首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different forms of photoreceptor degeneration cause blindness. Retinal degeneration-3 protein (RD3) deficiency in photoreceptors leads to recessive congenital blindness. We proposed that aberrant activation of the retinal membrane guanylyl cyclase (RetGC) by its calcium-sensor proteins (guanylyl cyclase–activating protein [GCAP]) causes this retinal degeneration and that RD3 protects photoreceptors by preventing such activation. We here present in vivo evidence that RD3 protects photoreceptors by suppressing activation of both RetGC1 and RetGC2 isozymes. We further suggested that insufficient inhibition of RetGC by RD3 could contribute to some dominant forms of retinal degeneration. The R838S substitution in RetGC1 that causes autosomal-dominant cone–rod dystrophy 6, not only impedes deceleration of RetGC1 activity by Ca2+GCAPs but also elevates this isozyme''s resistance to inhibition by RD3. We found that RD3 prolongs the survival of photoreceptors in transgenic mice harboring human R838S RetGC1 (R838S+). Overexpression of GFP-tagged human RD3 did not improve the calcium sensitivity of cGMP production in R838S+ retinas but slowed the progression of retinal blindness and photoreceptor degeneration. Fluorescence of the GFP-tagged RD3 in the retina only partially overlapped with immunofluorescence of RetGC1 or GCAP1, indicating that RD3 separates from the enzyme before the RetGC1:GCAP1 complex is formed in the photoreceptor outer segment. Most importantly, our in vivo results indicate that, in addition to the abnormal Ca2+ sensitivity of R838S RetGC1 in the outer segment, the mutated RetGC1 becomes resistant to inhibition by RD3 in a different cellular compartment(s) and suggest that RD3 overexpression could be utilized to reduce the severity of cone–rod dystrophy 6 pathology.  相似文献   

2.
The photoreceptor-specific proteins guanylyl cyclase-activating proteins (GCAPs) bind and regulate retinal membrane guanylyl cyclase 1 (RetGC1) but not natriuretic peptide receptor A (NPRA). Study of RetGC1 regulation in vitro and its association with fluorescently tagged GCAP in transfected cells showed that R822P substitution in the cyclase dimerization domain causing congenital early onset blindness disrupted RetGC1 ability to bind GCAP but did not eliminate its affinity for another photoreceptor-specific protein, retinal degeneration 3 (RD3). Likewise, the presence of the NPRA dimerization domain in RetGC1/NPRA chimera specifically disabled binding of GCAPs but not of RD3. In subsequent mapping using hybrid dimerization domains in RetGC1/NPRA chimera, multiple RetGC1-specific residues contributed to GCAP binding by the cyclase, but the region around Met823 was the most crucial. Either positively or negatively charged residues in that position completely blocked GCAP1 and GCAP2 but not RD3 binding similarly to the disease-causing mutation in the neighboring Arg822. The specificity of GCAP binding imparted by RetGC1 dimerization domain was not directly related to promoting dimerization of the cyclase. The probability of coiled coil dimer formation computed for RetGC1/NPRA chimeras, even those incapable of binding GCAP, remained high, and functional complementation tests showed that the RetGC1 active site, which requires dimerization of the cyclase, was formed even when Met823 or Arg822 was mutated. These results directly demonstrate that the interface for GCAP binding on RetGC1 requires not only the kinase homology region but also directly involves the dimerization domain and especially its portion containing Arg822 and Met823.  相似文献   

