using the calculated regression models to estimate the influence of patient miscentering on image noise and patient surface dose in seven imaging centers. For the 64-slice CT scanner, the maximum increase of surface dose using the CTDI-32 phantom was 13.5%, 33.3% and 51.1% for miscenterings of 2, 4 and 6 cm, respectively. The analysis of patients’ scout scans showed miscentering of 2.2 cm in average below the isocenter. An average increase of 23% and 7% was observed for patient dose and image noise, respectively. The maximum variation in patient miscentering derived from the comparison of imaging centers using the same scanner was 1.6 cm. Patient miscentering may substantially increase surface dose and image noise. Therefore, technologists are strongly encouraged to pay greater attention to patient centering.  相似文献   

6.
PurposeThe purpose of our study was to acquire dose profiles at critical organs of lung and breast regions using optically stimulated luminescence (OSL) dosimeters; assess the actual radiation dose delivered at retrospective and prospective computed tomography coronary angiography (CTCA).Materials and methodsUsing a chest CT phantom we applied a prospectively-gated step-and-shoot- and a retrospectively-gated helical mode on a 64-detector row CT scanner. Retrospective scan mode was used with and without electrocardiogram (ECG) based tube current modulation. OSL dosimeters were used to measure dose profiles. In the both scan modes we acquired dose profiles and determined the mean and maximum dose in left lung and in left breast regions.ResultsIn prospective mode, the mean dose was 21.53 mGy in left lung- and 23.59 mGy in left breast region. With respect to the retrospective mode, the mean dose with tube current modulation was 38.63 mGy for left lung- and 46.02 mGy for left breast region, i.e. 0.56 and 0.55 times lower than the mean dose without modulation.ConclusionThe OSL dosimeter is useful for measurement of the actual radiation dose along z-axis at lung and breast regions in the prospective and the retrospective CTCA.  相似文献   

7.
PurposeA new quality-control-based (QC-based) method is introduced to obtain correction factors to be applied to displayed patient dose indices (CTDIVol and DLP) on CT scanner consoles to verify improvement of dose surveys for diagnostic reference levels (DRLs) determination.MethodAn available data-base of QC documents and reports of 57 CT scanners in Tehran, Iran was used to estimate CTDIVol, DLP and relevant correction factors for three CT examination types including head, chest and abdomen/pelvis. The correction factor is the ratio of QC-based estimated dose to displayed dose. A dose survey was performed by applying on-site “data collection method” and correction factors obtained in order to select CT scanners in three modes for determination of CT DRLs by inclusion of: (a) all CT scanners before displayed dose indices were corrected (57), (b) only CT scanners calibrated by QC experts (41) and (c) all CT scanners after displayed dose indices were corrected (57).ResultsFor the 41 CT scanners, correction factors of three examination types obtained in this study are within the acceptance tolerance of IAEA HHS-19. The correction factors range from 0.45 to 1.7 (average of 3 examinations) which is due to the change in the calibrated value of CTDIVol over extended time. The DRL differences in three modes are within ±1.0% for CTDIVol and ±12.4% for DLP.ConclusionsThe “QC-based correction method” applied to mode (c) has improved the DRLs obtained by other two modes. This method is a strong alternative to “direct dose measurement” with simplicity and cost effectiveness.  相似文献   

8.
PurposePatient dose estimation in X-ray computed tomography (CT) is generally performed by Monte Carlo simulation of photon interactions within anthropomorphic or cylindrical phantoms. An accurate Monte Carlo simulation requires an understanding of the effects of the bow-tie filter equipped in a CT scanner, i.e. the change of X-ray energy and air kerma along the fan-beam arc of the CT scanner. To measure the effective energy and air kerma distributions, we devised a pin-photodiode array utilizing eight channels of X-ray sensors arranged at regular intervals along the fan-beam arc of the CT scanner.MethodsEach X-ray sensor consisted of two plate type of pin silicon photodiodes in tandem – front and rear photodiodes – and of a lead collimator, which only allowed X-rays to impinge vertically to the silicon surface of the photodiodes. The effective energy of the X-rays was calculated from the ratio of the output voltages of the photodiodes and the dose was calculated from the output voltage of the front photodiode using the energy and dose calibration curves respectively.ResultsThe pin-photodiode array allowed the calculation of X-ray effective energies and relative doses, at eight points simultaneously along the fan-beam arc of a CT scanner during a single rotation of the scanner.ConclusionsThe fan-beam energy and air kerma distributions of CT scanners can be effectively measured using this pin-photodiode array.  相似文献   

