首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The mechanistic target of rapamycin (mTOR) regulates numerous extracellular and intracellular signals involved in the maintenan-ce of cellular homeostasis and cell growth. mTOR also functions as an endogenous inhibitor of autophagy. Under nutrient-rich conditions, mTOR complex 1 (mTORC1) phosphorylates the ULK1 complex, preventing its activation and subsequent autophagosome formation, while inhibition of mTORC1 using either rapamycin or nutrient deprivation induces autophagy. Autophagy and proteasomal proteolysis provide amino acids necessary for protein translation. Although the connection between mTORC1 and autophagy is well characterized, the association of mTORC1 inhibition with proteasome biogenesis and activity has not been fully elucidated yet. Proteasomes are long-lived cellular organelles. Their spatiotemporal rather than homeostatic regulation could be another adaptive cellular mechanism to respond to starvation. Here, we reviewed several published reports and the latest research from our group to examine the connection between mTORC1 and proteasome. We have also investigated and described the effect of mTORC1 inhibition on proteasome activity using purified proteasomes. Since mTORC1 inhibitors are currently evaluated as treatments for several human diseases, a better understanding of the link between mTORC1 activity and proteasome function is of utmost importance.  相似文献   

3.
Macroautophagy/autophagy is a fundamental cellular degradation mechanism that maintains cell homeostasis, regulates cell signaling, and promotes cell survival. Its role in promoting tumor cell survival in stress conditions is well characterized, and makes autophagy an attractive target for cancer therapy. Emerging research indicates that autophagy also influences cancer metastasis, which is the primary cause of cancer-associated mortality. However, data demonstrate that the regulatory role of autophagy in metastasis is multifaceted, and includes both metastasis-suppressing and -promoting functions. The metastasis-suppressing functions of autophagy, in particular, have important implications for autophagy-based treatments, as inhibition of autophagy may increase the risk of metastasis. In this review, we discuss the mechanisms and context underlying the role of autophagy in metastasis, which include autophagy-mediated regulation of focal adhesion dynamics, integrin signaling and trafficking, Rho GTPase-mediated cytoskeleton remodeling, anoikis resistance, extracellular matrix remodeling, epithelial-to-mesenchymal transition signaling, and tumor-stromal cell interactions. Through this, we aim to clarify the context-dependent nature of autophagy-mediated metastasis and provide direction for further research investigating the role of autophagy in cancer metastasis.  相似文献   

4.
The protein optineurin coded by OPTN gene is involved in several functions including regulation of endocytic trafficking, autophagy and signal transduction. Certain missense mutations in the gene OPTN cause normal tension glaucoma. A glaucoma-causing mutant of optineurin, E50K, induces death selectively in retinal cells. This mutant induces defective endocytic recycling of transferrin receptor by causing inactivation of Rab8 mediated by the GTPase-activating protein, TBC1D17. Here, we have explored the mechanism of E50K-induced cell death. E50K-OPTN-induced cell death was inhibited by co-expression of a catalytically inactive mutant of TBC1D17 and also by shRNA mediated knockdown of TBC1D17. Endogenous TBC1D17 colocalized with E50K-OPTN in vesicular structures. Co-expression of transferrin receptor partially protected against E50K-induced cell death. Overexpression of the E50K-OPTN but not WT-OPTN inhibited autophagy flux. Treatment of cells with rapamycin, an inducer of autophagy, reduced E50K-OPTN-induced cell death. An LC3-binding-defective mutant of E50K-OPTN showed reduced cell death, further suggesting the involvement of autophagy. TBC1D17 localized to autophagosomes and inhibited autophagy flux dependent on its catalytic activity. Knockdown of TBC1D17 rescued cells from E50K-mediated inhibition of autophagy flux. Overall, our results suggest that E50K mutant induced death of retinal cells involves impaired autophagy as well as impaired transferrin receptor function. TBC1D17, a GTPase-activating protein for Rab GTPases, plays a crucial role in E50K-induced impaired autophagy and cell death.  相似文献   

5.
IFN1@ (interferon, type 1, cluster, also called IFNα) has been extensively studied as a treatment for patients with chronic myeloid leukemia (CML). The mechanism of anticancer activity of IFN1@ is complex and not well understood. Here, we demonstrate that autophagy, a mechanism of cellular homeostasis for the removal of dysfunctional organelles and proteins, regulates IFN1@-mediated cell death. IFN1@ activated the cellular autophagic machinery in immortalized or primary CML cells. Activation of JAK1-STAT1 and RELA signaling were required for IFN1@-induced expression of BECN1, a key regulator of autophagy. Moreover, pharmacological and genetic inhibition of autophagy enhanced IFN1@-induced apoptosis by activation of the CASP8-BID pathway. Taken together, these findings provide evidence for an important mechanism that links autophagy to immunotherapy in leukemia.  相似文献   

