首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate change is altering forest ecosystems worldwide, particularly in steppe landscapes, where the rare tree communities are challenged with steadily increasing droughts. In the steppe of Eastern Europe, amid dry conditions, Quercus robur occupies mostly riverine habitats and ravines. Here we study the climate sensitivity and drought vulnerability of a Q. robur population located at the rear edge of the species range, in the steppe of Ukraine. The population occupies two adjacent but clearly contrasting in their microclimatic conditions sites: a river floodplain and a steep-sloping river bank. We develop tree earlywood, latewood, and total ring width site-level chronologies and evaluate their relationship with regional climate variables and the local river's water level using response function analysis. We find that trees growing in the floodplain and at the steep river bank have exhibited slightly different growth patterns. The trees at the flooded site have benefited from water proximity, which facilitated their earlywood growth. These trees have responded positively to the current May and previous September precipitation and previous and current May temperatures. At the non-flooded site, the trees have experienced warm temperatures and the lack of precipitation in June. The extreme drought episodes have triggered a decrease in the latewood and total ring width in trees from both sites. We established that oak growth in the floodplain had been depressed by an unknown stressor around 1900, therefore limiting our ability to identify the more beneficial steppe habitat for Q. robur conclusively. Nevertheless, our results provide a dendrochronological evidence of Q. robur survival in a dry steppe environment and lend new insights into local microclimatic factors contributing to it.  相似文献   

2.
Our data, collected in the extreme east of Europe, show that a significant biological effect of climate change has been experienced even in territories where temperature increase has been the lowest. This study documents the climatic response of pedunculate oak (Quercus robur) growing near its north-eastern limits in Europe. It demonstrates the potential of oak trees in old-growth forest to act as proxy climate indicators. Many factors may influence the temporal stability of the growth-climate, acorn crop-climate and first leafing-climate relationships. Climate data, climatic fluctuations, reproduction, genetics and tree-age may relate to this instability. Our results stress that an increase in climate variability or climatic warming resulting from warmer winters or summers could affect the oak population in eastern Europe in a similar way to that in western Europe. These findings, from remnants of oak forest in the middle Volga region of Russia, allow a further understanding of how species could be affected by future climates.  相似文献   

3.
Quantifying climate-growth associations is needed to evaluate how forest productivity will respond to climate change. Year-to-year fluctuations in forest productivity and radial growth are partly explained by local climatic conditions driven by large-scale atmospheric patterns. This is illustrated by Iberian forests in the western Mediterranean Basin, which are subjected to complex climatic and atmospheric influences such as Atlantic and Mediterranean cyclogenesis. The North Atlantic Oscillation (NAO) is one of the major atmospheric circulation patterns affecting Iberian forests since positive winter NAO phases lead to dry and warm conditions. The Western Mediterranean Oscillation (WeMO) may also explain Iberian forest growth in some areas since this index captures Mediterranean cyclogenesis and WeMO negative phases are linked to warm and wet spring to summer conditions. Here, we analyze the associations between atmospheric patterns, climate and tree growth and we determine if they are changing through time. We use dendrochronology to relate radial growth of four tree species (Pyrenean oak, Sweet chestnut, Maritime pine and Scots pine) growing in western Spain to climate conditions and the NAO and WeMO indices. Winter and early spring temperatures increased since the 1950s in the area whereas the negative association between winter precipitation and the NAO strengthened since then. However, mean temperature rise was particularly evident since the 1970s. Growth was reduced by dry conditions during the growing season (spring and summer), but also by cold and dry conditions during the previous autumn and winter. This explains why the NAO January and the WeMo April indices were negative to growth of three species excluding Pyrenean oak. The early 1970s reflected an inflection point in the instability of climate-growth associations in the study area. We conclude that the winter NAO is a relevant driver of forest growth in the western Iberian Peninsula forests but additional atmospheric patterns (WeMO) also affect, albeit to a minor extent, these forests.  相似文献   

