首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微生物燃料电池(Microbial fuel cell,MFC)是一种近几年快速发展的废物处理与能源化技术,可以与污水处理、污染物降解、脱盐等环境技术结合。微生物燃料电池与堆肥技术结合可以在处理日益增长的固体废弃物的同时回收能量,具有很好的发展前景。文中分析了堆肥微生物燃料电池系统的微生物特征,探讨了堆肥过程中影响微生物燃料电池产电性能的因素,包括电极,隔膜,供氧和构型。最后归纳说明了堆肥微生物电池作为一种新的废弃物处理技术的特点:较高的微生物量并可产生较高的电流密度;对不同环境的适应性强;可以自身调节温度,能源利用效率高;质子从阳极向阴极的移动会受到不同堆肥原料的影响。  相似文献   

2.
随着世界经济的高速发展和人口的不断增长,能源短缺和环境污染问题日益成为制约发展的瓶颈。微生物燃料电池(microbial fuel cell,MFC)能将污染物中蕴含的化学能直接转化为电能,实现同步污水处理和电能回收,是一种极具前景的可持续污水处理技术。同时,MFC在污泥处理、生物修复、环境监测、海水淡化等方面也展示了诱人的前景。基于科睿唯安Web of Science数据库和德温特专利检索分析平台(Derwent Innovation, DI),对MFC领域1990~2018年的论文和专利数据进行统计分析,得出全球MFC领域的发展趋势、国际分布、研发热点和技术格局。在此基础上,对未来MFC领域的发展做出了展望,对中国MFC产业化发展提出了思考和建议。  相似文献   

3.
The global population is expected to increase by approximately 3 billion people by 2050. With this increase in population, industry, transportation the cost of fossil fuels will grow dramatically. New technologies are needed for fuel extraction using feedstocks that do not threaten food security, cause minimal or no loss of natural habitat and soil carbon. At the same time, waste management has to be improved and environmental pollution should be minimized or eliminated. Liquid biofuels such as lignocellulosic‐based ethanol from plant biomass and algal‐based biodiesel are sustainable, alternative biofuels that could stabilize national security and provide clean energy for future generations. Ideally, the technology should also foster recycling of agricultural feedstocks and improve soil fertility and human health. This article provides updated information on the energy potential and breadth of liquid biofuel biotechnology.  相似文献   

4.
The era of rapid industrialization succeeded by a shift in organizational focus on research and technology development which has fueled many industries along with the dairy industry to grow at an exponential rate. The dairy industry has achieved remarkable growth in the last decade in India. Waste produced by dairy industry consists of a high organic load thus cannot be discharged untreated. Even though treatment and management of waste are well documented, but the main problem is concerned with sludge produced after treatment. There is a gap in the application of various methods for effective treatment of the waste, hence there is a need for technology-oriented research in this area because of a paradigm shift in perspectives towards sustainable management of waste to recover value added products including energy as energy demand is also rising. Sludge which is generally land spread can also be used for energy generation. This paper discusses the environmental effects of waste generated due to dairy industrial activities; various methods used for the advanced treatment of dairy waste. This review article aims to present and discuss the state-of-art information for recovery of value-added products (single cell protein, biofertilizers, biopolymers and biosurfactants) from dairy waste with emphasis on integration of technologies for environmental sustainability. This paper also includes challenges and future perspectives in this field.  相似文献   

5.
Microbial fuel cell (MFC) is an emerging technology for sustainable energy generation and waste treatment. This paper reviews the potential of a gaseous substrate when it is combined with a mediator in an MFC to generate electricity and to treat toxic gaseous pollutants. Most MFCs for waste water treatment often cannot use mediator to enhance the electron transfer from the microbe to the anode because of the difficulty in recovering the expensive and potentially toxic compound. Combining gas feeds with mediators is possible since the soluble mediator would remain in the anode chamber as the gas passes through the reactor. In addition, this type of MFC is possible to be integrated into an anaerobic biofiltration system (BF-MFC), where the biofilter removes the gaseous contaminant and produces the reduced mediator and the MFC produces the electricity and recycles the reoxidised mediator. This paper also talks about the past research on gaseous feed MFCs, and reviews the mechanism and strategies of electron transfer in MFC using redox mediator. The advantages, process parameters and challenges of BF-MFC are discussed. This knowledge is very much required in the design and scale up of BF-MFC. This paper will be useful for those who work in the area of gaseous pollutant treatment and electricity generation.  相似文献   

