首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various studies have reported alterations of spinal kinematics in patients with chronic low back pain (CLBP) during gait. However, while recent findings stressed the importance of multi-segment analysis, most of prior gait studies modelled the lumbar spine as one segment, when it was not the entire trunk that was considered as a single segment. Therefore, there is a need for comprehensive multi-segment research that could improve our understanding of CLBP pathomechanism and thus possibly contribute to better care for CLBP. This study aimed at characterizing the angle patterns at the lower lumbar (LLS), upper lumbar (ULS), lower thoracic (LTS) and upper thoracic (UTS) joints in the three anatomical planes and at comparing CLBP patients and asymptomatic subjects. Spinal kinematics of 11 CLBP patients and 11 controls was measured using a marker-based motion capture system and described according to a previously proposed multi-segment biomechanical model. Characteristic patterns were observed at the UTS, LTS and ULS joints in the transverse plane and at the UTS, ULS and LLS joints in the frontal plane. CLBP patients walked with smaller frontal-plane LLS range of motion than controls. The results also suggested that patients had more asymmetrical LTS motion in the transverse plane. In conclusion, this work extended prior literature by showing specific CLBP-related alterations in multi-segment spinal kinematics during gait. Further research is necessary to understand the factors influencing kinematics alterations and how treatment strategies might improve motor behaviour in CLBP patients.  相似文献   

2.
The purpose of this study was to examine how inducing fatigue of the 1) lumbar erector spinae and 2) cervical erector spinae (CES) muscles affected the ability to maintain head stability during walking. Triaxial accelerometers were attached to the head, upper trunk, and lower trunk to measure accelerations in the vertical, anterior-posterior, and mediolateral directions during walking. Using three accelerometers enabled two adjacent upper body segments to be defined: the neck segment and trunk segment. A transfer function was applied to root mean square acceleration, peak power, and harmonic data derived from spectral analysis of accelerations to quantify segmental gain. The structure of upper body accelerations were examined using measures of signal regularity and smoothness. The main findings were that head stability was only affected in the anterior-posterior direction, as accelerations of the head were less regular following CES fatigue. Furthermore, following CES fatigue, the central nervous system altered the attenuation properties of the trunk segment in the anterior-posterior direction, presumably to enhance head stability. Following lumbar erector spinae fatigue, the trunk segment had greater gain and increased regularity and smoothness of accelerations in the mediolateral direction. Overall, the results of this study suggest that erector spinae fatigue differentially altered segmental attenuation during walking, according to the level of the upper body that was fatigued and the direction that oscillations were attenuated. A compensatory postural response was not only elicited in the sagittal plane, where greater segmental attenuation occurred, but also in the frontal plane, where greater segmental gain occurred.  相似文献   

3.
Several efforts have been made to study gait stability using measures derived from nonlinear time-series analysis. The maximum finite time Lyapunov exponent (λmax) quantifies how a system responds to an infinitesimally small perturbation. Recent studies suggested that slow walking leads to lower λmax values, and thus is more stable than fast walking, but these studies suffer from methodological limitations. We studied the effects of walking speed on the amount of kinematic variability and stability in human walking. Trunk motions of 15 healthy volunteers were recorded in 3D during 2 min of treadmill walking at different speeds. From those time series, maximum Lyapunov exponents, indicating short-term and long-term divergence (λS-stride and λL-stride), and mean standard deviation (MeanSD) were calculated. λS-stride showed a linear decrease with increasing speed for forward–backward (AP) movements and quadratic effects (inverted U-shaped) for medio-lateral (ML) and up–down (VT) movements. λL-stride showed a quadratic effect (inverted U-shaped) of walking speed for AP movements, a linear decrease for ML movements, and a linear increase for VT movements. Moreover, positive correlations between λS and MeanSD were found for all directions, while λL-stride and MeanSD were correlated negatively in the AP direction. The different effects of walking speed on λS-stride and λL-stride for the different planes suggest that slow walking is not necessarily more stable than fast walking. The absence of a consistent pattern of correlations between λL-stride and MeanSD over the three directions suggests that variability and stability reflect, at least to a degree, different properties of the dynamics of walking.  相似文献   