4.
Pleurozium schreberi is one of the most common moss species in the forest area. It is dominant in the moss layer of blueberry and wood sorrel forests. It can occur in small quantities in almost all types of forests (even in bogs). It is also a typical component of the moss layer in tundra. The article considers the distribution of Pleurozium schreberi in the East European Plain and Eastern Fennoscandia. On the basis of literature sources on the occurrence of the species in different regions (according to point data), a model map of species distribution using the kriging-method has been created. The overlaying of the model map on the maps of spatial distribution of climatic parameters and vegetation zones in this area has revealed that the biogeographical preferences of the species. P. schreberi is characterized by its highest distribution in the forest zone. It often occurs here and represents a phytocenotically active species. The occurrence of Pleurozium schreberi dramatically decreases in the transition from the forest to the steppe zone, where it is a rather rare species, growing exclusively in pine and birch pegs. This species disappears in the open steppe. From the steppe zone to the south, the occurrence of Pleurozium schreberi gradually decreases with increase in summer temperatures and decrease in precipitation and with forest disappearance. In the north, where the species is highly active, its range abruptly ends on the coast of the Arctic Ocean. This pattern of distribution of Pleurozium schreberi is associated both with cenotic preferences and with climate: it becomes rare in regions with summer temperatures higher than +23°C and annual precipitation of less than 400 mm.  相似文献   

5.
In this study, we present the boundaries of five dendrochronologically homogeneous regions of pedunculate oak (Quercus robur L.) and the master chronologies for them for the period 1703–2018 based on 27 tree-ring chronologies from different locations around Belarus. The average length of the master chronologies ranges from 70 to 310 years. Our research shows that the radial increment of a pedunculate oak in Belarus is primarily limited by the previous year’s August-September temperature, by the current year’s May temperature and by June precipitation. Oak growth in northern Belarus is mostly limited by air temperature, whereas precipitation plays more significant role in central and southern parts of the country. The most unfavorable years for oak growth in Belarus were 1940 and 1952, both of which were years when a very frosty winter was followed by a droughty summer. The results provide an important achievement in Belarusian dendrochronology, since they represent a significant breakthrough for Eastern Europe, where there is a considerable lack of dendroclimatic researches of broadleaved species.  相似文献   

6.
We review the specificity of early and late phenological types of pedunculate oak differing in the spring flushing of leaves, namely, its occurrence in topographical elements, soil conditions and hydrology, responses to weather, and vulnerability to unfavorable factors. We show that phenological forms differ in a set of morphological and physiological indicators, growth energy, and peculiarities of the wood. We focus on the importance of the phenological specificity of planting materials when organizing oak plantations with regard to ongoing climatic changes and the ubiquitous decline of oak forests. The late form of oak is more preferable in most cases, because it is more resistant to spring frosts and insect damage, as well as the fact that it has higher quality wood in solid-volume trunks.  相似文献   

7.
We investigated climate–growth relationships (in terms of tree-ring width, basal area increment (BAI), and tree-ring δ13C signatures) of Quercus petraea in Central Europe (Luxembourg). Tree responses were assessed for 160 years and compared for sites with contrasting water supply (i.e. Cambisols vs. Regosols with 175 and 42 mm available water capacity, respectively). Oak trees displayed very low climate sensitivity, and climatic variables explained only 24 and 21 % of variance in tree-ring width (TRW) (Cambisol and Regosol sites, respectively). Contrary to our expectations, site-related differences in growth responses (i.e. BAI, δ13C signatures) to climate shifts were not significant. This finding suggests a high plasticity of oak trees in the study area. Despite a distinct growth depression found for all trees in the decade 1988–1997 (attributable to increasing annual mean temperatures by 1.1 °C), oak trees completely recovered in subsequent years. This indicates a high resilience of sessile oak to climate change. Shifts in δ13Ccorr signatures were mainly affected by temperature, and peaks in δ13Ccorr values (corrected for the anthropogenic increase in atmospheric CO2) coincided with decadal maximum temperatures. Correlations between δ13C signatures and TRW (mainly affected by precipitation) were not significant. This finding suggests that wood growth often was disconnected from carbon assimilation (e.g. due to carbon storage in the trunk or allocation to seeds). Since the selection of drought-resistant tree species gains importance within the context of adaptive forest management strategies, Q. petraea proves to be an adaptive tree species in Central Europe’s forests under shifting climatic conditions.  相似文献   

