首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
2.
Protein kinase C δ (PKCδ) modulates cell survival and apoptosis in diverse cellular systems. We recently reported that PKCδ functions as a critical anti-apoptotic signal transducer in cells containing activated p21Ras and results in the activation of AKT, thereby promoting cell survival. How PKCδ is regulated by p21Ras, however, remains incompletely understood. In this study, we show that PKCδ, as a transducer of anti-apoptotic signals, is activated by phosphotidylinositol 3′ kinase/phosphoinositide-dependent kinase 1 (PI3K–PDK1) to deliver the survival signal to Akt in the environment of activated p21Ras. PDK1 is upregulated in cells containing an activated p21Ras. Knock-down of PDK1, PKCδ, or AKT forces cells containing activated p21Ras to undergo apoptosis. PDK1 regulates PKCδ activity, and constitutive expression of PDK1 increases PKCδ activity in different cell types. Conversely, expression of a kinase-dead (dominant-negative) PDK1 significantly suppresses PKCδ activity. p21Ras-mediated survival signaling is therefore regulated by via a PI3K–AKT pathway, which is dependent upon both PDK1 and PKCδ, and PDK1 activates and regulates PKCδ to determine the fate of cells containing a mutated, activated p21Ras.  相似文献   

3.
Liu J  Shen M  Yue Z  Yang Z  Wang M  Li C  Xin C  Wang Y  Mei Q  Wang Z 《Phytomedicine》2012,19(8-9):756-762
Triptolide, a diterpene triepoxide compound extracted from the traditional Chinese medicine herb Tripterygium wilfordii Hook F., is a potential cancer chemotherapeutic for tumors. However, the mechanism of anti-proliferative mechanism of triptolide in colon cancer cells is not entirely clear. Triptolide markedly inhibited HT29 and SW480 cells proliferation in a dose- and time-dependent manner. Triptolide decreased ERK and AKT phosphorylation, and GABPα expression in colon cancer cells. Beta-catenin expression and phosphorylation were not altered by incubation of triptolide. However, we found that triptolide repressed expression of LEF/TCF. Although it did not significantly affect cells apoptosis, triptolide induced G1 phase arrest dose-dependently. Further detection for the expression of cell cycle-related proteins suggesting that triptolide stimulate expression of p21 and repress cyclin A1. Increased p21 binded to CDK4/CDK6, therefore blocked function of CDK4/CDK6, and subsequently contribute to the G1 arrest. These data suggested that triptolide is a potential agent for treatment of colon cancer, and its anti-proliferation effect mainly occur through G1 phase arrest.  相似文献   

4.
5.
6.
7.
Focal adhesion kinase (FAK) and Src have been shown to be overexpressed in colon cancer. We have studied the role of these two kinases in resistance to apoptosis. Adenovirus-containing FAK-CD (Ad-FAK-CD), a dominant-negative, COOH-terminal portion of FAK, was used to inhibit FAK and cause apoptosis. Colon cancer cell lines were more resistant to Ad-FAK-CD-induced detachment and apoptosis than the breast cancer cell line, BT474. Colon cancer cell lines overexpressed highly active Src and FAK. Ad-FAK-CD-induced apoptosis was significantly increased by PP2, an inhibitor of Src family kinases. Activation of caspase-3, down-regulation of FAK, and Src and AKT activities were demonstrated in Ad-FAK-CD + PP2-treated colon cancer cells undergoing apoptosis. The results suggest that FAK and Src are both important survival factors, playing a role in protecting colon cancer cell lines from Ad-FAK-CD-induced apoptosis. Dual inhibition of these kinases may be important for therapies designed to enhance the apoptosis in colon cancers.  相似文献   