6.
Idil Orhon  Nicolas Dupont 《Autophagy》2016,12(11):2258-2259
The maintenance of cellular homeostasis in response to extracellular stresses by autophagy is vital for the health of various tissues. Extracellular stimuli may include nutrient starvation, endoplasmic reticulum stress, hypoxia, cytotoxic agents, or mechanical stress. The primary cilium (PC) is a microtubule-based sensory organelle that regulates the integration of various extracellular stimuli. The interconnection between macroautophagy/autophagy and the PC is beginning to be illuminated. In this punctum, we discuss our recent study of PC-dependent autophagy in response to fluid flow in kidney epithelial cells. Urinary flow in kidney tubules creates a shear stress that regulates epithelial cell volume. PC-mediated autophagy is necessary for the regulation of cell size. The signal from the PC is transduced by the activation of STK11/LKB1 and by MTOR inhibition. Our results clarify the physiological role of PC-dependent autophagy in the kidney and suggest that autophagy manipulation may provide a route to the treatment of ciliopathies.  相似文献   

7.
Autophagy is a vital cellular mechanism that controls the removal of damaged or dysfunctional cellular components. Autophagy allows the degradation and recycling of damaged proteins and organelles into their basic constituents of amino acids and fatty acids for cellular energy production. Under basal conditions, autophagy is essential for the maintenance of cell homeostasis and function. However, during cell stress, excessive activation of autophagy can be destructive and lead to cell death. Autophagy plays a crucial role in the cardiovascular system and helps to maintain normal cardiac function. During ischemia- reperfusion, autophagy can be adaptive or maladaptive depending on the timing and extent of activation. In this review, we highlight the molecular mechanisms and signaling pathways that underlie autophagy in response to cardiac stress and therapeutic approaches to modulate autophagy by pharmacological interventions. Finally, we also discuss the intersection between autophagy and circadian regulation in the heart. Understanding the mechanisms that underlie autophagy following cardiac injury can be translated to clinical cardiology use toward improved patient treatment and outcomes.  相似文献   

8.
Macroautophagy/autophagy is an evolutionarily conserved pathway that is required for cellular homeostasis, growth and survival. The lysosome plays an essential role in autophagy regulation. For example, the activity of MTORC1, a master regulator of autophagy, is regulated by nutrients within the lysosome. Starvation inhibits MTORC1 causing autophagy induction. Given that MTORC1 is critical for protein synthesis and cellular homeostasis, a feedback regulatory mechanism must exist to restore MTORC1 during starvation. However, the molecular mechanism underlying this feedback regulation is unclear. In this study, we report that starvation activates the lysosomal Ca2+ release channel MCOLN1 (mucolipin 1) by relieving MTORC1's inhibition of the channel. Activated MCOLN1 in turn facilitates MTORC1 activity that requires CALM (calmodulin). Moreover, both MCOLN1 and CALM are necessary for MTORC1 reactivation during prolonged starvation. Our data suggest that lysosomal Ca2+ signaling is an essential component of the canonical MTORC1-dependent autophagy pathway and MCOLN1 provides a negative feedback regulation of MTORC1 to prevent excessive loss of MTORC1 function during starvation. The feedback regulation may be important for maintaining cellular homeostasis during starvation, as well as many other stressful or disease conditions.  相似文献   

9.
Autophagy is a self-digestion pathway essential for maintaining cellular homeostasis and cell survival and for degrading intracellular pathogens. Human immunodeficiency virus-1 (HIV-1) may utilize autophagy for replication as the autophagy-related protein-7 (ATG-7), microtubule-associated protein 1 light chain 3, ATG-12, and ATG-16L2 are required for productive HIV-1 infection; however, the effects of autophagy induction on HIV-1 infection are unknown. HIV-1-infected individuals have lower levels of 1α,25-dihydroxycholecalciferol, the hormonally active form of vitamin D, than uninfected individuals. with the lowest concentrations found in persons with AIDS. Using human macrophages and RNA interference for ATG-5 and Beclin-1 and chemical inhibition of phosphatidylinositol 3-kinase, we have found that physiologically relevant concentrations of 1α,25-dihydroxycholecalciferol induce autophagy in human macrophages through a phosphatidylinositol 3-kinase-, ATG-5-, and Beclin-1-dependent mechanism that significantly inhibits HIV-1 replication in a dose-dependent manner. We also show that the inhibition of basal autophagy inhibits HIV-1 replication. Furthermore, although 1α,25-dihydroxycholecalciferol induces the secretion of human cathelicidin, at the concentrations produced in vitro, cathelicidin does not trigger autophagy. Our findings support an important role for autophagy during HIV-1 infection and provide new insights into novel approaches to prevent and treat HIV-1 infection and related opportunistic infections.  相似文献   

10.
The mitochondrion is a unique organelle that serves as the main site of ATP generation needed for energy in the cell. However, mitochondria also play essential roles in cell death through apoptosis and necrosis, as well as a variety of crucial functions related to stress regulation, autophagy, lipid synthesis and calcium storage. There is a growing appreciation that mitochondrial function is regulated by the dynamics of its membrane fusion and fission; longer, fused mitochondria are optimal for ATP generation, whereas fission of mitochondria facilitates mitophagy and cell division. Despite the significance of mitochondrial homeostasis for such crucial cellular events, the intricate regulation of mitochondrial fusion and fission is only partially understood. Until very recently, only a single mitochondrial fission protein had been identified. Moreover, only now have researchers turned to address the upstream machinery that regulates mitochondrial fusion and fission proteins. Herein, we review the known GTPases involved in mitochondrial fusion and fission, but also highlight recent studies that address the mechanisms by which these GTPases are regulated. In particular, we draw attention to a substantial new body of literature linking endocytic regulatory proteins, such as the retromer VPS35 cargo selection complex subunit, to mitochondrial homeostasis. These recent studies suggest that relationships and cross‐regulation between endocytic and mitochondrial pathways may be more widespread than previously assumed.   相似文献   

