首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A glutamine synthetase (GS) gene, glnA, from the gram-positive obligate anaerobe Clostridium acetobutylicum was cloned on recombinant plasmid pHZ200 and enabled Escherichia coli glnA deletion mutants to utilize (NH4)2SO4 as a sole source of nitrogen. The cloned C. acetobutylicum gene was expressed from a regulatory region contained within the cloned DNA fragment. glnA expression was subject to nitrogen regulation in E. coli. This cloned glnA DNA did not enable an E. coli glnA ntrB ntrC deletion mutant to utilize arginine or low levels of glutamine as sole nitrogen sources, and failed to activate histidase activity in this strain which contained the Klebsiella aerogenes hut operon. The GS produced by pHZ200 was purified and had an apparent subunit molecular weight of approximately 59,000. There was no DNA or protein homology between the cloned C. acetobutylicum glnA gene and GS and the corresponding gene and GS from E. coli. The C. acetobutylicum GS was inhibited by Mg2+ in the γ-glutamyl transferase assay, but there was no evidence that the GS was adenylylated.  相似文献   

2.
Clostridium thermocellum ferments cellulose, is a promising candidate for ethanol production from cellulosic biomass, and has been the focus of studies aimed at improving ethanol yield. Thermoanaerobacterium saccharolyticum ferments hemicellulose, but not cellulose, and has been engineered to produce ethanol at high yield and titer. Recent research has led to the identification of four genes in T. saccharolyticum involved in ethanol production: adhE, nfnA, nfnB and adhA. We introduced these genes into C. thermocellum and observed significant improvements to ethanol yield, titer, and productivity. The four genes alone, however, were insufficient to achieve in C. thermocellum the ethanol yields and titers observed in engineered T. saccharolyticum strains, even when combined with gene deletions targeting hydrogen production. This suggests that other parts of T. saccharolyticum metabolism may also be necessary to reproduce the high ethanol yield and titer phenotype in C. thermocellum.  相似文献   

3.
4.
Glutamine synthetase (GS) synthesis inVibrio alginolyticus was regulated by temperature, oxygen and nitrogen levels. A GS gene,glnA fromV. alginolyticus was cloned on a 5.67 kb insert in the recombinant plasmid pRM210, which enabledEscherichia coli glnA, ntrB, ntrC deletion mutants to utilize (NH4)2SO4 as a sole source of nitrogen. TheV. alginolyticus glnA gene was expressed from a regulatory region contained within the cloned fragment.V. alginolyticus glnA expression from pRM210 was subject to regulation by temperature, oxygen and nitrogen levels. GS specific activity in anE. coli wild-type strain was not affected by temperature or oxygen. pRM211 was a deletion derivative of pRM210 and GS production by pRM211 was not regulated by temperature, oxygen or nitrogen levels inE. coli.Abbreviation GS glutamine synthetase  相似文献   

5.
6.
The fermentation of various saccharides derived from cellulosic biomass to ethanol was examined in mono- and cocultures of Clostridium thermocellum strain LQRI and C. thermohydrosulfuricum strain 39E. C. thermohydrosulfuricum fermented glucose, cellobiose, and xylose, but not cellulose or xylan, and yielded ethanol/acetate ratios of >7.0. C. thermocellum fermented a variety of cellulosic substrates, glucose, and cellobiose, but not xylan or xylose, and yielded ethanol/acetate ratios of ~1.0. At nonlimiting cellulosic substrate concentrations (~1%), C. thermocellum cellulase hydrolysis products accumulated during monoculture fermentation of Solka Floc cellulose and included glucose, cellobiose, xylose, and xylobiose. A stable coculture that contained nearly equal numbers of C. thermocellum and C. thermohydrosulfuricum was established that fermented a variety of cellulosic substrates, and the ethanol yield observed was twofold higher than in C. thermocellum monoculture fermentations. The metabolic basis for the enhanced fermentation effectiveness of the coculture on Solka Floc cellulose included: the ability of C. thermocellum cellulase to hydrolyze α-cellulose and hemicellulose; the enhanced utilization of mono- and disaccharides by C. thermohydrosulfuricum; increased cellulose consumption; threefold increase in the ethanol production rate; and twofold decrease in the acetate production rate. The coculture actively fermented MN300 cellulose, Avicel, Solka Floc, SO2-treated wood, and steam-exploded wood. The highest ethanol yield obtained was 1.8 mol of ethanol per mol of anhydroglucose unit in MN300 cellulose.  相似文献   