4.
Predictive modelling of human walking over a complete gait cycle   总被引:1,自引:0,他引:1  
  相似文献   

5.
During level walking, arm swing plays a key role in improving dynamic stability. In vivo investigations with a telemeterized vertebral body replacement showed that spinal loads can be affected by differences in arm positions during sitting and standing. However, little is known about how arm swing could influence the lumbar spine and hip joint forces and motions during walking. The present study aims to provide better understanding of the contribution of the upper limbs to human gait, investigating ranges of motion and joint reaction forces.A three-dimensional motion analysis was carried out via a motion capturing system on six healthy males and five patients with hip instrumented implant. Each subject performed walking with different arm swing amplitudes (small, normal, and large) and arm positions (bound to the body, and folded across the chest). The motion data were imported in a commercial musculoskeletal analysis software for kinematic and inverse dynamic investigation.The range of motion of the thorax with respect to the pelvis and of the pelvis with respect to the ground in the transversal plane were significantly associated with arm position and swing amplitude during gait. The hip external-internal rotation range of motion statistically varied only for non-dominant limb. Unlike hip joint reaction forces, predicted peak spinal loads at T12-L1 and L5-S1 showed significant differences at approximately the time of contralateral toe off and contralateral heel strike.Therefore, arm position and swing amplitude have a relevant effect on kinematic variables and spinal loads, but not on hip loads during walking.  相似文献   

6.
The purpose of this study was to compare in vivo segmental foot motion during walking and step descent in patients with midfoot arthritis and asymptomatic control subjects. Segmental foot motion during walking and step descent was assessed using a multi-segment foot model in 30 patients with midfoot arthritis and 20 age, gender and BMI matched controls. Peak and total range of motion (ROM), referenced to subtalar neutral, were examined for each of the following dependent variables: 1st metatarso-phalangeal (MTP1) dorsiflexion, 1st metatarsal (MT1) plantarflexion, ankle dorsiflexion, calcaneal eversion and forefoot abduction. The results showed that, compared to level walking, step descent required greater MTP1 dorsiflexion (p<0.01), MPT1 plantarflexion (p<0.01), ankle dorsiflexion (p<0.01), calcaneus eversion (p=0.03) and forefoot abduction (p=0.01), in all subjects. In addition, step descent also necessitated greater MTP1 dorsiflexion (p<0.01), ankle dorsiflexion (p<0.01) and forefoot abduction (p=0.02) excursion compared to walking. Patients with midfoot arthritis responded differently to the step task compared to control subjects in terms of MT1 and calcaneus eversion excursion. During walking, patients with midfoot arthritis showed significantly less MT1 plantarflexion excursion compared to control subjects (p=0.03). However, during step descent, both groups showed similar MT1 plantarflexion excursion. During walking, patients with midfoot arthritis showed similar calcaneus eversion excursion compared to control subjects. However, during step descent, patients with midfoot arthritis showed significantly greater calcaneus eversion excursion compared to control subjects (p=0.03). Independently or in combination, these motions may contribute to articular stress and consequently to symptoms in patients with midfoot arthritis.  相似文献   

7.
Crystal structures of turkey egg lysozyme (TEL) and human lysozyme (HL) were refined by full-matrix least-squares method using anisotropic temperature factors. The refinement converged at the conventional R-values of 0.104 (TEL) and 0.115 (HL) for reflections with Fo > 0 to the resolution of 1.12 Å and 1.15 Å, respectively. The estimated r.m.s. coordinate errors for protein atoms were 0.031 Å (TEL) and 0.034 Å (HL). The introduction of anisotropic temperature factors markedly reduced the R-value but did not significantly affect the main chain coordinates. The degree of anisotropy of atomic thermal motion has strong positive correlation with the square of distance from the molecular centroid. The ratio of the radial component of thermal ellipsoid to the r.m.s. magnitude of three principal components has negative correlation with the distance from the molecular centroid, suggesting the domination of libration rather than breathing motion. The TLS model was applied to elucidate the characteristics of the rigid-body motion. The TLS tensors were determined by the least-squares fit to observed temperature factors. The profile of the magnitude of reproduced temperature factors by the TLS method well fitted to that of observed Beqv. However, considerable disagreement was observed in the shape and orientation of thermal ellipsoid for atoms with large temperature factors, indicating the large contribution of local motion. The upper estimate of the external motion, 67% (TEL) and 61% (HL) of Beqv, was deduced from the plot of the magnitude of TLS tensors determined for main chain atoms which were grouped into shells according to the distance from the center of libration. In the external motion, the translational portion is predominant and the contribution of libration and screw motion is relatively small. The internal motion, estimated by subtracting the upper estimate of the external motion from the observed temperature factor, is very similar between TEL and HL in spite of the difference in 54 of 130 amino acid residues and in crystal packing, being suggested to reflect the intrinsic internal motion of chicken-type lysozymes. Proteins 30:232–243, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.