9.
随着MSCT的不断发展以及检查技术的不断完善,胰腺疾病的诊断率也不断进步。CT可以对胰腺进行普通平扫、多期增强扫描及CT灌注扫描(CTPI)。其中,普通平扫及增强扫描对小的胰腺癌病灶诊断率较低;普通灌注扫描可以通过监测胰腺组织血流动力学评价胰腺功能,对于早期胰腺癌的诊断率较高,但辐射剂量也较高,因此对患者的远期影响较大。因此,在满足对胰腺癌疾病诊断条件的前提下,减少CT扫描对患者的辐射剂量是目前临床研究的热点。灌注扫描通过监测患者血流量(BF)、血容量(BV)对正常胰腺及胰腺癌病灶进行观察,能够在减少辐射剂量的同时获得灌注数据,从而提供更多的诊断信息,进而满足临床诊断的要求。  相似文献   

10.
Computed tomography (CT) is the standard imaging modality in radiation therapy treatment planning (RTP). However, magnetic resonance (MR) imaging provides superior soft tissue contrast, increasing the precision of target volume selection. We present MR-only based RTP for a rat brain on a small animal radiation research platform (SARRP) using probabilistic voxel classification with multiple MR sequences. Six rat heads were imaged, each with one CT and five MR sequences. The MR sequences were: T1-weighted, T2-weighted, zero-echo time (ZTE), and two ultra-short echo time sequences with 20 μs (UTE1) and 2 ms (UTE2) echo times. CT data were manually segmented into air, soft tissue, and bone to obtain the RTP reference. Bias field corrected MR images were automatically segmented into the same tissue classes using a fuzzy c-means segmentation algorithm with multiple images as input. Similarities between segmented CT and automatic segmented MR (ASMR) images were evaluated using Dice coefficient. Three ASMR images with high similarity index were used for further RTP. Three beam arrangements were investigated. Dose distributions were compared by analysing dose volume histograms. The highest Dice coefficients were obtained for the ZTE-UTE2 combination and for the T1-UTE1-T2 combination when ZTE was unavailable. Both combinations, along with UTE1-UTE2, often used to generate ASMR images, were used for further RTP. Using 1 beam, MR based RTP underestimated the dose to be delivered to the target (range: 1.4%-7.6%). When more complex beam configurations were used, the calculated dose using the ZTE-UTE2 combination was the most accurate, with 0.7% deviation from CT, compared to 0.8% for T1-UTE1-T2 and 1.7% for UTE1-UTE2. The presented MR-only based workflow for RTP on a SARRP enables both accurate organ delineation and dose calculations using multiple MR sequences. This method can be useful in longitudinal studies where CT’s cumulative radiation dose might contribute to the total dose.  相似文献   

11.
PurposeThe purpose of this study was to develop and validate a Monte Carlo (MC) simulation tool for patient dose assessment for a 320 detector-row CT scanner, based on the recommendations of International Commission on Radiological Protection (ICRP). Additionally, the simulation was applied on four clinical acquisition protocols, with and without automatic tube current modulation (TCM).MethodsThe MC simulation was based on EGS4 code and was developed specifically for a 320 detector-row cone-beam CT scanner. The ICRP adult reference phantoms were used as patient models. Dose measurements were performed free-in-air and also in four CTDI phantoms: 150 mm and 350 mm long CT head and CT body phantoms. The MC program was validated by comparing simulations results with these actual measurements acquired under the same conditions. The measurements agreed with the simulations across all conditions within 5%. Patient dose assessment was performed for four clinical axial acquisitions using the ICRP adult reference phantoms, one of them using TCM.ResultsThe results were nearly always lower than those obtained from other dose calculator tools or published in other studies, which were obtained using mathematical phantoms in different CT systems. For the protocol with TCM organ doses were reduced by between 28 and 36%, compared to the results obtained using a fixed mA value.ConclusionsThe developed simulation program provides a useful tool for assessing doses in a 320 detector-row cone-beam CT scanner using ICRP adult reference computational phantoms and is ready to be applied to more complex protocols.  相似文献   