7.
NdgR (regulator for nitrogen source-dependent growth and antibiotic production), an IclR-like regulator, has been initially identified as a binding protein to the promoters of doxorubicin biosynthetic genes in Streptomcyes peucetius by DNA affinity capture assay method. NdgR is well conserved throughout the Streptomcyes species and many other bacteria such as Mycobacteria and Corynebacteria. In Streptomcyes coelicolor, ndgR deletion mutant showed slow cell growth and defects in differentiation and enhances the production of actinorhodin (ACT) in minimal media containing certain amino acids where wild-type strain could not produce ACT. Although deletion mutant of ndgR showed different antibiotic production in minimal media containing Leu or Gln, it only showed reduced mRNA expression levels of the genes involved in leucine metabolism. Neither NdgR-dependent expression of glnA nor direct binding of NdgR protein to glnA, glnII, and glnR promoters was observed. However, ScbR, which is governed by NdgR shown by gel mobility shift assay, binds to promoter of glnR, suggesting indirect regulation of glutamine metabolism by NdgR. NdgR protein binds to intergenic region of ndgR–leuC, and scbR–scbA involved in γ-butyrolactone. Two-dimensional gel analysis has shown a global effect of ndgR deletion in protein expression, including up-regulated proteins involved in ACT synthesis and down-regulation of chaperones such as GroEL, GroES, and DnaK. These results suggest a global regulatory role for NdgR in amino acid metabolisms, quorum sensing, morphological changes, antibiotic production, and expression of chaperonines in S. coelicolor. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
The products of glnL and glnG are bifunctional regulatory proteins   总被引:26,自引:0,他引:26  
Summary The role of the two glnA linked genes, glnL and glnG, in regulation of glnA expression and nitrogen metabolism in Escherichia coli has been studied by analysis of 131 glnL and 164 glnG genetically characterized mutations. A comparison of phenotypes with genetic position was performed for all mutations in glnL and glnG. We determined the ability of mutants to derepress GS, to grow on a variety of nitrogen sources in the absence of glutamine, and to suppress the glutamine requirement caused by a glnF mutation. The results indicate that both glnL and glnG products mediate negative regulation of glnA. The glnG product, but not that of glnL, is required for derepression of glnA. Both glnL and glnG products are required for positive regulation of gene products involved in the utilization of poor nitrogen sources. In each gene, point mutations were found which confer a phenotype dramatically different than that caused by insertion mutations. These point mutations fall into several frequently occurring classes. The phenotypes of these classes suggests that each gene product has bifunctional regulatory properties. Further, each class tends to be located in only a portion of a gene suggesting that the region encoding each function is genetically distinct.The role of glutamine synthetase in the regulation of glnA expression was investigated using two-dimensional polyacrylamide gel electrophoresis on extracts of 38 GlnA- mutants. Results of this analysis argue that glutamine synthetase is not structurally involved in the regulation of glnA expression.  相似文献   

9.
10.
InNeurospora crassa thenit-2 andnmr-1 (ms-5) loci represent the major control genes encoding regulatory proteins that allow the coordinated expression of various systems involved with the utilization of a secondary nitrogen source. In this paper we examine the effect of thenit-2 andms-5 (nmr-1 locus) mutations on the regulation of the ammonium assimilation enzymes, glutamine synthetase and glutamate dehydrogenase, which are regulated by the products of these genes; however, glutamate synthase is not so regulated. Glutamine synthetase and glutamate dehydrogenase levels are also regulated by the amino nitrogen content. We present evidence that thems-5 andgln r strains, which behave very similarly in their resistance to glutamine repression, are different and map in different loci.  相似文献   