8.
Reactive oxygen species (ROS) play a central role in oxidative stress, which leads to the onset of diseases, such as cancer. Furthermore, ROS contributes to the delicate balance between tumor cell survival and death. However, the mechanisms by which tumor cells decide to elicit survival or death signals during oxidative stress are not completely understood. We have previously reported that ROS enhanced tumorigenic functions in prostate cancer cells, such as transendothelial migration and invasion, which depended on CXCR4 and AKT signaling. Here, we report a novel mechanism by which ROS facilitated cell death through activation of AKT. We initially observed that ROS enhanced the expression of phosphorylated AKT (p-AKT) in 22Rv1 human prostate cancer cells. The tumor suppressor PTEN, a negative regulator of AKT signaling, was rendered catalytically inactive through oxidation by ROS, although the expression levels remained consistent. Despite these events, cells still underwent apoptosis. Further investigation into apoptosis revealed that expression of the tumor suppressor pVHL increased, and contains a target site for p-AKT phosphorylation. pVHL and p-AKT associated in vitro, and knockdown of pVHL rescued HIF1α expression and the cells from apoptosis. Collectively, our study suggests that in the context of oxidative stress, p-AKT facilitated apoptosis by inducing pVHL function.  相似文献   

9.
The Murine Double Minute 2 (MDM2) protein is a key regulator of cell proliferation and apoptosis that acts primarily by inhibiting the p53 tumor suppressor. Similarly, the PI3-Kinase (PI3K)/AKT pathway is critical for growth factor-mediated cell survival. Additionally, it has been reported that AKT can directly phosphorylate and activate MDM2. In this study, we show that IGF-1 up-regulates MDM2 protein levels in a PI3K/AKT-dependent manner. Inhibition of mTOR by rapamycin or expression of a dominant negative eukaryotic initiation factor 4E binding protein 1 (4EBP1) mutant protein, as well as ablation of eukaryotic initiation factor 4E (eIF4E), efficiently abolishes IGF-1-mediated up-regulation of MDM2. In addition, we show that rapamycin effectively inhibits MDM2 expression and sensitizes cancer cells to chemotherapy. Taken together, this study reveals a novel mechanism by which IGF-1 activates MDM2 via the mTOR pathway, and that pharmacologic inhibition of mTOR combined with chemotherapy may be more effective in treatment of a subset of cancers harboring increased MDM2 activation.  相似文献   

10.
Aberrant cell survival and resistance to apoptosis are hallmarks of tumor invasion and progression to metastatic disease, but the mechanisms involved are poorly understood. The epithelial-mesenchymal transition (EMT), a process that facilitates progression to invasive cancer, provides a superb model for studying such survival mechanisms. Here, we used a unique spheroid culture system that recapitulates the structure of the colonic epithelium and undergoes an EMT in response to cytokine stimulation to study this problem. Our data reveal that the EMT results in the increased expression of both VEGF and Flt-1, a tyrosine kinase VEGF receptor, and that the survival of these cells depends on a VEGF/Flt-1 autocrine pathway. Perturbation of Flt-1 function by either a blocking antibody or adenoviral expression of soluble Flt-1, which acts in a dominant-negative fashion, caused massive apoptosis only in cells that underwent EMT. This pathway was critical for the survival of other invasive colon carcinoma cell lines, and we observed a correlative upregulation of Flt-1 expression linked to in vivo human cancer progression. A role for Flt-1 in cell survival is unprecedented and has significant implications for Flt-1 function in tumor progression, as well as in other biological processes, including angiogenesis and development.  相似文献   

11.
Functional expression of KAL1 gene is critical in the migration of GnRH neurons from the olfactory placode to the hypothalamus in embryogenesis. This gene thus far has not been shown to play a functional role in any other physiological or pathological process either in the developed brain or in peripheral tissues. We show here that KAL1 gene expression is decreased in early stage and increased in later stages of cancers. Screening of colon, lung and ovarian cancer cDNA panels indicated significant decrease in KAL1 expression in comparison to corresponding uninvolved tissues. However, KAL1 expression increased with the progression of cancer from early (I and II) stages to later (III and IV) stages of the cancer. There was a direct correlation between the TGF-β and KAL1 expression in colon cancer cDNA. Using colon cancer cell lines, we showed that TGF-β induces KAL1 gene expression and secretion of anosmin-1 protein (KAL1 coded protein). We further report that hypoxia induces anosmin-1 expression; anosmin-1 protects cancer cells from apoptosis activated by hypoxia and increases cancer cell mobility. Using siRNA technique we found that KAL1 expression following hypoxia is hypoxia-inducible factor (HIF-1) α dependent. Our results suggest that KAL1 gene expression plays an important role in cancer metastasis and protection from apoptosis.  相似文献   