A mathematical model is developed to study the human thorax and pelvis movements in the frontal plane during normal walking. The model comprises of two-link base-excited inverted pendulums with one-degree of rotational freedom for each link. Since the linear motion of the pelvis has a significant effect on the upper body stability, this effect is included in the model by having a base point moving in the frontal plane in a general way. Furthermore, because the postural stability is the primary requirement of normal human walking, the control law is developed based on Lyapunov's stability theory, which guarantees the stability of the pendulum system around the up-right position. To evaluate the model, the simulation results, including the angular displacement of each link and the torque applied on each link, are compared with those from gait measurements. It is shown that the simulation results match those from gait measurements closely. These results suggest that the proposed model can provide a useful framework for analysis of postural control mechanisms.  相似文献   

9.
To examine the functional roles played by the lumbar spine during overground stepping, seven adult cats were run in electromyographic (EMG) experiments. Recordings were made bilaterally from mm. iliocostalis, longissimus dorsi and multifidus at a single vertebral level (L3) and from m. rectus abdominis. Stepping movements were monitored synchronously either by videotape or by high speed cinematography. During alternate use of the hindlimbs (walking and trotting), both epaxial and abdominal muscles were active bilaterally and biphasically. During in-phase use of the hindlimbs (galloping and half-bounding), single bursts of activity were observed. Phasic bursts of activity in rectus abdominus were reciprocal to those of epaxial muscles. Second bursts of activity in either group were noted infrequently. Recordings from the same back muscle at several vertebral levels indicated little difference from these patterns. Movements of the lumbar spine during galloping and half-bounding steps, both angular and linear, are easily correlated with muscle activity patterns. Movements of the lumbar spine during walking and trotting show no particular pattern. Only small angular and linear movements are found. It is concluded that the lumbar spine contributes substantially to step length and limb speed during galloping and half-bounding steps and the epaxial and abdominal musculature may also act as elastic bodies. During walking and trotting steps, the epaxial muscles are proposed to act to stabilize the pelvic girdle to provide a firm base for limb muscles which arise on the pelvis and are synchronously active.  相似文献   

10.
The preference for in-phase association of coupled cyclic limbs movements is well described (mirror-symmetrical patterns) and this is demonstrated by the ease of performing in-phase movements compared to anti-phase ones. The hypothesis of this study is that the easiest movement patterns are those with minor postural activity. The aim of this study was to describe postural activity in standing subjects in the sagittal and frontal planes during the execution of three upper limbs tasks (single arm, in-phase, anti-phase) at four different frequencies (from 0.6 to 1.2 Hz).We employed six infrared cameras for recording kinematics information, a force platform for measuring forces exerted on the ground, and a system for surface electromyography (SEMG). Outcome measures were: upper limb range of movement and relative-phase, centre of pressure displacement (COP), screw torque (Tz) exerted on the ground, and SEMG recordings of postural muscles (adductor longus, gluteus medius, rectus femoris, and biceps femoris).Our results show that in both the planes the in-phase task resulted in less COP displacement, torque production, and postural muscles involvement than the anti-phase and single arm tasks. This reduced need of postural control could explain the ease of performing in-phase coupled limb movements compared with anti-phase movements.  相似文献   