8.
Forests of the future need to cope with adverse climatic conditions, in particular drought, to ensure forest stability and productivity. Given the usually long rotation period of forests, forest managers need to select appropriate, i.e. productive and climate-change resilient tree species and/or provenances, to lower tree-mortality risks and sustain current wood production rates at the end of the 21st century. A frequent means of assessing which provenances of a given species are adapted to anticipated climate conditions is common garden experiments, where trees from different provenances are planted under similar climate conditions. However, in this context soil conditions also play an important role, since they govern how climate translates into plant-available water and hence plant’s ability to cope with extreme drought events. Here, we examine the effects of soil conditions on pedunculate oak (Quercus robur L.), by studying 10 different Dutch oak provenances that were planted in three provenance trials on different soil types in 1988 in the Netherlands. Using dendroecological methods, we quantified provenance-specific productivity and assessed provenance- and site-specific growth patterns. Our results indicated clear differences in productivity among provenances as well as soil-type specific growth patterns. Consequently, our study highlights the importance of incorporating soil characteristics when evaluating the growth performance of provenances within common garden experiments.  相似文献   

9.
There is ample evidence that continuously existing forests and afforestations on previously agricultural land differ with regard to ecosystem functions and services such as carbon sequestration, nutrient cycling and biodiversity. However, no studies have so far been conducted on possible long-term (>100 years) impacts on tree growth caused by differences in the ecological continuity of forest stands. In the present study we analysed the variation in tree-ring width of sessile oak (Quercus petraea (Matt.) Liebl.) trees (mean age 115–136 years) due to different land-use histories (continuously existing forests, afforestations both on arable land and on heathland). We also analysed the relation of growth patterns to soil nutrient stores and to climatic parameters (temperature, precipitation). Tree rings formed between 1896 and 2005 were widest in trees afforested on arable land. This can be attributed to higher nitrogen and phosphorous availability and indicates that former fertilisation may continue to affect the nutritional status of forest soils for more than one century after those activities have ceased. Moreover, these trees responded more strongly to environmental changes – as shown by a higher mean sensitivity of the tree-ring widths – than trees of continuously existing forests. However, the impact of climatic parameters on the variability in tree-ring width was generally small, but trees on former arable land showed the highest susceptibility to annually changing climatic conditions. We assume that incompletely developed humus horizons as well as differences in the edaphon are responsible for the more sensitive response of oak trees of recent forests (former arable land and former heathland) to variation in environmental conditions. We conclude that forests characterised by a long ecological continuity may be better adapted to global change than recent forest ecosystems.  相似文献   

10.
Climate warming and increasing aridity may negatively impact forest productivity across southern Europe. A better understanding of growth responses to climate and drought in southernmost populations could provide insight on the vulnerability of those forests to aridification. Here we investigate growth responses to climate and drought in nine Pinus pinaster (maritime pine) stands situated in Andalusia, southern Europe. The effect of climatic variables (temperatures and precipitation) and drought on radial growth was studied using dendrochronology along biogeographic and ecological gradients. We analyzed old native stands with non-tapped and resin-tapped trees mixed, showing their usefulness in dendroclimatic studies. Our results indicate a high plasticity in the growth responses of maritime pine to climate and drought, suggesting that site aridity modulated these responses. The positive growth responses to spring precipitation and the negative responses to summer drought were stronger in the more xeric inland sites than in wet coastal ones, in particular from the 1980s onwards. The characterization of tree species’ responses to climate at the southern or dry limits in relation to site conditions allows improving conservation strategies in drought-prone forest ecosystems.  相似文献   

11.
Sessile oak (Quercus petraea [Matt.] Liebl.) and Turkey oak (Quercus cerris L.) dominated mixed forests are common in low montane and hilly regions in Hungary. Here, we aimed to describe the long-term pattern and climatic responses of the radial growth of Q. petraea and Q. cerris in a xeric low-elevation forest, using retrospective tree-ring analysis for the period 1910–2019. We performed separate analyses with time series of full tree-ring (TRW), earlywood (EW) and latewood (LW) widths. Our results showed that the radial growth of the two species was largely synchronous over time, but became transiently divergent for a 20-year period after a drought in 1968, due to the greater-than-expected growth of Q. cerris and the supressed growth of Q. petraea. Precipitation was the major growth-limiting factor for both species, with a strong positive influence on LW particularly during the current early growing season (March-June), on EW in the previous late summer (August-September) and in the current early spring (March), and on all tree-ring traits in the previous December. The radial growth of both species was negatively related to temperature in the spring (May) and late summer (August) of both current and previous years. The climate-growth relationships showed general instability over time: the most striking temporal change was a gradual shift of positive correlations with precipitation and SPEI during the growing season from spring (March-May) to summer (June-August) since the 1980s over the analysed period. The two species had similarly low growth resistance to droughts in four studied pointer years (1968, 1993, 2002 and 2012), but Q. cerris exhibited a greater capacity to recover over the four post-drought years, and thus higher growth resilience, particularly after the drought of 1968. Our results contribute to the better understanding of the role of climate variability and droughts in the growth of the two co-existing species in transitional locations between closed forests and forest-steppes.  相似文献   