3.
Retinal membrane guanylyl cyclase 1 (RetGC1) regulated by guanylyl cyclase-activating proteins (GCAPs) controls photoreceptor recovery and when mutated causes blinding disorders. We evaluated the principal models of how GCAP1 and GCAP2 bind RetGC1: through a shared docking interface versus independent binding sites formed by distant portions of the cyclase intracellular domain. At near-saturating concentrations, GCAP1 and GCAP2 activated RetGC1 from HEK293 cells and RetGC2−/−GCAPs1,2−/− mouse retinas in a non-additive fashion. The M26R GCAP1, which binds but does not activate RetGC1, suppressed activation of recombinant and native RetGC1 by competing with both GCAP1 and GCAP2. Untagged GCAP1 displaced both GCAP1-GFP and GCAP2-GFP from the complex with RetGC1 in HEK293 cells. The intracellular segment of a natriuretic peptide receptor A guanylyl cyclase failed to bind GCAPs, but replacing its kinase homology and dimerization domains with those from RetGC1 restored GCAP1 and GCAP2 binding by the hybrid cyclase and its GCAP-dependent regulation. Deletion of the Tyr1016–Ser1103 fragment in RetGC1 did not block GCAP2 binding to the cyclase. In contrast, substitutions in the kinase homology domain, W708R and I734T, linked to Leber congenital amaurosis prevented binding of both GCAP1-GFP and GCAP2-GFP. Our results demonstrate that GCAPs cannot regulate RetGC1 using independent primary binding sites. Instead, GCAP1 and GCAP2 bind with the cyclase molecule in a mutually exclusive manner using a common or overlapping binding site(s) in the Arg488–Arg851 portion of RetGC1, and mutations in that region causing Leber congenital amaurosis blindness disrupt activation of the cyclase by both GCAP1 and GCAP2.  相似文献   

4.
Regulation of cGMP synthesis by retinal membrane guanylyl cyclase isozymes (RetGC1 and RetGC2) in rod and cone photoreceptors by calcium-sensitive guanylyl cyclase activating proteins (GCAP1 and GCAP2) is one of the key molecular mechanisms affecting the response to light and is involved in congenital retinal diseases. The objective of this study was to identify the physiological sequence of events underlying RetGC activation in vivo, by studying the electrophysiological and biochemical properties of mouse rods in a new genetic model lacking GCAP1. The GCAP1−/− retinas expressed normal levels of RetGC isozymes and other phototransduction proteins, with the exception of GCAP2, whose expression was elevated in a compensatory fashion. RetGC activity in GCAP1−/− retinas became more sensitive to Ca2+ and slightly increased. The bright flash response in electroretinogram (ERG) recordings recovered quickly in GCAP1−/−, as well as in RetGC1−/−GCAP1−/−, and RetGC2−/−GCAP1−/− hybrid rods, indicating that GCAP2 activates both RetGC isozymes in vivo. Individual GCAP1−/− rod responses varied in size and shape, likely reflecting variable endogenous GCAP2 levels between different cells, but single-photon response (SPR) amplitude and time-to-peak were typically increased, while recovery kinetics remained faster than in wild type. Recovery from bright flashes in GCAP1−/− was prominently biphasic, because rare, aberrant SPRs producing the slower tail component were magnified. These data provide strong physiological evidence that rod photoresponse recovery is shaped by the sequential recruitment of RetGC isozyme activation by GCAPs according to the different GCAP sensitivities for Ca2+ and specificities toward RetGC isozymes. GCAP1 is the ‘first-response’ sensor protein that stimulates RetGC1 early in the response and thus limits the SPR amplitude, followed by activation of GCAP2 that adds stimulation of both RetGC1 and RetGC2 to speed-up photoreceptor recovery.  相似文献   

5.
Retinal guanylyl cyclase (RetGC)-activating proteins (GCAPs) regulate visual photoresponse and trigger congenital retinal diseases in humans, but GCAP interaction with its target enzyme remains obscure. We mapped GCAP1 residues comprising the RetGC1 binding site by mutagenizing the entire surface of GCAP1 and testing the ability of each mutant to bind RetGC1 in a cell-based assay and to activate it in vitro. Mutations that most strongly affected the activation of RetGC1 localized to a distinct patch formed by the surface of non-metal-binding EF-hand 1, the loop and the exiting helix of EF-hand 2, and the entering helix of EF-hand 3. Mutations in the binding patch completely blocked activation of the cyclase without affecting Ca2+ binding stoichiometry of GCAP1 or its tertiary fold. Exposed residues in the C-terminal portion of GCAP1, including EF-hand 4 and the helix connecting it with the N-terminal lobe of GCAP1, are not critical for activation of the cyclase. GCAP1 mutants that failed to activate RetGC1 in vitro were GFP-tagged and co-expressed in HEK293 cells with mOrange-tagged RetGC1 to test their direct binding in cyto. Most of the GCAP1 mutations introduced into the “binding patch” prevented co-localization with RetGC1, except for Met-26, Lys-85, and Trp-94. With these residues mutated, GCAP1 completely failed to stimulate cyclase activity but still bound RetGC1 and competed with the wild type GCAP1. Thus, RetGC1 activation by GCAP1 involves establishing a tight complex through the binding patch with an additional activation step involving Met-26, Lys-85, and Trp-94.  相似文献   

