首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PurposeIn radiotherapy, MRI is used for target volume and organs-at-risk delineation for its superior soft-tissue contrast as compared to CT imaging. However, MRI does not provide the electron density of tissue necessary for dose calculation. Several methods of synthetic-CT (sCT) generation from MRI data have been developed for radiotherapy dose calculation. This work reviewed deep learning (DL) sCT generation methods and their associated image and dose evaluation, in the context of MRI-based dose calculation.MethodsWe searched the PubMed and ScienceDirect electronic databases from January 2010 to March 2021. For each paper, several items were screened and compiled in figures and tables.ResultsThis review included 57 studies. The DL methods were either generator-only based (45% of the reviewed studies), or generative adversarial network (GAN) architecture and its variants (55% of the reviewed studies). The brain and pelvis were the most commonly investigated anatomical localizations (39% and 28% of the reviewed studies, respectively), and more rarely, the head-and-neck (H&N) (15%), abdomen (10%), liver (5%) or breast (3%). All the studies performed an image evaluation of sCTs with a diversity of metrics, with only 36 studies performing dosimetric evaluations of sCT.ConclusionsThe median mean absolute errors were around 76 HU for the brain and H&N sCTs and 40 HU for the pelvis sCTs. For the brain, the mean dose difference between the sCT and the reference CT was <2%. For the H&N and pelvis, the mean dose difference was below 1% in most of the studies. Recent GAN architectures have advantages compared to generator-only, but no superiority was found in term of image or dose sCT uncertainties. Key challenges of DL-based sCT generation methods from MRI in radiotherapy is the management of movement for abdominal and thoracic localizations, the standardization of sCT evaluation, and the investigation of multicenter impacts.  相似文献   

2.
PurposeRadiotherapy treatment planning based on magnetic resonance imaging (MRI) benefits from increased soft-tissue contrast and functional imaging. MRI-only planning is attractive but limited by the lack of electron density information required for dose calculation, and the difficulty to differentiate air and bone. MRI can map magnetic susceptibility to separate bone from air. A method is introduced to produce synthetic CT (sCT) through automatic voxel-wise assignment of CT numbers from an MRI dataset processed that includes magnetic susceptibility mapping.MethodsVolumetric multi-echo gradient echo datasets were acquired in the heads of five healthy volunteers and fourteen patients with cancer using a 3 T MRI system. An algorithm for CT synthesis was designed using the volunteer data, based on fuzzy c-means clustering and adaptive thresholding of the MR data (magnitude, fat, water, and magnetic susceptibility). Susceptibility mapping was performed using a modified version of the iterative phase replacement algorithm. On patient data, the algorithm was assessed by direct comparison to X-ray computed tomography (CT) scans.ResultsThe skull, spine, teeth, and major sinuses were clearly distinguished in all sCT, from healthy volunteers and patients. The mean absolute CT number error between X-ray CT and sCT in patients ranged from 78 and 134 HU.ConclusionSusceptibility mapping using MRI can differentiate air and bone for CT synthesis. The proposed method is automated, fast, and based on a commercially available MRI pulse sequence. The method avoids registration errors and does not rely on a priori information, making it suitable for nonstandard anatomy.  相似文献   

3.
PurposeTo investigate the dosimetric accuracy of synthetic computed tomography (sCT) images generated by a clinically-ready voxel-based MRI simulation package, and to develop a simple and feasible method to improve the accuracy.Methods20 patients with brain tumor were selected to undergo CT and MRI simulation. sCT images were generated by a clinical MRI simulation package. The discrepancy between planning CT and sCT in CT number and body contour were evaluated. To resolve the discrepancies, an sCT specific CT-relative electron density (RED) calibration curve was used, and a layer of pseudo-skin was created on the sCT. The dosimetric impact of these discrepancies, and the improvement brought about by the modifications, were evaluated by a planning study. Volumetric modulated arc therapy (VMAT) treatment plans for each patient were created and optimized on the planning CT, which were then transferred to the original sCT and the modified-sCT for dose re-calculation. Dosimetric comparisons and gamma analysis between the calculated doses in different images were performed.ResultsThe average gamma passing rate with 1%/1 mm criteria was only 70.8% for the comparison of dose distribution between planning CT and original sCT. The mean dose difference between the planning CT and the original sCT were −1.2% for PTV D95 and −1.7% for PTV Dmax, while the mean dose difference was within 0.7 Gy for all relevant OARs. After applying the modifications on the sCT, the average gamma passing rate was increased to 92.2%. Mean dose difference in PTV D95 and Dmax were reduced to −0.1% and −0.3% respectively. The mean dose difference was within 0.2 Gy for all OAR structures and no statistically significant difference were found.ConclusionsThe modified-sCT demonstrated improved dosimetric agreement with the planning CT. These results indicated the overall dosimetric accuracy and practicality of this improved MR-based treatment planning method.  相似文献   