6.
Environmental or ‘ecological’ footprints have been widely used in recent years as indicators of resource consumption and waste absorption presented in terms of biologically productive land area [in global hectares (gha)] required per capita with prevailing technology. In contrast, ‘carbon footprints’ are the amount of carbon (or carbon dioxide equivalent) emissions for such activities in units of mass or weight (like kilograms per functional unit), but can be translated into a component of the environmental footprint (on a gha basis). The carbon and environmental footprints associated with the world production of liquid biofuels have been computed for the period 2010–2050. Estimates of future global biofuel production were adopted from the 2011 International Energy Agency (IEA) ‘technology roadmap’ for transport biofuels. This suggests that, although first generation biofuels will dominate the market up to 2020, advanced or second generation biofuels might constitute some 75% of biofuel production by 2050. The overall environmental footprint was estimated to be 0.29 billion (bn) gha in 2010 and is likely to grow to around 2.57 bn gha by 2050. It was then disaggregated into various components: bioproductive land, built land, carbon emissions, embodied energy, materials and waste, transport, and water consumption. This component‐based approach has enabled the examination of the Manufactured and Natural Capital elements of the ‘four capitals’ model of sustainability quite broadly, along with specific issues (such as the linkages associated with the so‐called energy–land–water nexus). Bioproductive land use was found to exhibit the largest footprint component (a 48% share in 2050), followed by the carbon footprint (23%), embodied energy (16%), and then the water footprint (9%). Footprint components related to built land, transport and waste arisings were all found to account for an insignificant proportion to the overall environmental footprint, together amounting to only about 2%  相似文献   

7.
This study predicted the metabolic process of the residential building system in China toward 2050 by addressing the detailed provincial patterns and urban–rural disparity and the characterizing metabolisms of building materials in detail. The results show that after a rapid growth during 1980–1990, the in-use stocks of residential buildings in China are expected to slow down in around 2030, reaching 75 billion m2 in 2050. Urban regions will account for 80% of total stocks, and provinces in the eastern and southern coastal areas will have the largest share. As demolition lags construction, the end-of-life residential buildings will continue to grow steadily with huge urban–rural and provincial differences, reaching 1.4 billion m2 by 2050. Regarding the metabolism of building materials, the inflow of most materials will decrease after 2030, while the outflow will increase steadily toward inflow. Based on the recycling outlook of construction and demolition waste and the corresponding environmental benefit, it is indicated that under the Chinese government's ambitious planning and vigorous promotion, prior to the middle of the century, the building system has the potential to transition to a sustainable future that meets residents’ housing needs with a remarkable decreasing input of raw materials thereby notably decreasing pressures on the environment, which will significantly benefit the goal of carbon neutrality in China.  相似文献   

8.
Single chambered mediatorless microbial fuel cell (MFC; non-catalyzed electrodes) was operated to evaluate the potential of bioelectricity generation from the treatment of composite waste vegetables (EWV) extract under anaerobic microenvironment using mixed consortia as anodic biocatalyst. The system was operated with designed synthetic wastewater (DSW; 0.98 kg COD/m3-day) during adaptation phase and later shifted to EWV and operated at three substrate load conditions (2.08, 1.39 and 0.70 kg COD/m3-day). Experimental data illustrated the feasibility of bioelectricity generation through the utilization of EWV as substrate in MFC. Higher power output (57.38 mW/m2) was observed especially at lower substrate load. The performance of MFC was characterized based on the polarization behavior, cell potentials, cyclic voltammetric analysis and sustainable resistance. MFC operation also documented to stabilize the waste by effective removal of COD (62.86%), carbohydrates (79.84%) and turbidity (55.12%).  相似文献   

9.
The paper introduces the concept of the microbial electrochemical snorkel (MES), a simplified design of a “short-circuited” microbial fuel cell (MFC). The MES cannot provide current but it is optimized for wastewater treatment. An electrochemically active biofilm (EAB) was grown on graphite felt under constant polarization in an urban wastewater. Controlling the electrode potential and inoculating the bioreactor with a suspension of an established EAB improved the performance and the reproducibility of the anodes. Anodes, colonized by an EAB were tested for the chemical oxygen demand (COD) removal from urban wastewater using a variety of bio-electrochemical processes (microbial electrolysis, MFC, MES). The MES technology, as well as a short-circuited MFC, led to a COD removal 57% higher than a 1000 Ω-connected MFC, confirming the potential for wastewater treatment.  相似文献   

10.
The paper introduces the concept of the microbial electrochemical snorkel (MES), a simplified design of a "short-circuited" microbial fuel cell (MFC). The MES cannot provide current but it is optimized for wastewater treatment. An electrochemically active biofilm (EAB) was grown on graphite felt under constant polarization in an urban wastewater. Controlling the electrode potential and inoculating the bioreactor with a suspension of an established EAB improved the performance and the reproducibility of the anodes. Anodes, colonized by an EAB were tested for the chemical oxygen demand (COD) removal from urban wastewater using a variety of bio-electrochemical processes (microbial electrolysis, MFC, MES). The MES technology, as well as a short-circuited MFC, led to a COD removal 57% higher than a 1000 Ω-connected MFC, confirming the potential for wastewater treatment.  相似文献   