12.
中国北方蒙古栎林起源和发展的初步探讨   总被引:10,自引:0,他引:10  
于顺利  马克平  陈灵芝   《广西植物》2000,20(2):131-137
古生态学的研究显示 ,栎林 (包括蒙古栎林 )在华北地区和东北地区的分布在地质历史时期不是一成不变的 ,其优势度也呈现上下波动 ,栎树优势度的增减是由于地质历史时期气候的变化造成的 ;蒙古栎的起源时间可能不早于上新世中期 ,蒙古栎林的起源也应不早于上新世中期。蒙古栎林的起源原因有 2种 ,即火与人类的反复砍伐。火是原生性质蒙古栎林在地质历史时期存在和扩散的根本原因 ,过度的人类活动 (主要是反复砍伐 )是促成现在蒙古栎次生林占优势地位的主要原因 ,这是由蒙古栎这个树种的生物学特性决定的 ,在没有外界因素的干扰和火减少的情况下 ,蒙古栎在演替过程中逐渐被耐荫的树种所取代 ,但是在中国北方 ,由于人类活动的加剧 ,蒙古栎林的优势度有增加的趋势。  相似文献   

13.
Seasonally dry tropical forests are an important global climatic regulator, a main driver of the global carbon sink dynamics and are predicted to suffer future reductions in their productivity due to climate change. Yet, little is known about how interannual climate variability affects tree growth and how climate-growth responses vary across rainfall gradients in these forests. Here we evaluate changes in climate sensitivity of tree growth along an environmental gradient of seasonally dry tropical vegetation types (evergreen forest – savannah – dry forest) in Northeastern Brazil, using congeneric species of two common neotropical genera: Aspidosperma and Handroanthus. We built tree-ring width chronologies for each species × forest type combinations and explored how growth variability correlated with local (precipitation, temperature) and global (the El Niño Southern Oscillation - ENSO) climatic factors. We also assessed how growth sensitivity to climate and the presence of growth deviations varied along the gradient. Precipitation stimulates tree growth and was the main growth-influencing factor across vegetation types. Trees in the dry forest site showed highest growth sensitivity to interannual variation in precipitation. Temperature and ENSO phenomena correlated negatively with growth and sensitivity to both climatic factors were similar across sites. Negative growth deviations were present and found mostly in the dry-forest species. Our results reveal a dominant effect of precipitation on tree growth in seasonally dry tropical forests and suggest that along the gradient, dry forests are the most sensitivity to drought. These forests may therefore be the most vulnerable to the deleterious effects of future climatic changes. These results highlight the importance of understanding the climatic sensitivity of different tropical forests. This understanding is key to predict the carbon dynamics in tropical regions, and sensitivity differences should be considered when prioritizing conservation measures of seasonally dry topical forests.  相似文献   

14.

Key message

The intra-annual stem girth increment of Quercus ilex is mainly driven by water availability and secondly by temperature. Tree size and competition modulate the growth response to climate.

Abstract

Holm oak (Quercus ilex ssp. ballota [Desf.] Samp.) is the most widespread species in the Iberian peninsula, being one of the most representative trees in forests and open woodlands. The analysis of stem girth increment of holm oak may provide valuable information about how Mediterranean ecosystems will respond to the forecasted climate changes. However, due to the variability of the Mediterranean climate, the knowledge of intra-annual patterns of growth is needed for a better understanding of the influence of the climatic variables at this scale. To this end, we used band dendrometers to measure monthly stem girth increments of 96 holm oak trees from 2003 to 2010, located in open woodlands and dense Mediterranean forests in southwestern Spain. We assessed the effects of climate, competition, topography, and initial stem diameter on stem girth increment. The major stem increment periods were in spring and autumn whereas increment rates were very low or even negative in winter and summer. Spring was not every year the season with the higher stem increments, but autumn when spring was very dry. Higher precipitation, soil moisture, and relative humidity had significant positive effects on stem increment, whereas higher temperature, reference evapotranspiration, and solar radiation had significant negative effects. Initial tree diameter and competition from nearby trees partly explained significant differences in stem increment of individual trees. Therefore, the forecasted climatic changes, in which decreased rainfall in spring and increased summer drought are expected in the Mediterranean region, may be a significant threat to the Q. ilex ecosystems.  相似文献   