6.
Two isoforms of guanylate cyclase, GC1 and GC2 encoded by GUCY2D and GUCY2F, are responsible for the replenishment of cGMP in photoreceptors after exposure to light. Both are required for the normal kinetics of photoreceptor sensitivity and recovery, although disease mutations are restricted to GUCY2D. Recessive mutations in this gene cause the severe early-onset blinding disorder Leber congenital amaurosis whereas dominant mutations result in a later onset less severe cone–rod dystrophy. Cyclase activity is regulated by Ca2+ which binds to the GC-associated proteins, GCAP1 and GCAP2 encoded by GUCA1A and GUCA1B, respectively. No recessive mutations in either of these genes have been reported. Dominant missense mutations are largely confined to the Ca2+-binding EF hands of the proteins. In a similar fashion to the disease mechanism for the dominant GUCY2D mutations, these mutations generally alter the sensitivity of the cyclase to inhibition as Ca2+ levels rise following a light flash.  相似文献   

7.
GCAP1, a member of the neuronal calcium sensor subclass of the calmodulin superfamily, confers Ca2+-sensitive activation of retinal guanylyl cyclase 1 (RetGC1). We present NMR resonance assignments, residual dipolar coupling data, functional analysis, and a structural model of GCAP1 mutant (GCAP1V77E) in the Ca2+-free/Mg2+-bound state. NMR chemical shifts and residual dipolar coupling data reveal Ca2+-dependent differences for residues 170–174. An NMR-derived model of GCAP1V77E contains Mg2+ bound at EF2 and looks similar to Ca2+ saturated GCAP1 (root mean square deviations = 2.0 Å). Ca2+-dependent structural differences occur in the fourth EF-hand (EF4) and adjacent helical region (residues 164–174 called the Ca2+ switch helix). Ca2+-induced shortening of the Ca2+ switch helix changes solvent accessibility of Thr-171 and Leu-174 that affects the domain interface. Although the Ca2+ switch helix is not part of the RetGC1 binding site, insertion of an extra Gly residue between Ser-173 and Leu-174 as well as deletion of Arg-172, Ser-173, or Leu-174 all caused a decrease in Ca2+ binding affinity and abolished RetGC1 activation. We conclude that Ca2+-dependent conformational changes in the Ca2+ switch helix are important for activating RetGC1 and provide further support for a Ca2+-myristoyl tug mechanism.  相似文献   