4.
AimTo evaluate calculation of treatment plans based on synthetic-CT (sCT) images generated from MRI.BackgroundBecause of better soft tissue contrast, MR images are used in addition to CT images for radiotherapy planning. However, registration of CT and MR images or repositioning between scanning sessions introduce systematic errors, hence suggestions for MRI-only therapy. The lack of information on electron density necessary for dose calculation leads to sCT (synthetic CT) generation. This work presents a comparison of dose distribution calculated on standard CT and sCT.Materials and methods10 prostate patients were included in this study. CT and MR images were collected for each patient and then water equivalent (WE) and MRCAT images were generated. The radiation plans were optimized on CT and then recalculated on MRCAT and WE data. 2D gamma analysis was also performed.ResultsThe mean differences in the majority of investigated DVH points were in order of 1% up to 10%, including both MRCAT and WE dose distributions. Mean gamma pass for acceptance criteria 1%/1 mm were greater than 82.5%. Prescribed doses for target volumes and acceptable doses for organs at risk were met in almost all cases.ConclusionsThe dose calculation accuracy on MRCAT was not significantly compromised in the majority of clinical relevant DVH points. The introduction of MRCAT into practise would eliminate systematic errors, increase patients’ comfort and reduce treatment expenses. Institutions interested in MRCAT commissioning must, however, consider changes to established workflow.  相似文献   

5.
PurposeAmong the different available methods for synthetic CT generation from MR images for the task of MR-guided radiation planning, the deep learning algorithms have and do outperform their conventional counterparts. In this study, we investigated the performance of some most popular deep learning architectures including eCNN, U-Net, GAN, V-Net, and Res-Net for the task of sCT generation. As a baseline, an atlas-based method is implemented to which the results of the deep learning-based model are compared.MethodsA dataset consisting of 20 co-registered MR-CT pairs of the male pelvis is applied to assess the different sCT production methods' performance. The mean error (ME), mean absolute error (MAE), Pearson correlation coefficient (PCC), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR) metrics were computed between the estimated sCT and the ground truth (reference) CT images.ResultsThe visual inspection revealed that the sCTs produced by eCNN, V-Net, and ResNet, unlike the other methods, were less noisy and greatly resemble the ground truth CT image. In the whole pelvis region, the eCNN yielded the lowest MAE (26.03 ± 8.85 HU) and ME (0.82 ± 7.06 HU), and the highest PCC metrics were yielded by the eCNN (0.93 ± 0.05) and ResNet (0.91 ± 0.02) methods. The ResNet model had the highest PSNR of 29.38 ± 1.75 among all models. In terms of the Dice similarity coefficient, the eCNN method revealed superior performance in major tissue identification (air, bone, and soft tissue).ConclusionsAll in all, the eCNN and ResNet deep learning methods revealed acceptable performance with clinically tolerable quantification errors.  相似文献   

6.
BackgroundThe objective of this study is to determine the impact of intensity modulated proton therapty (IMPT) optimization techniques on the proton dose comparison of commercially available magnetic resonance for calculating attenuation (MRCA T) images, a synthetic computed tomography CT (sCT) based on magnetic resonance imaging (MRI) scan against the CT images and find out the optimization technique which creates plans with the least dose differences against the regular CT image sets.Material and methodsRegular CT data sets and sCT image sets were obtained for 10 prostate patients for the study. Six plans were created using six distinct IMPT optimization techniques including multi-field optimization (MFO), single field uniform dose (SFUD) optimization, and robust optimization (RO) in CT image sets. These plans were copied to MRCA T, sCT datasets and doses were computed. Doses from CT and MRCA T data sets were compared for each patient using 2D dose distribution display, dose volume histograms (DVH), homogeneity index (HI), conformation number (CN) and 3D gamma analysis. A two tailed t-test was conducted on HI and CN with 5% significance level with a null hypothesis for CT and sCT image sets.ResultsAnalysis of ten CT and sCT image sets with different IMPT optimization techniques shows that a few of the techniques show significant differences between plans for a few evaluation parameters. Isodose lines, DVH, HI, CN and t-test analysis shows that robust optimizations with 2% range error incorporated results in plans, when re-computed in sCT image sets results in the least dose differences against CT plans compared to other optimization techniques. The second best optimization technique with the least dose differences was robust optimization with 5% range error.ConclusionThis study affirmatively demonstrates the impact of IMPT optimization techniques on synthetic CT image sets dose comparison against CT images and determines the robust optimization with 2% range error as the optimization technique which gives the least dose difference when compared to CT plans.  相似文献   