12.
13.
p21(Cip1/WAF1) (p21), a p53-inducible protein, is a critical regulator of cell cycle and cell survival. p21 binds to and inhibits both the DNA synthesis regulator proliferating cell nuclear antigen and cyclin A/E-CDK2 complexes. Recently, p21 has also been shown to be a positive regulator of cell cycle progression as p21 is necessary for the assembly and activation of cyclin D1-CDK4/6 complexes. Furthermore, elevated p21 protein levels have been observed in various aggressive tumors as well as linked to chemoresistance. Here we demonstrate that p21 is directly phosphorylated by AKT/PKB, a survival kinase that is hyperactivated in many late stage tumors. Two sites (Thr(145) and Ser(146)) in the carboxyl terminus of p21 are phosphorylated by AKT/PKB in vitro and in vivo. Phosphorylation of Thr(145) inhibits PCNA binding, whereas phosphorylation of Ser(146) significantly increases p21 protein stability. Glioblastoma cell lines with activated AKT/PKB show enhanced p21 stability, and they are more resistant to taxol-mediated toxicity. Finally, AKT/PKB controls the assembly of cyclin D1-CDK4 complexes through modulation of p21 and cyclin D1 levels. These data imply that enhanced levels of p21 in tumors are due, in part, to phosphorylation by activated AKT/PKB. Furthermore, they suggest that one mechanism of AKT/PKB regulation of tumor cell survival and/or proliferation is to stabilize p21 protein.  相似文献   

14.
Heme oxygenase-1 can play a protective role against cellular stress. In colon cancer cells, these effects would be relevant to oncogenesis and resistance to chemotherapy. The aim of the study was to examine the effects of heme oxygenase-1 induction on cell survival in a human colon cancer cell line, Caco-2. Serum deprivation induced apoptosis, reduced Akt and p38 phosphorylation, and increased p21(Cip/WAF1) levels. Heme oxygenase-1 induction by treatment with cobalt protoporphyrin IX resulted in resistance to apoptosis, activation of Akt, reduction in p21(Cip/WAF1) levels and modification of bcl2/bax ratio towards survival. Indomethacin reduced apoptosis but in contrast to heme oxygenase-1, arrested cells in G0/G1. Apoptosis was also inhibited by the heme oxygenase metabolites bilirubin and biliverdin but the CO donor tricarbonyldichlororuthenium(II) dimer did not exert significant effects. Protection against apoptosis in cells treated with cobalt protoporphyrin IX was reverted by incubation with heme oxygenase-1 small interfering RNA. This study shows an antiapoptotic effect of heme oxygenase-1 in colon cancer cells which could be mediated by the formation of bilirubin and biliverdin. Our results support an antiapoptotic role for HO-1 in these cells and provide a mechanism by which overexpression of HO-1 may promote tumor resistance to stress in conditions of limited nutrient supply. We have extended these observations by demonstrating that these effects are independent of p38 but are mediated via Akt pathway.  相似文献   

15.
16.
17.
Butyrate, a short-chain fatty acid produced in the colon, as well as its prodrug tributyrin, reduce proliferation and increase differentiation of colon cancer cells. p21(Waf1/Cip1) and p27(Kip1) are negative regulators of cell cycle and are thought to have a key function in the differentiation of various cell lines. We studied the effects of butyrate on differentiation, VDR expression, as well as on p21(Waf1/Cip1) and p27(Kip1) expression in human colon cancer cells (Caco-2). Butyrate induced cell differentiation, which was further enhanced after addition of 1,25-dihydroxycholecalciferol. Synergistic effect of butyrate and dihydroxycholecalciferol in Caco-2 cells was due to butyrate-induced overexpression of VDR. While butyrate as well as dihydroxycholecalciferol increased p21(Waf1/Cip1) and p27(Kip1) expression, in contrast combined exposure of butyrate and dihydroxycholecalciferol resulted in a synergistic amplification of p21(Waf1/Cip1), but not of p27(Kip1) expression. These data imply that butyrate selectively increases p21(Waf1/Cip1) expression via upregulation of VDR in Caco-2 cells.  相似文献   