8.
Guanylyl cyclase activating protein 1 (GCAP1), a member of the neuronal calcium sensor (NCS) subclass of the calmodulin superfamily, confers Ca2+-sensitive activation of retinal guanylyl cyclase 1 (RetGC1) upon light activation of photoreceptor cells. Here we present NMR assignments and functional analysis to probe Ca2+-dependent structural changes in GCAP1 that control activation of RetGC. NMR assignments were obtained for both the Ca2+-saturated inhibitory state of GCAP1 versus a GCAP1 mutant (D144N/D148G, called EF4mut), which lacks Ca2+ binding in EF-hand 4 and models the Ca2+-free/Mg2+-bound activator state of GCAP1. NMR chemical shifts of backbone resonances for Ca2+-saturated wild type GCAP1 are overall similar to those of EF4mut, suggesting a similar main chain structure for assigned residues in both the Ca2+-free activator and Ca2+-bound inhibitor states. This contrasts with large Ca2+-induced chemical shift differences and hence dramatic structural changes seen for other NCS proteins including recoverin and NCS-1. The largest chemical shift differences between GCAP1 and EF4mut are seen for residues in EF4 (S141, K142, V145, N146, G147, G149, E150, L153, E154, M157, E158, Q161, L166), but mutagenesis of EF4 residues (F140A, K142D, L153R, L166R) had little effect on RetGC1 activation. A few GCAP1 residues in EF-hand 1 (K23, T27, G32) also show large chemical shift differences, and two of the mutations (K23D and G32N) each decrease the activation of RetGC, consistent with a functional conformational change in EF1. GCAP1 residues at the domain interface (V77, A78, L82) have NMR resonances that are exchange broadened, suggesting these residues may be conformationally dynamic, consistent with previous studies showing these residues are in a region essential for activating RetGC1.  相似文献   

9.
《PloS one》2013,8(1)
Leber congenital amaurosis (LCA) is the earliest and most severe retinal degeneration (RD), and the most common cause of incurable blindness diagnosed in children. It is occasionally the presenting symptom of multisystemic ciliopathies which diagnosis will require a specific care of patients. Nineteen LCA genes are currently identified and three of them account for both non-syndromic and syndromic forms of the disease. RD3 (LCA12) was implicated as a LCA gene based on the identification of homozygous truncating mutations in two LCA families despite the screening of large cohorts of patients. Here we provide a comprehensive survey of RD3 mutations and of their clinical expression through the screening of a cohort of 852 patients originating worldwide affected with LCA or early-onset and severe RD. We identified three RD3 mutations in seven unrelated consanguineous LCA families - i.e., a 2 bp deletion and two nonsense mutations – predicted to cause complete loss of function. Five families originating from the Southern Shores of the Mediterranean segregated a similar mutation (c.112C>T, p.R38*) suggesting that this change may have resulted from an ancient founder effect. Considering the low frequency of RD3 carriers, the recurrence risk for LCA in non-consanguineous unions is negligible for both heterozygote and homozygote RD3 individuals. The LCA12 phenotype in our patients is highly similar to those of patients with mutant photoreceptor-specific guanylate cyclase (GUCY2D/LCA1). This observation is consistent with the report of the role of RD3 in trafficking of GUCYs and gives further support to a common mechanism of photoreceptor degeneration in LCA12 and LCA1, i.e., inability to increase cytoplasmic cGMP concentration in outer segments and thus to recover the dark-state. Similar to LCA1, LCA12 patients have no extraocular symptoms despite complete inactivation of both RD3 alleles, supporting the view that extraocular investigations in LCA infants with RD3 mutations should be avoided.  相似文献   

10.
11.
Congenital stationary night blindness (CSNB) is a non-progressive, clinically and genetically heterogeneous disease of impaired night vision. We report a naturally-occurring, stationary, autosomal recessive phenotype in beagle dogs with normal daylight vision but absent night vision. Affected dogs had normal retinas on clinical examination, but showed no detectable rod responses. They had “negative-type” mixed rod and cone responses in full-field ERGs. Their photopic long-flash ERGs had normal OFF-responses associated with severely reduced ON-responses. The phenotype is similar to the Schubert-Bornschein form of complete CSNB in humans. Homozygosity mapping ruled out most known CSNB candidates as well as CACNA2D4 and GNB3. Three remaining genes were excluded based on sequencing the open reading frame and intron-exon boundaries (RHO, NYX), causal to a different form of CSNB (RHO) or X-chromosome (NYX, CACNA1F) location. Among the genes expressed in the photoreceptors and their synaptic terminals, and mGluR6 cascade and modulators, reduced expression of GNAT1, CACNA2D4 and NYX was observed by qRT-PCR in both carrier (n = 2) and affected (n = 2) retinas whereas CACNA1F was down-regulated only in the affecteds. Retinal morphology revealed normal cellular layers and structure, and electron microscopy showed normal rod spherules and synaptic ribbons. No difference from normal was observed by immunohistochemistry (IHC) for antibodies labeling rods, cones and their presynaptic terminals. None of the retinas showed any sign of stress. Selected proteins of mGluR6 cascade and its modulators were examined by IHC and showed that PKCα weakly labeled the rod bipolar somata in the affected, but intensely labeled axonal terminals that appeared thickened and irregular. Dendritic terminals of ON-bipolar cells showed increased Goα labeling. Both PKCα and Goα labeled the more prominent bipolar dendrites that extended into the OPL in affected but not normal retinas. Interestingly, RGS11 showed no labeling in the affected retina. Our results indicate involvement of a yet unknown gene in this canine model of complete CSNB.  相似文献   