12.
PurposeThis paper describes the hardware and software characteristics of a 3D optical scanner (P3DS) developed in-house. The P3DS consists of an LED light source, diffuse screen, step motor, CCD camera, and scanner management software with 3D reconstructed software.Materials and methodWe performed optical simulation, 2D and 3D reconstruction image testing, and pre-clinical testing for the P3DS. We developed the optical scanner with three key characteristics in mind. First, we developed a continuous scanning method to expand possible clinical applications. Second, we manufactured a collimator to improve image quality by reducing scattering from the light source. Third, we developed an optical scanner with changeable camera positioning to enable acquisition of optimal images according to the size of the gel dosimeter.ResultsWe confirmed ray-tracing in P3DS with optic simulation and found that 2D projection and 3D reconstructed images were qualitatively similar to the phantom images. For pre-clinical tests, the dose distribution and profile showed good agreement among RTP, optical CT, and external beam radiotherapy film data for the axial and coronal views. The P3DS has shown that it can scan and reconstruct for evaluation of the gel dosimeter within 1 min. We confirmed that the P3DS system is a useful tool for the measurement of 3D dose distributions for 3D radiation therapy QA. Further experiments are needed to investigate quantitative analysis for 3D dose distribution.  相似文献   

13.
The aim of the current study was to compare the film method against the method based on a new CT slice detector in assessing geometric efficiency (GE) of x-ray beams utilized by a multi-detector CT (MDCT) scanner. Measurements of GE were performed using radiographic films and a solid state CT slice detector for all beam qualities, collimations and focal spot sizes available on an MDCT scanner. Repeatability of GE measurements was assessed. The radiographic film and the solid state detector methods were compared to each other in regard to efficacy in measuring free-in-air GE. The values of GE determined using the radiographic film method were found to range between 48.5% and 90.6%. Differences between values obtained with the radiographic film method and corresponding values obtained with the solid state detector were less than 10% exceeding 5% for only one case. Both methods show that wide beams have higher GE values compared to thin ones. The use of large instead of small focal spot was found to deteriorate GE values by up to 23.1%. Beam quality did not seem to influence GE of the various collimations. When thin beam collimations are employed, a considerable amount of the radiation is wasted for non-imaging purposes. Both film and solid state probe methods are capable of measuring GE of thin as well as wide collimations. The solid state detector is the easiest to use, however its usefulness is reduced by the fact that it cannot measure dose profiles of beam collimations available for step-and-shoot mode of operation.  相似文献   

14.
We consider the power and sample size calculation of diagnostic studies with normally distributed multiple correlated test results. We derive test statistics and obtain power and sample size formulas. The methods are illustrated using an example of comparison of CT and PET scanner for detecting extra-hepatic disease for colorectal cancer.  相似文献   