11.
《IRBM》2022,43(5):447-455
ObjectivesThe deviation in gait cycle due to trunk acceleration and muscle activity on even and uneven inclined planes should be analyzed for the design of lower limb exoskeletons. This study compares the gait variability of gastrocnemius and medial hamstring muscle activity variation of twenty young male adults on inclined even and uneven planes.Material and methodsThe individuals walked on a long, 10° inclined even and uneven plane in both up-the-plane and down-the-plane directions at their preferred speed (average speed is 1.2 m/s). Gait variability during walking was calculated using an average standard deviation of trunk acceleration and the significance of change was calculated using two-way-ANOVA. For studying the difference between integrated electromyography (IEMG) values of walking on even and uneven planes, two parameters Normalized IEMG Percentage (NIP) and IEMG Variation Percentage (IVP) were chosen for the analysis.ResultsThe results strongly agree with the hypothesis that gait variability hikes in the vertical direction of subject with a p-value of 0.04. The IEMG range of medial-hamstring muscle while walking on even and uneven plane is not highly significant for swing (0.44) as well as stance phase (0.47). While walking on an inclined uneven plane, the response of gastrocnemius muscle indicated the variation of NIP between 14.31% to 64.63%. It was observed that NIP and IEMG values of medial-hamstring muscles during backward walking have a resemblance.ConclusionTrunk variability had a significant change in the vertical direction (V) and was insignificant in medial-lateral (ML) and anterior-posterior (AP) orientations for both even and uneven inclined planes during forward and reverse walking. The muscle activity of gastrocnemius and medial-hamstring muscles does not have sound variations while walking on the inclined uneven plane.  相似文献   

12.
The aim of this study was to compare trunk muscular recruitment and lumbar spine kinematics when motion was constrained to either the thorax or the pelvis. Nine healthy women performed four upright standing planar movements (rotations, anterior–posterior translations, medial–lateral translations, and horizontal circles) while constraining pelvis motion and moving the thorax or moving the pelvis while minimizing thorax motion, and four isometric trunk exercises (conventional curl-up, reverse curl-up, cross curl-up, and reverse cross curl-up). Surface EMG (upper and lower rectus abdominis, lateral and medial aspects of external oblique, internal oblique, and latissimus dorsi) and 3D lumbar displacements were recorded. Pelvis movements produced higher EMG amplitudes of the oblique abdominals than thorax motions in most trials, and larger lumbar displacements in the medial–lateral translations and horizontal circles. Conversely, thorax movements produced larger rotational lumbar displacement than pelvis motions during rotations and higher EMG amplitudes for latissimus dorsi during rotations and anterior–posterior translations and for lower rectus abdominis during the crossed curl-ups. Thus, different neuromuscular compartments appear when the objective changes from pelvis to thorax motion. This would suggest that both movement patterns should be considered when planning spine stabilization programs, to optimize exercises for the movement and muscle activations desired.  相似文献   

13.
《Journal of biomechanics》2014,47(16):3807-3812
Falls are prevalent in older adults. Dynamic stability of body center of mass (COM) is critical for maintaining balance. A simple yet accurate tool to evaluate COM kinematics is essential to examine the COM stability. The purpose of this study was to determine the extent to which the COM position derived from body segmental analysis can be approximated by a single (sacral) marker during unperturbed (regular walking) and perturbed (gait-slip) gait. One hundred eighty seven older adults experienced an unexpected slip after approximately 10 regular walking trials. Two trials, the slip trial and the preceding regular walking trial, monitored with a motion capture system and force plates, were included in the present study. The COM positions were calculated by using the segmental analysis method wherein, the COM of all body segments was calculated to further estimate the body COM position. These body COM positions were then compared with those of the sacral marker placed at the second sacral vertebra for both trials. Results revealed that the COM positions were highly correlated with those of the sacrum׳s over the time intervals investigated for both walking (coefficient of correlation R>0.97) and slip (R>0.90) trials. There were detectable kinematic difference between the COM and the sacral for both trials. Our results indicated that the sacral marker can be used as a simple approximation of body COM for regular walking, and to somewhat a lesser extent, upon a slip. The benefits from the simplicity appear to overweigh the limitations in accuracy.  相似文献   