15.
In the southern forest steppe, the upland oak forests on loamy dark grey soils, which have the automorphic mode of water supply, usually endure droughts during the second half of the vegetative season due to the creation and use by biogeocenoses of some moisture reserves into soil and groundwater (GW), which are accessible to deep layers of root systems of trees. Two shallow sandy horizons interlaying moraine loams of the Dnieper glaciation at altitudes of 120 and 143 m above sea level serve as collectors and transporters of GW, the table of which is 10-15 m lower than the surface of the watershed plateaus and terraces. By autumn, trees desiccate subsoil horizons to the capillary fringe of GW. In early spring, the moisture of dried horizons is restored. The reserves of GW permit the upland oak forests to preserve rather high values of predawn leaf water potential such as Ψ PD ≥ ?0.8 MPa despite the decrease in water potential of soil at a depth of 0-2 m of the soil layer to a value of Ψ S ≈ ?2.4 MPa.  相似文献   

16.
Leaf flushing during the dry season: the paradox of Asian monsoon forests   总被引:3,自引:0,他引:3  
Aim Most deciduous species of dry monsoon forests in Thailand and India form new leaves 1–2 months before the first monsoon rains, during the hottest and driest part of the year around the spring equinox. Here we identify the proximate causes of this characteristic and counterintuitive ‘spring‐flushing’ of monsoon forest trees. Location Trees of 20 species were observed in semi‐deciduous dry monsoon forests of northern Thailand with a 5–6‐month‐long severe dry season and annual rainfall of 800–1500 mm. They were growing on dry ridges (dipterocarp–oak forest) or in moist gullies (mixed deciduous–evergreen forest) at 680–750 m altitude near Chiang Mai and in a dry lowland stand of Shorea siamensis in Uthai Thani province. Methods Two novel methods were developed to analyse temporal and spatial variation in vegetative dry‐season phenology indicative of differences in root access to subsoil water reserves. Results Evergreen and leaf exchanging species at cool, moist sites leafed soon after partial leaf shedding in January–February. Drought‐resistant dipterocarp species were evergreen at moist sites, deciduous at dry sites, and trees leafed soon after leaf shedding whenever subsoil water was available. Synchronous spring flushing of deciduous species around the spring equinox, as induced by increasing daylength, was common in Thailand's dipterocarp–oak forest and appears to be prevalent in Indian dry monsoon forests of the Deccan peninsula with its deep, water‐storing soils. Main conclusions In all observed species leafing during the dry season relied on subsoil water reserves, which buffer trees against prolonged climatic drought. Implicitly, rainfall periodicity, i.e. climate, is not the principal determinant of vegetative tree phenology. The establishment of new foliage before the summer rains is likely to optimize photosynthetic gain in dry monsoon forests with a relatively short, wet growing season.  相似文献   