7.
Computed tomography (CT) is the standard imaging modality in radiation therapy treatment planning (RTP). However, magnetic resonance (MR) imaging provides superior soft tissue contrast, increasing the precision of target volume selection. We present MR-only based RTP for a rat brain on a small animal radiation research platform (SARRP) using probabilistic voxel classification with multiple MR sequences. Six rat heads were imaged, each with one CT and five MR sequences. The MR sequences were: T1-weighted, T2-weighted, zero-echo time (ZTE), and two ultra-short echo time sequences with 20 μs (UTE1) and 2 ms (UTE2) echo times. CT data were manually segmented into air, soft tissue, and bone to obtain the RTP reference. Bias field corrected MR images were automatically segmented into the same tissue classes using a fuzzy c-means segmentation algorithm with multiple images as input. Similarities between segmented CT and automatic segmented MR (ASMR) images were evaluated using Dice coefficient. Three ASMR images with high similarity index were used for further RTP. Three beam arrangements were investigated. Dose distributions were compared by analysing dose volume histograms. The highest Dice coefficients were obtained for the ZTE-UTE2 combination and for the T1-UTE1-T2 combination when ZTE was unavailable. Both combinations, along with UTE1-UTE2, often used to generate ASMR images, were used for further RTP. Using 1 beam, MR based RTP underestimated the dose to be delivered to the target (range: 1.4%-7.6%). When more complex beam configurations were used, the calculated dose using the ZTE-UTE2 combination was the most accurate, with 0.7% deviation from CT, compared to 0.8% for T1-UTE1-T2 and 1.7% for UTE1-UTE2. The presented MR-only based workflow for RTP on a SARRP enables both accurate organ delineation and dose calculations using multiple MR sequences. This method can be useful in longitudinal studies where CT’s cumulative radiation dose might contribute to the total dose.  相似文献   

8.
AimDevelopment of MRI sequences and processing methods for the production of images appropriate for direct use in stereotactic radiosurgery (SRS) treatment planning.BackgroundMRI is useful in SRS treatment planning, especially for patients with brain lesions or anatomical targets that are poorly distinguished by CT, but its use requires further refinement. This methodology seeks to optimize MRI sequences to generate distortion-free and clinically relevant MR images for MRI-only SRS treatment planning.Materials and methodsWe used commercially available SRS MRI-guided radiotherapy phantoms and eight patients to optimize sequences for patient imaging. Workflow involved the choice of correct MRI sequence(s), optimization of the sequence parameters, evaluation of image quality (artifact free and clinically relevant), measurement of geometrical distortion, and evaluation of the accuracy of our offline correction algorithm.ResultsCT images showed a maximum deviation of 1.3 mm and minimum deviation of 0.4 mm from true fiducial position for SRS coordinate definition. Interestingly, uncorrected MR images showed maximum deviation of 1.2 mm and minimum of 0.4 mm, comparable to CT images used for SRS coordinate definition. After geometrical correction, we observed a maximum deviation of 1.1 mm and minimum deviation of only 0.3 mm.ConclusionOur optimized MRI pulse sequences and image correction technique show promising results; MR images produced under these conditions are appropriate for direct use in SRS treatment planning.  相似文献   