12.

Background

Homozygosity mapping has facilitated the identification of the genetic causes underlying inherited diseases, particularly in consanguineous families with multiple affected individuals. This knowledge has also resulted in a mutation dataset that can be used in a cost and time effective manner to screen frequent population-specific genetic variations associated with diseases such as inherited retinal disease (IRD).

Methods

We genetically screened 13 families from a cohort of 81 Pakistani IRD families diagnosed with Leber congenital amaurosis (LCA), retinitis pigmentosa (RP), congenital stationary night blindness (CSNB), or cone dystrophy (CD). We employed genome-wide single nucleotide polymorphism (SNP) array analysis to identify homozygous regions shared by affected individuals and performed Sanger sequencing of IRD-associated genes located in the sizeable homozygous regions. In addition, based on population specific mutation data we performed targeted Sanger sequencing (TSS) of frequent variants in AIPL1, CEP290, CRB1, GUCY2D, LCA5, RPGRIP1 and TULP1, in probands from 28 LCA families.

Results

Homozygosity mapping and Sanger sequencing of IRD-associated genes revealed the underlying mutations in 10 families. TSS revealed causative variants in three families. In these 13 families four novel mutations were identified in CNGA1, CNGB1, GUCY2D, and RPGRIP1.

Conclusions

Homozygosity mapping and TSS revealed the underlying genetic cause in 13 IRD families, which is useful for genetic counseling as well as therapeutic interventions that are likely to become available in the near future.  相似文献   

13.
Night vision requires signaling from rod photoreceptors to adjacent bipolar cells in the retina. Mutations in the genes NYX and GRM6, expressed in ON bipolar cells, lead to a disruption of the ON bipolar cell response. This dysfunction is present in patients with complete X-linked and autosomal-recessive congenital stationary night blindness (CSNB) and can be assessed by standard full-field electroretinography (ERG), showing severely reduced rod b-wave amplitude and slightly altered cone responses. Although many cases of complete CSNB (cCSNB) are caused by mutations in NYX and GRM6, in ∼60% of the patients the gene defect remains unknown. Animal models of human diseases are a good source for candidate genes, and we noted that a cCSNB phenotype present in homozygous Appaloosa horses is associated with downregulation of TRPM1. TRPM1, belonging to the family of transient receptor potential channels, is expressed in ON bipolar cells and therefore qualifies as an excellent candidate. Indeed, mutation analysis of 38 patients with CSNB identified ten unrelated cCSNB patients with 14 different mutations in this gene. The mutation spectrum comprises missense, splice-site, deletion, and nonsense mutations. We propose that the cCSNB phenotype in these patients is due to the absence of functional TRPM1 in retinal ON bipolar cells.  相似文献   