17.
Aim The diversity changes that occurred in Central European forests during the early Holocene can be better understood using ecological knowledge of modern analogues of these forests, which occur in far Eastern Europe. Here we compare the diversity of vascular plants, bryophytes and snails among different forest types of the Southern Urals to provide insights into the palaeoecology of the vanished Central European forests. Location Southern Ural Mountains, Bashkortostan, Russia. Methods We recorded all species of vascular plants, ground-dwelling bryophytes and land snails, and measured biotic and abiotic variables, in 100-m2 plots located in four forest types dominated by different trees: Pinus sylvestris–Larix sibirica, Betula pendula–Populus tremula, Quercus robur and Acer platanoides–Tilia cordata–Ulmus glabra. These types correspond to the chronosequence of forest communities that occurred in Central Europe in the early Holocene. Results The species richness of herb-layer plants was most affected by the canopy-transmitted light. The former three forest types had open canopy and were rich in species, whereas the Acer–Tilia–Ulmus forests were darker and poor in species. The species richness of ground-dwelling bryophytes decreased from coniferous to broad-leaved deciduous forests. In contrast, the highest species richness of snails was in the Acer–Tilia–Ulmus forests owing to the higher calcium content in the litter of these trees. Main conclusions Based on the modern analogue of the Southern Ural forests, we propose the hypothesis that the late-glacial open-canopy pine and larch forests of Central European lowlands were rich in light-demanding species of vascular plants, many of which were also typical of tall-grass steppes or mesic grasslands. They also contained several species of ground-dwelling bryophytes. The spread of birch, aspen and oak in the early Holocene reduced the local species richness of ground-dwelling bryophytes but not of vascular plants. The subsequent spread of elm, lime, maple and ash caused canopy closure, a retreat of the light-demanding herbs and a decline in the local species richness of vascular plants. Besides the increased shading by these tree species, their litter enriched soils in calcium, and enhanced decomposition and nutrient cycling. This supported an increase in the species richness of land snails.  相似文献   

18.
The dynamics and distribution of oak forests on the territory of Eastern Europe over the last 12500 years have been studied. The basic materials used in this study are spore-pollen diagrams converted into the PALAEO database. As a result of this study, a series of maps describing the paleohabitat of oak forests with a 500-year increment has been constructed. Different structures of the paleohabitat of English oak (Quercus robur L.) and the basic forest paleocommunities including this species have been identified and described. The main migration pathways and refugia of oak forests have been determined, including the Volynskaya and Podolskaya uplands, the southern part of the Central Russian and Privolzhskaya uplands, Meshchera, Kodry, and the Mozyrsk-Ovruch-Slovechan refugium.  相似文献   

19.
The effects of mixing tree species on tree growth and stand production have been abundantly studied, mostly looking at tree species diversity effects while controlling for stand density and structure. Regarding the shift towards managing forests as complex adaptive systems, we also need insight into the effects of structural diversity. Strict forest reserves, left for spontaneous development, offer unique opportunities for studying the effects of diversity in tree species and stand structure. We used data from repeated inventories in ten forest reserves in the Netherlands and northern Belgium to study the growth of pine and oak. We investigated whether the diversity of a tree's local neighbourhood (i.e., species and structural diversity) is important in explaining its basal area growth. For the subcanopy oak trees, we found a negative effect of the tree species richness of the local neighbours, which – in the studied forests – was closely related to the share of shade-casting tree species in the neighbourhood. The growth of the taller oak trees was positively affected by the height diversity of the neighbour trees. Pine tree growth showed no relation with neighbourhood diversity. Tree growth decreased with neighbourhood density for both species (although no significant relationship was found for the small pines). We found no overall diversity-growth relationship in the studied uneven-aged mature forests; the relationship depended on tree species identity and the aspect of diversity considered (species vs. structural diversity).  相似文献   

20.
In the Mediterranean climate regions, drought events are expected to affect the growth of forests ecosystems by changing trees growth rates and eventually inducing shifts in their growth patterns. Cork oak (Quercus suber L.) is a strictly western Mediterranean tree species periodically harvested for its bark, the cork. So far, cork oak has received limited attention for dendroclimatological studies due to its typical faint and erratic tree wood rings. Moreover, its distinct cork rings chronologies have been completely neglected. In this study we introduce an approach using cork ring chronologies dated back 9–10 years for climate response. Despite enhancing interannual variability and increasing statistical response to short-term climatic variability, still poorly understood, this study will possibly allow infer long-term climate response. We analyzed the cork ring chronologies of 55 cork samples collected in mature (under exploitation) trees in three distinct locations in southwestern Portugal. Cork growth recorded a high climate signal, with highly significant and coherent responses to the yearly climate-related sources of variation. We successfully assessed trends of cork growth via correlation analysis including selected climate variables among mean monthly temperature, monthly precipitation and, on an annual basis, eight precipitation indices. The high mean sensitivities and inter-series correlations found for cork ring chronologies combined with the significant variance explained by climate variables suggest that climate is likely one dominant signal that affects cork growth, but local environmental stresses can decisively affect this (climate) signal. Assuming cork growth as a proxy for cork oak growth, it seems conceivable that despite the trees being highly resistant to drought stress, cork oak woodlands in southwestern Portugal would have to face lesser growth in a global warming scenario.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号