9.
PurposeImage-guided radiation therapy could benefit from implementing adaptive radiation therapy (ART) techniques. A cycle-generative adversarial network (cycle-GAN)-based cone-beam computed tomography (CBCT)-to-synthetic CT (sCT) conversion algorithm was evaluated regarding image quality, image segmentation and dosimetric accuracy for head and neck (H&N), thoracic and pelvic body regions.MethodsUsing a cycle-GAN, three body site-specific models were priorly trained with independent paired CT and CBCT datasets of a kV imaging system (XVI, Elekta). sCT were generated based on first-fraction CBCT for 15 patients of each body region. Mean errors (ME) and mean absolute errors (MAE) were analyzed for the sCT. On the sCT, manually delineated structures were compared to deformed structures from the planning CT (pCT) and evaluated with standard segmentation metrics. Treatment plans were recalculated on sCT. A comparison of clinically relevant dose-volume parameters (D98, D50 and D2 of the target volume) and 3D-gamma (3%/3mm) analysis were performed.ResultsThe mean ME and MAE were 1.4, 29.6, 5.4 Hounsfield units (HU) and 77.2, 94.2, 41.8 HU for H&N, thoracic and pelvic region, respectively. Dice similarity coefficients varied between 66.7 ± 8.3% (seminal vesicles) and 94.9 ± 2.0% (lungs). Maximum mean surface distances were 6.3 mm (heart), followed by 3.5 mm (brainstem). The mean dosimetric differences of the target volumes did not exceed 1.7%. Mean 3D gamma pass rates greater than 97.8% were achieved in all cases.ConclusionsThe presented method generates sCT images with a quality close to pCT and yielded clinically acceptable dosimetric deviations. Thus, an important prerequisite towards clinical implementation of CBCT-based ART is fulfilled.  相似文献   

10.
《IRBM》2022,43(3):161-168
BackgroundAccurate delineation of organs at risk (OARs) is critical in radiotherapy. Manual delineation is tedious and suffers from both interobserver and intraobserver variability. Automatic segmentation of brain MR images has a wide range of applications in brain tumor radiotherapy. In this paper, we propose a multi-atlas based adaptive active contour model for OAR automatic segmentation in brain MR images.MethodsThe proposed method consists of two parts: multi-atlas based OAR contour initiation and an adaptive edge and local region based active contour evolution. In the adaptive active contour model, we define an energy functional with an adaptive edge intensity fitting force which is responsible for evaluating contour inwards or outwards, and a local region intensity fitting force which guides the evolution of the contour.ResultsExperimental results show that the proposed method achieved more accurate segmentation results in brainstem, eyes and lens automatic segmentation with the Dice Similar Coefficient (DSC) value of 87.19%, 91.96%, 77.11% respectively. Besides, the dosimetric parameters also demonstrate the high consistency of the manual OAR delineations and the auto segmentation results of the proposed method in brain tumor radiotherapy.ConclusionsThe geometric and dosimetric evaluations show the desirable performance of the proposed method on the application of OARs segmentations in brain tumor radiotherapy.  相似文献   

11.
12.
PurposeTo measure the combined errors due to geometric inaccuracy and image co-registration on secondary images (dynamic CT angiography (dCTA), 3D DynaCT angiography (DynaCTA), and magnetic resonance images (MRI)) that are routinely used to aid in target delineation and planning for stereotactic radiosurgery (SRS).MethodsThree phantoms (one commercial and two in-house built) and two different analysis approaches (commercial and MATLAB based) were used to quantify the magnitude of geometric image distortion and co-registration errors for different imaging modalities within CyberKnife’s MultiPlan treatment planning software. For each phantom, the combined errors were reported as a mean target registration error (TRE). The mean TRE’s for different intramodality imaging parameters (e.g., mAs, kVp, and phantom set-ups) and for dCTA, DynaCTA, and MRI systems were measured.ResultsOnly X-ray based imaging can be performed with the commercial phantom, and the mean TRE ± standard deviation values were large compared to the in-house analysis using MATLAB. With the 3D printed phantom, even drastic changes in treatment planning CT imaging protocols did not greatly influence the mean TRE (<0.5 mm for a 1 mm slice thickness CT). For all imaging modalities, the largest mean TRE was found on DynaCT, followed by T2-weighted MR images (albeit all <1 mm).ConclusionsThe user may overestimate the mean TRE if the commercial phantom and MultiPlan were used solely. The 3D printed phantom design is a sensitive and suitable quality assurance tool for measuring 3D geometric inaccuracy and co-registration errors across all imaging modalities.  相似文献   