11.
Challenges in microbial fuel cell development and operation   总被引:3,自引:0,他引:3  
A microbial fuel cell (MFC) is a device that converts chemical energy into electricity through the catalytic activities of microorganisms. Although there is great potential of MFCs as an alternative energy source, novel wastewater treatment process, and biosensor for oxygen and pollutants, extensive optimization is required to exploit the maximum microbial potential. In this article, the main limiting factors of MFC operation are identified and suggestions are made to improve performance.  相似文献   

12.
Microbial fuel cells (MFCs) are devices that exploit microorganisms as biocatalysts to recover energy from organic matter in the form of electricity. One of the goals of MFC research is to develop the technology for cost-effective wastewater treatment. However, before practical MFC applications are implemented it is important to gain fundamental knowledge about long-term system performance, reproducibility, and the formation and maintenance of functionally-stable microbial communities. Here we report findings from a MFC operated for over 300 days using only primary clarifier effluent collected from a municipal wastewater treatment plant as the microbial resource and substrate. The system was operated in a repeat-batch mode, where the reactor solution was replaced once every two weeks with new primary effluent that consisted of different microbial and chemical compositions with every batch exchange. The turbidity of the primary clarifier effluent solution notably decreased, and 97% of biological oxygen demand (BOD) was removed after an 8-13 day residence time for each batch cycle. On average, the limiting current density was 1000 mA/m(2), the maximum power density was 13 mW/m(2), and coulombic efficiency was 25%. Interestingly, the electrochemical performance and BOD removal rates were very reproducible throughout MFC operation regardless of the sample variability associated with each wastewater exchange. While MFC performance was very reproducible, the phylogenetic analyses of anode-associated electricity-generating biofilms showed that the microbial populations temporally fluctuated and maintained a high biodiversity throughout the year-long experiment. These results suggest that MFC communities are both self-selecting and self-optimizing, thereby able to develop and maintain functional stability regardless of fluctuations in carbon source(s) and regular introduction of microbial competitors. These results contribute significantly toward the practical application of MFC systems for long-term wastewater treatment as well as demonstrating MFC technology as a useful device to enrich for functionally stable microbial populations.  相似文献   

13.
Microbial fuel cells (MFCs) have been shown to be capable of clean energy production through the oxidation of biodegradable organic waste using various bacterial species as biocatalysts. In this study we found Saccharomyces cerevisiae, previously known electrochemcially inactive or less active species, can be acclimated with an electron mediator thionine for electrogenic biofilm formation in MFC, and electricity production is improved with facilitation of electron transfer. Power generation of MFC was also significantly increased by thionine with both aerated and non-aerated cathode. With electrochemically active biofilm enriched with swine wastewater, MFC power increased more significantly by addition of thionine. The optimum mediator concentration was 500 mM of thionine with S. cerevisae in MFC with the maximum voltage and current generation in the microbial fuel cell were 420 mV and 700 mA/m(2), respectively. Cyclic voltametry shows that thionine improves oxidizing and reducing capability in both pure culture and acclimated biofilm as compared to non-mediated cell. The results obtained indicated that thionine has great potential to enhance power generation from unmediated yeast or electrochemically active biofilm in MFC.  相似文献   

14.
Microbial fuel cells (MFCs) have received attention as a promising renewable energy technology for waste treatment and energy recovery. We tested a submersible MFC with an innovative design capable of generating a stable voltage of 0.250 ± 0.008 V (with a fixed 470 Ω resistor) directly from primary sludge. In a polarization test, the maximum power density was 0.18 W/m2 at a current density of 0.8 A/m2 with an external resistor of 300 Ω. The anodic solution of the primary sludge needs to be adjusted to a pH 7 for high power generation. The modified primary sludge with an added phosphate buffer prolonged the current generation and increased the power density by 7 and 1.5 times, respectively, in comparison with raw primary sludge. These findings suggest that energy recovery from primary sludge can be maximized using an advanced MFC system with optimum conditions.  相似文献   

15.

Activated sludge is one of the most widely implemented technologies for municipal wastewater treatment. Yet, more restrictive environmental standards demand for more efficient technologies. Aerobic granular sludge (AGS) is a promising alternative in this context since this technology has shown potential for simultaneous organic matter and nutrient removal using smaller bioreactors and consuming less energy. However, despite such engaging claims, only ca. 40 full-scale AGS systems have been installed worldwide after 30 years of development. This reduced implementation suggests the existence of significant bottlenecks for this technology, which currently only have partially been overcome. This overview aims to analyze the recent progress in R&D concerning aerobic sludge granulation for municipal wastewater treatment via the analysis of research articles and invention patents as well as to elucidate exiting technological gaps and development opportunities. Culturing methods aiming at fast granulation, long-term stability and excellent process performance are of utmost interest for promoting massive implementation of full-scale AGS systems. Moreover, the recovery of biomaterials from waste sludge could contribute to the implementation of the biorefinery paradigm in wastewater treatment plants.