15.
PurposeTo calculate organ doses and estimate the effective dose for justification purposes in patients undergoing orthognathic treatment planning purposes and temporal bone imaging in dental cone beam CT (CBCT) and Multidetector CT (MDCT) scanners.MethodsThe radiation dose to the ICRP reference male voxel phantom was calculated for dedicated orthognathic treatment planning acquisitions via Monte Carlo simulations in two dental CBCT scanners, Promax 3D Max (Planmeca, FI) and NewTom VGi evo (QR s.r.l, IT) and in Somatom Definition Flash (Siemens, DE) MDCT scanner. For temporal bone imaging, radiation doses were calculated via MC simulations for a CBCT protocol in NewTom 5G (QR s.r.l, IT) and with the use of a software tool (CT-expo) for Somatom Force (Siemens, DE). All procedures had been optimized at the acceptance tests of the devices.ResultsFor orthognathic protocols, dental CBCT scanners deliver lower doses compared to MDCT scanners. The estimated effective dose (ED) was 0.32 mSv for a normal resolution operation mode in Promax 3D Max, 0.27 mSv in VGi-evo and 1.18 mSv in the Somatom Definition Flash. For temporal bone protocols, the Somatom Force resulted in an estimated ED of 0.28 mSv while for NewTom 5G the ED was 0.31 and 0.22 mSv for monolateral and bilateral imaging respectively.ConclusionsTwo clinical exams which are carried out with both a CBCT or a MDCT scanner were compared in terms of radiation dose. Dental CBCT scanners deliver lower doses for orthognathic patients whereas for temporal bone procedures the doses were similar.  相似文献   

16.
Medical imaging using X-rays has been one of the most popular imaging modalities ever since the discovery of X-rays 125 years ago. With unquestionable benefits, concerns about radiation risks have frequently been raised. Computed tomography (CT) and fluoroscopic guided interventional procedures have the potential to impart higher radiation exposure to patients than radiographic examinations. Despite technological advances, there have been instances of increased doses per procedure mainly because of better diagnostic information in images. However, cumulative dose from multiple procedures is creating new concerns as effective doses >100 mSv are not uncommon. There is a need for action at all levels. Manufacturers must produce equipment that can provide a quality diagnostic image at substantially lesser dose and better implementation of optimization strategies by users. There is an urgent need for the industry to develop CT scanners with sub-mSv radiation dose, a goal that has been lingering. It appears that a new monochromatic X-ray source will lead to replacement of X-ray tubes all over the world in coming years and will lead to a drastic reduction in radiation doses. This innovation will impact all X-ray imaging and will help dose reduction. For interventional procedures, the likely employment of robotic systems in practice may drastically reduce radiation exposures to operators- but patient exposure will still remain an issue. Training needs always need to be emphasized and practiced.  相似文献   

17.
目的:探讨能谱CT优化胃肿瘤扫描辐射剂量对肾上腺嗜铬细胞瘤的诊断价值。方法:采用回顾性、抽样、随机研究方法选择2012年9月到2017年2月在我院诊治的肾上腺嗜铬细胞瘤患者59例作为研究对象,所有患者都给予常规CT扫描与能谱CT优化胃肿瘤扫描,记录和比较辐射剂量与图像质量。结果:所有病例包膜均完整,边缘清楚,肿瘤内见单发或多发低密度区,肿瘤实质区呈不均匀显著强化。常规CT与能谱CT的图像质量主观评分分别为3.89±0.45分和4.54±0.34分;常规CT与能谱CT图像的胃肿瘤CT值分别为31.94±6.39HU和35.29±5.19HU,对比都有显著差异(P0.05)。能谱CT图像的膀胱和皮下脂肪图像噪声值都显著低于常规CT图像,对比差异都有统计学意义(P0.05);能谱CT扫描的CTDIvol和DLP分别为12.39±3.48mGy和624.10±39.19mGy.cm,都显著低于常规CT扫描的14.09±4.13mGy和653.92±56.29mGy.cm(P0.05)。结论:能谱CT优化胃肿瘤扫描在肾上腺嗜铬细胞瘤诊断中的应用能有效减少辐射剂量与图像噪声,提高图像CT值与主观质量,临床应用价值更高。  相似文献   