13.
目的:对比分析MRI和螺旋CT增强在肝脏占位性病变诊断中的价值。方法:以2012年7月-2016年5月我院收治的临床考虑为肝脏占位性病变70例患者为研究对象,将70例患者根据入组先后顺序分为两组,35例行增强CT扫描,35例行动态增强MRI扫描,比较两组患者的病理诊断结果、病灶个数及直径、增强CT及MRI的诊断结果和检查过程中的不良反应及耐受性。结果:CT增强组和MRI增强组的肝脏占位性病变的病理诊断、病变类型、分布及病灶个数(71 vs 70)、病灶直径(2.25±2.01 cm vs2.19±1.98 cm)比较差异均无统计学意义(P0.05);以病理诊断结果为金标准,MRI增强组的总诊断符合率为85.71%,CT增强组的总诊断符合率为77.14%,MRI增强组的总诊断符合率高于CT增强组,但差异无统计学意义(P0.05);CT增强组共发生2例不良反应,均为轻度恶心,MRI增强组未出现造影剂不良反应,CT增强组的不良反应发生率(5.71%vs 0.00%)及视觉模拟评分法(VAS)评分(1.25 0.96分vs 0.71 0.56分)均显著高于MRI增强组(P0.05)。结论:CT增强和MRI增强扫描对于肝脏占位性病变的诊断均具有较高的临床价值,其中MRI增强扫描的安全性和耐受性更高,临床医师可根据患者的经济状态、身体状态等因素的综合评估,选择合适的检查手段,必要时可两者联合检查,以提高诊断的准确性。  相似文献   

14.
PurposeTo devise a novel Spatial Normalization framework for Voxel-based analysis (VBA) in brain radiotherapy. VBAs rely on accurate spatial normalization of different patients’ planning CTs on a common coordinate system (CCS). The cerebral anatomy, well characterized by MRI, shows instead poor contrast in CT, resulting in potential inaccuracies in VBAs based on CT alone.MethodsWe analyzed 50 meningioma patients treated with proton-therapy, undergoing planning CT and T1-weighted (T1w) MRI. The spatial normalization pipeline based on MR and CT images consisted in: intra-patient registration of CT to T1w, inter-patient registration of T1w to MNI space chosen as CCS, doses propagation to MNI.The registration quality was compared with that obtained by Statistical Parametric Mapping software (SPM), used as benchmark. To evaluate the accuracy of dose normalization, the dose organ overlap (DOO) score was computed on gray matter, white matter and cerebrospinal fluid before and after normalization. In addition, the trends in the DOOs distribution were investigated by means of cluster analysis.ResultsThe registration quality was higher for the proposed method compared to SPM (p < 0.001). The DOO scores showed a significant improvement after normalization (p < 0.001). The cluster analysis highlighted 2 clusters, with one of them including the majority of data and exhibiting acceptable DOOs.ConclusionsOur study presents a robust tool for spatial normalization, specifically tailored for brain dose VBAs. Furthermore, the cluster analysis provides a formal criterion for patient exclusion in case of non-acceptable normalization results. The implemented framework lays the groundwork for future reliable VBAs in brain irradiation studies.  相似文献   

15.
PurposeTo compare abdominal imaging dose from 3D imaging in radiology (standard/low-dose/dual-energy CT) and radiotherapy (planning CT, kV cone-beam CT (CBCT)).MethodsDose was measured by thermoluminescent dosimeters (TLD’s) placed at 86 positions in an anthropomorphic phantom. Point, organ and effective dose were assessed, and secondary cancer risk from imaging was estimated.ResultsOverall dose and mean organ dose comparisons yield significantly lower dose for the optimized radiology protocols (dual-source and care kV), with an average dose of 0.34±0.01 mGy and 0.54±0.01 mGy (average ± standard deviation), respectively. Standard abdominal CT and planning CT involve considerably higher dose (13.58 ± 0.18 mGy and 18.78±0.27 mGy, respectively). The CBCT dose show a dose fall-off near the field edges. On average, dose is reduced as compared with the planning or standard CT (3.79 ± 0.21 mGy for 220° rotation and 7.76 ± 0.37 mGy for 360°), unless the high-quality setting is chosen (20.30 ± 0.96 mGy). The mean organ doses show a similar behavior, which translates to the estimated secondary cancer risk. The modelled risk is in the range between 0.4 cases per million patient years (PY) for the radiological scans dual-energy and care kV, and 300 cases per million PY for the high-quality CBCT setting.ConclusionsModern radiotherapy imaging techniques (while much lower in dose than radiotherapy), involve considerably more dose to the patient than modern radiology techniques. Given the frequency of radiotherapy imaging, a further reduction in radiotherapy imaging dose appears to be both desirable and technically feasible.  相似文献   