  相似文献   

16.
In view of the enormous challenge and pressure on farmers to feed 9 billion plus people and billions of animals who are going to be living in our planet in 2050, new technologies must be invented, assessed and adapted. Farmer welfare and provision of resources required for their work is of paramount importance. India has benefited from Bt cotton technology and will certainly benefit from other biotech crops that have been carefully developed and assessed for consumption and environmental safety.  相似文献   

17.
Anaerobic treatment processes have the advantages of cost-effectiveness, energy efficiency, low sludge yield and potential of resource recovery over conventional aerobic treatment methods and have been gaining increasing attention as an approach for future wastewater management. An important feature of anaerobic processes is the use of alternative electron acceptors to oxygen, which renders treatment flexibility in using redox active elements such as iron and sulfate from other waste materials. Co-treatment of acid mine drainage and municipal wastewater, as an example, has been shown to be an effective method for removing organic materials, metals, and phosphate from the both wastes. It also suggested the applicability of ferric reduction process in wastewater treatment. Most of the previous studies on ferric reduction process and iron reducers were conducted in natural systems such as sediments, soils and groundwater. This paper reviews the significance and fundamentals of the ferric reduction process, its utility for organics oxidation, controlling factors, reaction kinetics, microbial processes of iron reduction and its ecology. The paper also evaluates the suitability and discusses future aspects of using iron reduction for wastewater treatment. Knowledge gaps are identified in this paper for developing such innovative wastewater technology and process optimization.  相似文献   

18.
Within sustainable resource management, the recovery of nitrogen and phosphorus nutrients from waste streams is becoming increasingly important. Although the use of microalgae has been described extensively in environmental biotechnology, the potential of nitrate-accumulating microalgae for nutrient recovery has not been investigated yet. The ability of these marine microorganisms to concentrate environmental nitrate within their biomass is remarkable. The aim of this study was to investigate the application potential of nitrate-accumulating diatoms for nutrient recovery from marine wastewaters. The intracellular nitrate storage capacity was quantified for six marine diatom strains in synthetic wastewater. Amphora coffeaeformis and Phaeodactylum tricornutum stored the highest amount of nitrate with respectively 3.15 and 2.10 g N L?1 of cell volume, which accounted for 17.3 and 4.6 %, respectively, of the total nitrogen content. The growth and nitrate and phosphate uptake of both diatoms were further analyzed and based on these features P. tricornutum showed the highest potential for nutrient recovery. A mathematical model was developed which included intracellular nitrate storage and the kinetic parameters were derived for P. tricornutum. Furthermore, a simulation study was performed to compare the performance of a proposed microalgal nutrient recovery unit with a conventional denitrification system for marine wastewater treatment. Overall, this study demonstrates the potential application of P. tricornutum for saline wastewater treatment with concurrent nitrogen and phosphorus recycling.  相似文献   

19.
Chromium (VI) is a priority pollutant in soil and water and poses serious threats to the environment. Microbial fuel cells (MFCs), as a sustainable technology, have been applied to treat heavy-metal-contaminated wastewater. To study MFC application in soil remediation, red clay soil and fluvo-aquic soil were spiked with Cr(VI) and packed into a cathode chamber of MFCs, which were then operated at external resistances of 100 and 1000 Ω for 16 days, with open circuit condition as a control treatment. After the operation, the concentration of dissolved Cr(VI) in supernatant and total Cr(VI) in soil was decreased. Soil type and external resistance significantly affected the current, removal efficiency of Cr(VI), and cathode efficiency. Reducing external resistance improved the removal efficiency. The red soil generated a higher current of MFCs, but showed a lower removal efficiency and cathode efficiency than fluvo-aquic soil, implying that the red soil may contain more electron acceptors that competed with Cr(VI) reduction reaction. Our study demonstrated that MFC-based technology has the potential to remediate Cr(VI)-contaminated soil; the efficiency varied between soil types and can be improved with high current.  相似文献   

20.
Anaerobic digestion technology is the biological treatment of organic waste and wastewater without input of external electron acceptors (oxygen), offering the potential to reduce treatment cost and to produce energy as 'biogas' (methane) from organic waste. The technology has become enormously popular in the past two decades, and knowledge of microbiological aspects of the technology has also accumulated significantly. Major advances have been made in elucidating the diversity of yet-to-be cultured microbes in anaerobic digestion processes, and the cultivation of uncultured organisms is of great interest with regard to gaining insights into the function of these organisms. In addition, recent advances have been made in the development of microbial fuel cells as an alternative, direct energy-yielding treatment system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号