14.
Dominant mutations occurring in the high-affinity Ca2+-binding sites (EF-hands) of the GUCA1A gene encoding guanylate cyclase-activating protein 1 (GCAP1) cause slowly progressing cone-rod dystrophy (CORD) in a dozen families worldwide. We developed a nonallele-specific adeno-associated virus (AAV)-based RNAi knockdown strategy to rescue the retina degeneration caused by GCAP1 mutations. We generated three genomic transgenic mouse lines expressing wildtype (WT) and L151F mutant mouse GCAP1 with or without a C-terminal GFP fusion. Under control of endogenous regulatory elements, the transgenes were expressed specifically in mouse photoreceptors. GCAP1(L151F) and GCAP1(L151F)-GFP transgenic mice presented with a late onset and slowly progressive photoreceptor degeneration, similar to that observed in human GCAP1-CORD patients. Transgenic expression of WT GCAP1-EGFP in photoreceptors had no adverse effect. Toward therapy development, a highly effective anti-mGCAP1 shRNA, mG1hp4, was selected from four candidate shRNAs using an in-vitro screening assay. Subsequently a self-complementary (sc) AAV serotype 2/8 expressing mG1hp4 was delivered subretinally to GCAP1(L151F)-GFP transgenic mice. Knockdown of the GCAP1(L151F)-GFP transgene product was visualized by fluorescence live imaging in the scAAV2/8-mG1hp4-treated retinas. Concomitant with the mutant GCAP1-GFP fusion protein, endogenous GCAP1 decreased as well in treated retinas. We propose nonallele-specific RNAi knockdown of GCAP1 as a general therapeutic strategy to rescue any GCAP1-based dominant cone-rod dystrophy in human patients.  相似文献   

15.
16.

Background

Schizosaccharomyces pombe pik1 encodes a phosphatidylinositol 4-kinase, reported to bind Cdc4, but not Cdc4G107S.

Principal Findings

Gene deletion revealed that pik1 is essential. In cells with pik1 deleted, ectopic expression of a loss-of-function allele, created by fusion to a temperature-sensitive dihydrofolate reductase, allowed normal cell proliferation at 25°C. At 36°C, cells arrested with abnormally thick, misplaced or supernumerary septa, indicating a defect late in septation. In addition to being Golgi associated, ectopically expressed GFP-tagged Pik1 was observed at the medial cell plane late in cytokinesis. New alleles, created by site-directed mutagenesis, were expressed ectopically. Lipid kinase and Cdc4-binding activity assays were performed. Pik1D709A was kinase-dead, but bound Cdc4. Pik1R838A did not bind Cdc4, but was an active kinase. Genomic integration of these substitutions in S. pombe and complementation studies in Saccharomyces cerevisiae pik1-101 cells revealed that D709 is essential in both cases while R838 is dispensable. In S. pombe, ectopic expression of pik1 was dominantly lethal; while, pik1D709A,R838A was innocuous, pik1R838A was almost innocuous, and pik1D709A produced partial lethality and septation defects. The pik1 ectopic expression lethal phenotype was suppressed in cdc4G107S. Thus, D709 is essential for kinase activity and septation.

Conclusions

Pik1 kinase activity is required for septation. The Pik1 R838 residue is required for important protein-protein interactions, possibly with Cdc4.  相似文献   

17.
Congenital stationary night blindness (CSNB) is an inherited and non‐progressive retinal dysfunction. Here, we present the crystal structure of CSNB‐causing T94I2.61 rhodopsin in the active conformation at 2.3 Å resolution. The introduced hydrophobic side chain prolongs the lifetime of the G protein activating metarhodopsin‐II state by establishing a direct van der Waals contact with K2967.43, the site of retinal attachment. This is in stark contrast to the light‐activated state of the CSNB‐causing G90D2.57 mutation, where the charged mutation forms a salt bridge with K2967.43. To find the common denominator between these two functional modifications, we combined our structural data with a kinetic biochemical analysis and molecular dynamics simulations. Our results indicate that both the charged G90D2.57 and the hydrophobic T94I2.61 mutation alter the dark state by weakening the interaction between the Schiff base (SB) and its counterion E1133.28. We propose that this interference with the tight regulation of the dim light photoreceptor rhodopsin increases background noise in the visual system and causes the loss of night vision characteristic for CSNB patients.  相似文献   