16.
To achieve consistent target delineation in radiotherapy for hepatocellular carcinoma (HCC), image registration between simulation CT and diagnostic MRI was explored.Twenty patients with advanced HCC were included. The median interval between MRI and CT was 11 days. CT was obtained with shallow free breathing and MRI at exhale phase. On each CT and MRI, the liver and the gross target volume (GTV) were drawn. A rigid image registration was taken according to point information of vascular bifurcation (Method[A]) and pixel information of volume of interest only including the periphery of the liver (Method[B]) and manually drawn liver (Method[C]). In nine cases with an indefinite GTV on CT, a virtual sphere was generated at the epicenter of the GTV. The GTV from CT (VGTV[CT]) and MRI (VGTV[MR]) and the expanded GTV from MRI (V+GTV[MR]) considering geometrical registration error were defined. The underestimation (uncovered V[CT] by V[MR]) and the overestimation (excessive V[MR] by V[CT]) were calculated. Through a paired T-test, the difference between image registration techniques was analyzed.For method[A], the underestimation rates of VGTV[MR] and V+GTV[MR] were 16.4 ± 8.9% and 3.2 ± 3.7%, and the overestimation rates were 16.6 ± 8.7% and 28.4 ± 10.3%, respectively. For VGTV[MR] and V+GTV[MR], the underestimation rates and overestimation rates of method[A] were better than method[C]. The underestimation rates and overestimation rates of the VGTV[MR] were better in method[B] than method[C]. By image registration and additional margin, about 97% of HCC could be covered. Method[A] or method[B] could be recommended according to physician preference.  相似文献   

17.
《Endocrine practice》2021,27(11):1077-1081
ObjectiveMedullary thyroid carcinoma (MTC) can be very aggressive, and early diagnosis is based on routine measurement of serum calcitonin (CT) and RET genetic testing for hereditary forms. Basal serum CT (bCT) concentrations are useful in the early detection of MTC, although it is still unclear whether they can also be used for the differential diagnosis between MTC and C-cell hyperplasia (CCH). Since false-positive results can be obtained with the basal measurement of CT, a provocative test to evaluate stimulated CT (sCT) is often needed. The objective of this study was to investigate the utility of a calcium gluconate test for CT in distinguishing MTC from CCH, a precancerous condition in hereditary forms of MTCs but with unclear significance in sporadic MTCs.MethodsA total of 74 patients underwent the calcium loading test before thyroidectomy, and bCT and sCT levels were compared with histologic results by receiver operating characteristic plot analyses.ResultsA peak CT level of 388.4 pg/mL after stimulation with calcium gluconate was able to significantly distinguish patients with MTC from those with CCH and those without C-cell pathology, with 81.8% sensitivity and 36.5% specificity. A bCT level of 16.1 pg/mL was able to distinguish between these 2 groups of patients with a sensitivity of 90%.ConclusionHigh-dose calcium test is an effective procedure that can be applied for differential diagnosis of MTC and CCH. Reference ranges for calcium sCT levels and CT thresholds in different groups of patients have been identified.  相似文献   

18.
目的:研究MR扩散加权成像(DWI)和CT及MR灌注成像对不同程度肝硬化患者的诊断价值。方法:选择从2015年8月到2017年2月在我院治疗的肝硬化患者60例作为研究对象,根据Child-Pugh分级进行分组,其中A级32例为轻度肝硬化(记为A组),B级16例、C级12例为中重度肝硬化(记为B组),另选同期在我院进行体检的健康志愿者30例记为C组,对三组受试者分别进行DWI检查、CT及MR灌注成像,对比各组ADC值、肝脏动门脉灌注比率[SSr(ct)及SSr(mr)],采用Spearman相关性分析各指标之间的相关性。结果:三组ADC值整体比较无统计学差异(P0.05),A、B两组的ADC值较C组降低,但差异无统计学意义(P0.05)。A、B两组的ADC值比较无统计学差异(P0.05)。三组SSr(ct)、SSr(mr)整体比较,差异有统计学意义(P0.05),B组的SSr(ct)及SSr(mr)较A、C两组明显升高,差异均有统计学意义(均P0.05)。A、C两组的SSr(ct)及SSr(mr)比较无统计学差异(P0.05)。Spearman相关性分析显示,不同程度肝硬化患者的SSr(ct)与SSr(mr)呈正相关(r=0.687,P=0.000)。结论:CT以及MR灌注成像均可较好地反映出肝硬化的病变程度,且二者较DWI成像的诊断效果更佳,值得临床推广。  相似文献   