11.
Bacterial growth requires equilibrated concentration of C, N and P sources. This work shows a phosphate control over the nitrogen metabolism in the model actinomycete Streptomyces coelicolor. Phosphate control of metabolism in Streptomyces is exerted by the two component system PhoR-PhoP. The response regulator PhoP binds to well-known PHO boxes composed of direct repeat units (DRus). PhoP binds to the glnR promoter, encoding the major nitrogen regulator as shown by EMSA studies, but not to the glnRII promoter under identical experimental conditions. PhoP also binds to the promoters of glnA and glnII encoding two glutamine synthetases, and to the promoter of the amtB-glnK-glnD operon, encoding an ammonium transporter and two putative nitrogen sensing/regulatory proteins. Footprinting analyses revealed that the PhoP-binding sequence overlaps the GlnR boxes in both glnA and glnII. ‘Information theory’ quantitative analyses of base conservation allowed us to establish the structure of the PhoP-binding regions in the glnR, glnA, glnII and amtB genes. Expression studies using luxAB as reporter showed that PhoP represses the above mentioned nitrogen metabolism genes. A mutant deleted in PhoP showed increased expression of the nitrogen metabolism genes. The possible conservation of phosphate control over nitrogen metabolism in other microorganisms is discussed.  相似文献   

12.
Streptomyces coelicolor A3(2) has three additional glnA-type genes besides the glutamine synthetase genes glnA (encoding GSI) and glnII (encoding GSII). The aim of this work was to characterize their functional properties and regulation. Sequence analyses revealed that GlnA2, GlnA3, and GlnA4 are dissimilar to S. coelicolor GSI and lack highly conserved amino acid residues involved in catalysis. In heterologous expression experiments, glnA2, glnA3, and glnA4, in contrast to glnA and glnII, were not capable of complementing the l-glutamine auxotrophy of an Escherichia coli glnA mutant. The lack of a conserved sequence motif reflecting adenylylation control of enzyme activity suggests that GlnA2, GlnA3, and GlnA4 are not regulated via adenylyltransferase-mediated modification. In DNA-binding assays, the OmpR-like regulator of nitrogen metabolism GlnRII, which interacts with the glnA and glnII promoters, did not bind to the upstream regions of glnA2, glnA3, and glnA4. These findings support the conclusion that glnA2, glnA3, and glnA4 are not directly involved in l-glutamine synthesis and nitrogen assimilation and are not subject to nitrogen control in S. coelicolor. The glnA3 gene product is similar to FluG, which is required for asexual sporulation in Aspergillus nidulans. However, inactivation of glnA3 does not block morphological differentiation in S. coelicolor.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

13.
14.
Significant quantitative differences in end-product yields by two strains of Clostridium thermocellum and one strain of Thermoanaerobium brockii were observed during cellobiose fermentation. Most notably, the ethanol/H2 and lactate/acetate ratios were drastically higher for T. brockii as compared with C. thermocellum strains LQRI and AS39. Exogenous H2 addition (0.4 to 1.0 atm) during culture growth increased the ethanol/acetate ratio of both T. brockii and AS39 but had no effect on LQRI. All strains had an operative Embden-Meyerhof glycolytic pathway and displayed catabolic activities of fructose-1,6-diphosphate–activated lactate dehydrogenase, coenzyme A acetylating pyruvate and acetaldehyde dehydrogenase, hydrogenase, ethanol dehydrogenase, and acetate kinase. Enzyme kinetic properties (apparent Km, Vmax, and Q10 values) and the specificity of electron donors/acceptors for different oxidoreductases involved in pyruvate conversion to fermentation products were compared in the three strains. Both species contained ferredoxin-linked pyruvate dehydrogenase and pyridine nucleotide oxidoreductases. Ferredoxin-nicotinamide adenine dinucleotide (NAD) reductase activity was significantly higher in T. brockii than in AS39 and was not detectable in LQRI. H2 production and hydrogenase activity were inversely related to ferredoxin-NAD reductase activity in the three strains. Ferredoxin-NAD phosphate reductase activity was present in cell extracts of both species. Alcohol dehydrogenase activity in C. thermocellum was NAD dependent, unidirectional, and inhibited by low concentrations of NAD and ethanol. Ethanol dehydrogenase activity of T. brockii was both NAD and NADP linked, reversible, and not inhibited by low levels of reaction products. The high lactate yield of T. brockii correlated with increased fructose-1,6-diphosphate. The relation of catabolic enzyme activity and quantitative differences in intracellular electron flow and fermentation product yields of these thermophilic bacteria is discussed.  相似文献   