18.
Ca2+-modulated rod outer segment membrane guanylate cyclase (ROS-GC1) has been cloned and reconstituted to show that it is regulated by two processes: one inhibitory, the other stimulatory. The inhibitory process is consistent with its linkage to phototransduction; the physiology of the stimulatory process is probably linked to neuronal transmission. In both regulatory processes, calcium modulation of the cyclase takes place through the calcium binding proteins; guanylate cyclase activating proteins (GCAP1 and GCAP2) in the case of the phototransduction process and calcium-dependent GCAP (CD-GCAP) in the case of the stimulatory process. The cyclase domains involved in the two processes are located at two different sites on the ROS-GC1 intracellular region. The GCAP1-modulated domain resides within the aa 447-730 segment of ROS-GC1 and the CD-GCAP-modulated domain resides within the aa 731-1054 segment. In the present study the GCAP2-dependent Ca2+ modulation of the cyclase activity has been reconstituted using recombinant forms of GCAP2 and ROS-GC1, and its mutants. The results indicate that consistent to phototransduction, GCAP2 at low Ca2+ concentration (10 nM) maximally stimulates the cyclase activity of the wild-type and its mutants: ext- (deleted aa 8-408); kin- (deleted aa 447-730) and hybrid consisting of the ext, transmembrane and kin domains of ANF-RGC and the C-terminal domain, aa 731-1054, of ROS-GC1. In all cases, it inhibits the cyclase activity with an IC50 of about 140 nM. A previous study has shown that under identical conditions the kin- and the hybrid mutant are at best only minimally stimulated. Thus, the GCAP1 and GCAP2 signal transduction mechanisms are different, occurring through different modules of ROS-GC1. These findings also demonstrate that the intracellular region of ROS-GC1 is composed of multiple modules, each designed to mediate a particular calcium-specific signalling pathway.  相似文献   

19.
Congenital stationary night blindness (CSNB) is a heterogeneous retinal disorder characterized by visual impairment under low light conditions. This disorder is due to a signal transmission defect from rod photoreceptors to adjacent bipolar cells in the retina. Two forms can be distinguished clinically, complete CSNB (cCSNB) or incomplete CSNB; the two forms are distinguished on the basis of the affected signaling pathway. Mutations in NYX, GRM6, and TRPM1, expressed in the outer plexiform layer (OPL) lead to disruption of the ON-bipolar cell response and have been seen in patients with cCSNB. Whole-exome sequencing in cCSNB patients lacking mutations in the known genes led to the identification of a homozygous missense mutation (c.1807C>T [p.His603Tyr]) in one consanguineous autosomal-recessive cCSNB family and a homozygous frameshift mutation in GPR179 (c.278delC [p.Pro93Glnfs57]) in a simplex male cCSNB patient. Additional screening with Sanger sequencing of 40 patients identified three other cCSNB patients harboring additional allelic mutations in GPR179. Although, immunhistological studies revealed Gpr179 in the OPL in wild-type mouse retina, Gpr179 did not colocalize with specific ON-bipolar markers. Interestingly, Gpr179 was highly concentrated in horizontal cells and Müller cell endfeet. The involvement of these cells in cCSNB and the specific function of GPR179 remain to be elucidated.  相似文献   

20.

Background

A genetic study was performed to identify candidate genes associated with day blindness in the standard wire haired dachshund. Based on a literature review of diseases in dogs and human with phenotypes similar to day blindness, ten genes were selected and evaluated as potential candidate genes associated with day blindness in the breed.

Results

Three of the genes, CNGB3, CNGA3 and GNAT2, involved in cone degeneration and seven genes and loci, ABCA4, RDH5, CORD8, CORD9, RPGRIP1, GUCY2D and CRX, reported to be involved in cone-rod dystrophies were studied. Polymorphic markers at each of the candidate loci were studied in a family with 36 informative offspring. The study revealed a high frequency of recombinations between the candidate marker alleles and the disease.

Conclusion

Since all of the markers were at the exact position of the candidate loci, and several recombinations were detected for each of the loci, all ten genes were excluded as causal for this canine, early onset cone-rod dystrophy. The described markers may, however, be useful to screen other canine resource families segregating eye diseases for association to the ten genes.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号