18.
Chemoresistance is a key cause of treatment failure in colon cancer. MiR-22 is a tumor-suppressing microRNA. To explore whether miR-22 is an important player in the development of chemoresistance in colon cancer, we overexpressed miR-22 and subsequently tested its role in cell proliferation, apoptosis, survival, and associated signaling in p53-mutated HT-29 and HCT-15 cells, and p53 wild-type HCT-116 cells. We further investigated the role of miR-22 on cytotoxicity of paclitaxel in both the p53-mutated and p53 wild-type colon cancer cells. Results showed that HT-29 and HCT-15 cells were resistant to paclitaxel-induced cytotoxicity, which normally inhibits cell proliferation and survival, and induces apoptosis. Conversely, HCT-116 was relatively sensitive to the cytotoxicity of paclitaxel. Overexpression of miR-22 significantly decreased cell proliferation and survival, and induced cell apoptosis in the p53-mutated colon cancer cells, but played no role in the p53 wild-type cells. Importantly, miR-22 overexpression enhanced the cytotoxic role of paclitaxel in p53-mutated HT-29 and HCT-15 cells, but not in p53 wild-type HCT-116 cell. We further demonstrated that the tumor-suppressive role of miR-22 in p53-mutated colon cancer cells was mediated by upregulating PTEN expression, which negatively regulated Akt phosphorylation at Ser(473) and MTDH expression, and subsequently increased Bax and active caspase-3 levels. Our study is the first to identify the tumor-suppressive role of miR-22 and its associated signaling in the p53-mutated colon cancer cells and highlighted the chemosensitive role of miR-22.  相似文献   

19.
BackgroundAlthough garcinone C, a natural xanthone derivative identified in the pericarp of Garcinia mangostana, has been demonstrated to exert different health beneficial activities in oxidative stress and β-amyloid aggregation, the role of garcinone C in colon tumorigenesis has not been investigated. In addition, aberrant Hedgehog (Hh) signaling activation is associated with tumorigenesis including colon cancer. Here, we hypothesized that garcinone C can prevent colon tumorigenesis through regulating the Hh signaling pathway.MethodColony formation assay and flow cytometry were used to evaluate the effect of garcinone C on the proliferation and cell cycle progression of colon cancer cells. Protein expression of cell cycle related markers and Hh/Gli1 signaling mediators were determined. The regulatory effect of orally administered garcinone C on the Hh/Gli1 signaling pathway and colon tumorigenesis was evaluated in an azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colon cancer animal model.ResultsGarcinone C suppressed the proliferation of colon cancer cells, induced G0/G1 cell cycle arrest, as well as regulated the expression of cell cycle-related markers such as cyclin D1, cyclin E, CDK6, and p21. Garcinone C inhibited the expression of Gli1, a key mediator of Hedgehog signaling, and protein kinase B (AKT) phosphorylation in Smo-independent colon cancer cells. In the AOM/DSS-induced colon tumorigenesis model, garcinone C significantly inhibited tumor development, regulated the expression of cell cycle markers and Gli1, and reduced AKT phosphorylation in colon tumor tissues, which is consistent with our in vitro results.ConclusionGarcinone C can suppress colon tumorigenesis in vitro and in vivo through Gli1-dependent non-canonical Hedgehog signaling, suggesting that it may serve as a potent chemopreventive agent against colon tumorigenesis.  相似文献   

20.
SARI (suppressor of AP‐1, regulated by IFN) impaired tumour growth by promoting apoptosis and inhibiting cell proliferation and tumour angiogenesis in various cancers. However, the role of SARI in regulating tumour‐associated inflammation microenvironment is still elusive. In our study, the colitis‐dependent and ‐independent primary model were established in SARI deficiency mice and immuno‐reconstructive mice to investigate the functional role of SARI in regulating tumour‐associated inflammation microenvironment and primary colon cancer formation. The results have shown that SARI deficiency promotes colitis‐associated cancer (CAC) development only in the presence of colon inflammation. SARI inhibited tumour‐associated macrophages (TAM) infiltration in colon tissues, and SARI deficiency in bone marrow cells has no observed role in the promotion of intestinal tumorigenesis. Mechanism investigations indicated that SARI down‐regulates p‐STAT1 and STAT1 expression in colon cancer cells, following inhibition of MCP‐1/CCR2 axis activation during CAC development. Inverse correlations between SARI expression and macrophage infiltration, MCP‐1 expression and p‐STAT1 expression were also demonstrated in colon malignant tissues. Collectively, our results prove the inhibition role of SARI in colon cancer formation through regulating TAM infiltration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号