14.
Several investigators have suggested the presence of a link between Chronic Low Back Pain (CLBP) and lower limbs kinematics that can contribute to functional limitations and disability. Moreover, CLBP has been connected to postural and structural asymmetry. Understanding the movement pattern of lower extremities and its asymmetry during walking can provide a basis for examination and rehabilitation in people with CLBP. The present study focuses on lower limbs kinematics in individuals with CLBP during walking. Three-dimensional movements of the pelvic, hip, knee and ankle joints were tracked using a seven-camera Qualysis motion capture system. Functional dada analysis (FDA) was applied for the statistical analysis of pelvic and lower limbs motion patterns in 40 participants (20 CLBP and 20 controls). The CLBP group showed significantly different hip motion pattern in the transvers plane, altered knee and ankle motion pattern in the sagittal plane on the dominant side and different hip motion pattern in the transvers and frontal planes on the non-dominant side in comparison with the control group over the stance phase. In terms of symmetry, in the CLBP group, hip and knee moved through a significantly different motion patterns in the transvers plane on the dominant side in comparison with the non-dominant side. In the control group, knee moved through a significantly different motion pattern in the transvers plane on the dominant side in comparison with the non-dominant side. In conclusion, low back pain lead to altered movement patterns of the main joints of lower limbs especially on the dominant side during stance phase. Therefore, care should be taken to examine dominant lower limb movement pattern in CLBP to make a better clinical decision.  相似文献   

15.
Transition tasks between static and dynamic situations may challenge head stabilization and balance in older individuals. The study was designed to investigate differences between young and older women in the upper body motion during the voluntary task of gait initiation. Seven young (25 ± 2.3 years) and seven older healthy women (78 ± 3.4 years) were required to stand on a force platform and initiate walking at their self-selected preferred speed. Angles of head, neck and trunk were measured by motion analysis in the sagittal plane and a cross-correlation analysis was performed on segments pairs. Variability of head and neck angular displacements, as indicated by average standard deviation, was significantly greater in the older than in the young participants. The young women maintained dynamic stability of the upper body, as forward flexion of the trunk was consistently counteracted by coordinated head–neck extension. Differently, movement patterns employed by the older women also included a rigid motion of all upper body segments leaning forward as a single unit. These results demonstrated that older women perform the transition from standing to walking with greater variability in the patterns of upper body motion compared to young women.  相似文献   

16.
Repetitive exposures to altered gait and movement following lower-limb amputation (LLA) have been suggested to contribute to observed alterations in passive tissue properties and neuromuscular control in/surrounding the lumbar spine. These alterations, in turn, may affect the synergy between passive and active tissues during trunk movements. Eight males with unilateral LLA and eight non-amputation controls completed quasi-static trunk flexion–extension movements in seven distinct conditions of rotation in the transverse plane: 0° (sagittally-symmetric), ±15°, ±30°, and ±45° (sagittally-asymmetric). Electromyographic (EMG) activity of the bilateral lumbar erector spinae and lumbar kinematics were simultaneously recorded. Peak lumbar flexion and EMG-off angles were determined, along with the difference (“DIFF”) between these two angles and the magnitude of peak normalized EMG activities. Persons with unilateral LLA exhibited altered and asymmetric synergies between active and passive trunk tissues during both sagittally-symmetric and -asymmetric trunk flexion movements. Specifically, decreased and asymmetric passive contributions to trunk movements were compensated with increases in the magnitude and duration of active trunk muscle responses. Such alterations in trunk passive and active neuromuscular responses may result from repetitive exposures to abnormal gait and movement subsequent to LLA, and may increase the risk for LBP in this population.  相似文献   