15.
16.
The Clarke-Carbon bank of Escherichia coli strains carrying ColE1 hybrid plasmids was screened for complementation of gdh, gltB, and glnA mutations affecting nitrogen metabolism in E. coli. Plasmids which complemented each one of these mutations were isolated. In every case, the plasmids conferred to otherwise mutant cells the capacity to synthesize the corresponding wild-type enzymes: glutamate dehydrogenase, glutamate synthase, and glutamine synthetase (GS), respectively. For three representative plasmids, endonuclease restriction maps were constructed. One of the plasmids, pACR1, which complemented glnA mutations, including the glnA21::Tn5 insertion, was deemed to carry the glnA+ allele. GS synthesis by pACR1 glnA+glnA20 heterozygous merodiploids was subjected to repression by growth on 15 mm NH4+ and had a twofold high derepressed level than wild-type (glnA+) haploid cells when grown on 0.5 mm NH4+ or on glutamate as only nitrogen sources. The presence of glutamine as sole nitrogen source promoted repressed GS synthesis in the glnA+glnA20 merodiploids. By contrast, glutamine allowed almost fully derepressed synthesis of GS in glnA+ haploid cells.  相似文献   

17.
18.
Ammonium assimilation was followed in N-starved mycelia from the ectomycorrhizal Ascomycete Cenococcum graniforme. The evaluation of free amino acid pool levels after the addition of 5 millimolar NH4+ indicated that the absorbed ammonium was assimilated rapidly. Post-feeding nitrogen content of amino acids was very different from the initial values. After 8 hours of NH4+ feeding, glutamine accounted for the largest percentage of free amino acid nitrogen (43%). The addition of 5 millimolar methionine sulfoximine (MSX) to NH4+-fed mycelia caused an inhibition of glutamine accumulation with a corresponding increase in glutamate and alanine levels.

Using 15N as a tracer, it was found that the greatest initial labeling was into glutamine and glutamate followed by aspartate, alanine, and ornithine. On inhibiting glutamine synthetase using MSX, 15N enrichment of glutamate, alanine, aspartate, and ornithine continued although labeling of glutamine was quite low. Moreover, the incorporation of 15N label in insoluble nitrogenous compounds was lower in the presence of MSX. From the composition of free amino acid pools, the 15N labeling pattern and effects of MSX, NH4+ assimilation in C. graniforme mycelia appears to proceed via glutamate dehydrogenase pathway. This study also demonstrates that glutamine synthesis is an important reaction of ammonia utilization.

  相似文献   

19.
20.
Our lab and most others have not been able to close a carbon balance for fermentation by the thermophilic, cellulolytic anaerobe, Clostridium thermocellum. We undertook a detailed accounting of product formation in C. thermocellum ATCC 27405. Elemental analysis revealed that for both cellulose (Avicel) and cellobiose, >92% of the substrate carbon utilized could be accounted for in the pellet, supernatant and off-gas when including sampling. However, 11.1% of the original substrate carbon was found in the liquid phase and not in the form of commonly-measured fermentation products - ethanol, acetate, lactate, and formate. Further detailed analysis revealed all the products to be <720 da and have not usually been associated with C. thermocellum fermentation, including malate, pyruvate, uracil, soluble glucans, and extracellular free amino acids. By accounting for these products, 92.9% and 93.2% of the final product carbon was identified during growth on cellobiose and Avicel, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号