18.
PurposeTo assess the quality of images obtained on a dual energy computed tomography (CT) scanner.MethodsImage quality was assessed on a 64 detector-row fast kVp-switching dual energy CT scanner (Revolution GSI, GE Medical Systems). The Catphan phantom and a low contrast resolution phantom were employed. Acquisitions were performed at eight different radiation dose levels that ranged from 9 mGy to 32 mGy. Virtual monochromatic spectral images (VMI) were reconstructed in the 40–140 keV range using all available kernels and iterative reconstruction (IR) at four different blending levels. Modulation Transfer Function (MTF) curves, image noise, image contrast, noise power spectrum and contrast to noise ratio were assessed.ResultsIn-plane spatial resolution at the 10% of the MTF curve was 0.60 mm−1. In-plane spatial resolution was not modified with VMI energy and IR blending level. Image noise was reduced from 16.6 at 9 mGy to 6.7 at 32 mGy, while peak frequency remained within 0.14 ± 0.01 mm−1. Image noise was reduced from 14.3 at IR 10% to 11.5 at IR 50% at a constant peak frequency. The lowest image noise and maximum peak frequency were recorded at 70 keV.ConclusionsOur results have shown how objective image quality is varied when different levels of radiation dose and different settings in IR are applied. These results provide CT operators an in depth understanding of the imaging performance characteristics in dual energy CT.  相似文献   

19.
In this series, eighteen patients with Graves' disease were treated with 8000 rads (80 Gy) of radioiodine (131I), using the new high resolutional ultrasonic scanner for the determination of the accurate weight of the thyroid gland. The mean dose of radioiodine administered orally was 4.6 +/- 3.0 mCi (170.2 +/- 110.0 MBq) and 133.7 +/- 44.6 microCi/g (4.95 +/- 1.65 MBq). At one year after treatment, twelve of eighteen patients (66.7%) became euthyroid, five (27.8%) remained hyperthyroid and one (5.6%) became hypothyroid. Analysis of various factors which may be related to the effect of radioiodine therapy revealed that the weight of the thyroid gland in the hyperthyroid and euthyroid groups was significantly different (61.7 +/- 33.5 g vs. 25.1 +/- 9.1 g, p less than 0.05). Furthermore, all patients with larger glands (more than sixty grams) remained hyperthyroid, while the incidence of euthyroidism was as high as 80% in patients with smaller glands (less than forty grams). Although the number of patients studied was small, these results indicate that a larger thyroid gland requires a larger radioiodine dose per gram of tissue than a smaller gland, suggesting that the therapeutic radiation dose should be graded according to the gland size even when the gland size is accurately estimated by ultrasound. Further study is required to determine the appropriate radiation dose graded according to the gland size.  相似文献   

20.
PurposeTo investigate whether electrocardiogram (ECG)-gated single- and dual-heartbeat computed tomography coronary angiography (CTCA) with automatic exposure control (AEC) yields images with uniform image noise at reduced radiation doses.Materials and methodsUsing an anthropomorphic chest CT phantom we performed prospectively ECG-gated single- and dual-heartbeat CTCA on a second-generation 320-multidetector CT volume scanner. The exposure phase window was set at 75%, 70–80%, 40–80%, and 0–100% and the heart rate at 60 or 80 or corr80 bpm; images were reconstructed with filtered back projection (FBP) or iterative reconstruction (IR, adaptive iterative dose reduction 3D). We applied AEC and set the image noise level to 20 or 25 HU. For each technique we determined the image noise and the radiation dose to the phantom center.ResultsWith half-scan reconstruction at 60 bpm, a 70–80% phase window- and a 20-HU standard deviation (SD) setting, the imagenoise level and -variation along the z axis manifested similar curves with FBP and IR. With half-scan reconstruction, the radiation dose to the phantom center with 70–80% phase window was 18.89 and 12.34 mGy for FBP and 4.61 and 3.10 mGy for IR at an SD setting SD of 20 and 25 HU, respectively. At 80 bpm with two-segment reconstruction the dose was approximately twice that of 60 bpm at both SD settings. However, increasing radiation dose at corr80 bpm was suppressed to 1.39 times compared to 60 bpm.ConclusionAEC at ECG-gated single- and dual-heartbeat CTCA controls the image noise at different radiation dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号