17.
Ligands containing the 2-organochalcogenomethylpyridine motif with substituents in the 4- or 6-position of the pyridyl ring, R4,R6-pyCH2ER1 [R4 = R6 = H, ER1 = SMe (1), SeMe (2), SPh (6), SePh (7); R4 = Me, R6 = H, ER1 = SMe (3), SPh (8), SePh (9); R4 = H, R6 = Me, ER1 = SMe (4), SPh (10), SePh (11); R4 = H, R6 = Ph, ER1 = SMe (5), SPh (12), SePh (13)] are obtained on the reaction of R4,R6-pyMe with LiBun followed by R1EER1. On reaction with PdCl2(NCMe)2, the ligands with a 6-phenyl substituent form cyclopalladated species PdCl{6-(o-C6H4)pyCH2ER1-C,N,E} (5a, 12a, 13a) with the structure of 13a (ER1 = SePh) confirmed by X-ray crystallography; other ligands form complexes of stoichiometry PdCl2(R4,R6-pyCH2ER1). Complexes with R6 = H are monomeric with N,E-bidentate configurations, confirmed by structural analysis for 3a (R4 = Me, ER1 = SMe), 7a (R4 = H, ER1 = SePh) and 9a (R4 = Me, ER1 = SePh). Two of the 6-methyl substituted complexes examined by X-ray crystallography are oligomeric with trans-PdCl2(N,E) motifs and bridging ligands, trimeric [PdCl2(μ-6-MepyCH2SPh-N,S)]3 (10a) and dimeric [PdCl2(μ-6-MepyCH2SePh-N,Se)]2 (11a). This behaviour is attributed to avoidance of the Me···Cl interaction that would occur in the cis-bidentate configuration if the pyridyl plane had the same orientation with respect to the coordination plane as observed for 3a, 7a and 9a [dihedral angles 8.0(2)-16.8(2)°]. When examined as precatalysts for the Mizoroki-Heck reaction of n-butyl acrylate with aryl halides in N,N-dimethylacetamide at 120 °C, the complexes exhibit the anticipated trends in yield (ArI > ArBr > ArCl, higher yield for electron withdrawing substituents in 4-RC6H4Br and 4-RC6H4Cl). The most active precatalysts are PdCl2(R4-pyCH2SMe-N,S) (R = H (1a), Me (3a)); complexes of the selenium containing ligands exhibit very low activity. For closely related ligands, the changes SMe to SPh, 6-H to 6-Me, and 6-H to 6-Ph lead to lower activity, consistent with involvement of both the pyridyl and chalcogen donors in reactions involving aryl bromides. The precatalyst PdCl2(pyCH2SMe-N,S) (1a) exhibits higher activity for the reaction of aryl chlorides in Bun4NCl at 120 °C as a solvent under non-aqueous ionic liquid (NAIL) conditions.  相似文献   

18.

Predictive simulation of human walking has great potential in clinical motion analysis and rehabilitation engineering assessment, but large computational cost and reliance on measurement data to provide initial guess have limited its wide use. We developed a computationally efficient model combining optimization and inverse dynamics to predict three-dimensional whole-body motions and forces during human walking without relying on measurement data. Using the model, we explored two different optimization objectives, mechanical energy expenditure and the time integral of normalized joint torque. Of the two criteria, the sum of the time integrals of the normalized joint torques produced a more realistic walking gait. The reason for this difference is that most of the mechanical energy expenditure is in the sagittal plane (based on measurement data) and this leads to difficulty in prediction in the other two planes. We conclude that mechanical energy may only account for part of the complex performance criteria driving human walking in three dimensions.

  相似文献   

19.
Understanding changes in lumbar spine (LS) angles and intervertebral disc (IVD) behavior in end-range positions in healthy subjects can provide a basis for developing more specific LS models and comparing people with spine pathology. The purposes of this study are to quantify 3D LS angles and changes in IVD characteristics with end-range positions in 3 planes of motion using upright MRI in healthy people, and to determine which intervertebral segments contribute most in each plane of movement. Thirteen people (average age = 24.4 years, range 18–51 years; 9 females; BMI = 22.4 ± 1.8 kg/m2) with no history of low back pain were scanned in an upright MRI in standing, sitting flexion, sitting axial rotation (left, right), prone on elbows, prone extension, and standing lateral bending (left, right). Global and local intervertebral LS angles were measured. Anterior-posterior length of the IVD and location of the nucleus pulposus was measured. For the sagittal plane, lower LS segments contribute most to change in position, and the location of the nucleus pulposus migrated from a more posterior position in sitting flexion to a more anterior position in end-range extension. For lateral bending, the upper LS contributes most to end-range positions. Small degrees of intervertebral rotation (1–2°) across all levels were observed for axial plane positions. There were no systematic changes in IVD characteristics for axial or coronal plane positions.  相似文献   

20.
A mathematical model is developed to study the human thorax and pelvis movements in the frontal plane during normal walking. The model comprises of two-link base-excited inverted pendulums with one-degree of rotational freedom for each link. Since the linear motion of the pelvis has a significant effect on the upper body stability, this effect is included in the model by having a base point moving in the frontal plane in a general way. Furthermore, because the postural stability is the primary requirement of normal human walking, the control law is developed based on Lyapunov's stability theory, which guarantees the stability of the pendulum system around the up-right position. To evaluate the model, the simulation results, including the angular displacement of each link and the torque applied on each link, are compared with those from gait measurements. It is shown that the simulation results match those from gait measurements closely. These results suggest that the proposed model can provide a useful framework for analysis of postural control mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号