19.
PurposeTo implement a daily CBCT based dose accumulation technique in order to assess ideal robust optimization (RO) parameters for IMPT treatment of prostate cancer.MethodsTen prostate cancer patients previously treated with VMAT and having daily CBCT were included. First, RO-IMPT plans were created with ± 3 mm and ± 5 mm patient setup and ± 3% proton range uncertainties, respectively. Second, the planning CT (pCT) was deformably registered to the CBCT to create a synthetic CT (sCT). Both daily and weekly sampling strategies were employed to determine optimal dose accumulation frequency. Doses were recalculated on sCTs for both ± 3 mm/±3% and ± 5 mm/±3% uncertainties and were accumulated back to the pCT. Accumulated doses generated from ± 3 mm/±3% and ± 5 mm/±3% RO-IMPT plans were evaluated using the clinical dose volume constraints for CTV, bladder, and rectum.ResultsDaily accumulated dose based on both ± 3mm/±3% and ±5 mm/±3% uncertainties for RO-IMPT plans resulted in satisfactory CTV coverage (RO-IMPT3mm/3% CTVV95 = 99.01 ± 0.87% vs. RO-IMPT5mm/3% CTVV95 = 99.81 ± 0.2%, P = 0.002). However, the accumulated dose based on ± 3 mm/3% RO-IMPT plans consistently provided greater OAR sparing than ±5 mm/±3% RO-IMPT plans (RO-IMPT3mm/3% rectumV65Gy = 2.93 ± 2.39% vs. RO-IMPT5mm/3% rectumV65Gy = 4.38 ± 3%, P < 0.01; RO-IMPT3mm/3% bladderV65Gy = 5.2 ± 7.12% vs. RO-IMPT5mm/3% bladderV65Gy = 7.12 ± 9.59%, P < 0.01). The gamma analysis showed high dosimetric agreement between weekly and daily accumulated dose distributions.ConclusionsThis study demonstrated that for RO-IMPT optimization, ±3mm/±3% uncertainty is sufficient to create plans that meet desired CTV coverage while achieving superior sparing to OARs when compared with ± 5 mm/±3% uncertainty. Furthermore, weekly dose accumulation can accurately estimate the overall dose delivered to prostate cancer patients.  相似文献   

20.
PurposeTo determine the targeting accuracy of brain radiosurgery when planning procedures employing different MRI and MRI + CT combinations are adopted.Materials and methodA new phantom, the BrainTool, has been designed and realized to test image co-registration and targeting accuracy in a realistic anatomical situation. The phantom was created with a 3D printer and materials that mimic realistic brain MRI and CT contrast using a model extracted from a synthetic MRI study of a human brain. Eight markers distributed within the BrainTool provide for assessment of the accuracy of image registrations while two cavities that host an ionization chamber are used to perform targeting accuracy measurements with an iterative cross-scan method. Two procedures employing 1.5 T MRI-only or a combination of MRI (taken with 1.5 T or 3 T scanners) and CT to carry out Gamma Knife treatments were investigated. As distortions can impact targeting accuracy, MR images were preliminary evaluated to assess image deformation extent using GammaTool phantom.ResultsMR images taken with both scanners showed average and maximum distortion of 0.3 mm and 1 mm respectively. The marker distances in co-registered images resulted below 0.5 mm for both MRI scans. The targeting mismatches obtained were 0.8 mm, 1.0 mm and 1.2 mm for MRI-only and MRI + CT (1,5T and 3 T), respectively.ConclusionsProcedures using a combination of MR and CT images provide targeting accuracies comparable to those of MRI-only procedures. The BrainTool proved to be a suitable tool for carrying out co-registration and targeting accuracy of Gamma Knife brain radiosurgery treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号