11.
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1   总被引:3,自引:0,他引:3  
Autophagy is a process by which components of the cell are degraded to maintain essential activity and viability in response to nutrient limitation. Extensive genetic studies have shown that the yeast ATG1 kinase has an essential role in autophagy induction. Furthermore, autophagy is promoted by AMP activated protein kinase (AMPK), which is a key energy sensor and regulates cellular metabolism to maintain energy homeostasis. Conversely, autophagy is inhibited by the mammalian target of rapamycin (mTOR), a central cell-growth regulator that integrates growth factor and nutrient signals. Here we demonstrate a molecular mechanism for regulation of the mammalian autophagy-initiating kinase Ulk1, a homologue of yeast ATG1. Under glucose starvation, AMPK promotes autophagy by directly activating Ulk1 through phosphorylation of Ser 317 and Ser 777. Under nutrient sufficiency, high mTOR activity prevents Ulk1 activation by phosphorylating Ulk1 Ser 757 and disrupting the interaction between Ulk1 and AMPK. This coordinated phosphorylation is important for Ulk1 in autophagy induction. Our study has revealed a signalling mechanism for Ulk1 regulation and autophagy induction in response to nutrient signalling.  相似文献   

12.
13.
Rapamycin is well-recognized in the clinical therapeutic intervention for patients with cancer by specifically targeting mammalian target of rapamycin (mTOR) kinase. Rapamycin regulates general autophagy to clear damaged cells. Previously, we identified increased expression of messenger RNA levels of NBR1 (the neighbor of BRCA1 gene; autophagy cargo receptor) in human urothelial cancer (URCa) cells, which were not exhibited in response to rapamycin treatment for cell growth inhibition. Autophagy plays an important role in cellular physiology and offers protection against chemotherapeutic agents as an adaptive response required for maintaining cellular energy. Here, we hypothesized that loss of NBR1 sensitizes human URCa cells to growth inhibition induced by rapamycin treatment, leading to interruption of protective autophagic activation. Also, the potential role of mitochondria in regulating autophagy was tested to clarify the mechanism by which rapamycin induces apoptosis in NBR1-knockdown URCa cells. NBR1-knockdown URCa cells exhibited enhanced sensitivity to rapamycin associated with the suppression of autophagosomal elongation and mitochondrial defects. Loss of NBR1 expression altered the cellular responses to rapamycin treatment, resulting in impaired ATP homeostasis and an increase in reactive oxygen species (ROS). Although rapamycin treatment-induced autophagy by adenosine monophosphate-activated protein kinase (AMPK) phosphorylation in NBR1-knockdown cells, it did not process the conjugated form of LC3B-II after activation by unc-51 like autophagy-activating kinase 1 (ULK1). NBR1-knockdown URCa cells exhibited rather profound mitochondrial dysfunctions in response to rapamycin treatment as evidenced by Δψm collapse, ATP depletion, ROS accumulation, and apoptosis activation. Therefore, our findings provide a rationale for rapamycin treatment of NBR1-knockdown human urothelial cancer through the regulation of autophagy and mitochondrial dysfunction by regulating the AMPK/mTOR signaling pathway, indicating that NBR1 can be a potential therapeutic target of human urothelial cancer.  相似文献   

14.
Herpes simplex virus-1 (HSV-1) infection causes severe conditions, with serious complications, including corneal blindness from uncontrolled ocular infections. An important cellular defense mechanism against HSV-1 infection is autophagy. The autophagic response of the host cell was suggested to be regulated by HSV-1. In this study, we performed a detailed analysis of autophagy in multiple HSV-1-targeted cell types, and under various infection conditions that recapitulate a productive infection model. We found that autophagy was slightly inhibited in one cell type, while in other cell types autophagy maintained its basal levels mostly unchanged during productive infection. This study refines the concept of HSV-1-mediated autophagy regulation to imply either inhibition, or prevention of activation, of the innate immune pathway.  相似文献   

15.
Membrane trafficking is defined as the vesicular transport of proteins into, out of, and throughout the cell. In intestinal enterocytes, defects in endocytic/recycling pathways result in impaired function and are linked to diseases. However, how these trafficking pathways regulate intestinal tissue homeostasis is poorly understood. Using the Drosophila intestine as an in vivo system, we investigated enterocyte-specific functions for the early endosomal machinery. We focused on Rab21, which regulates specific steps in early endosomal trafficking. Depletion of Rab21 in enterocytes led to abnormalities in intestinal morphology, with deregulated cellular equilibrium associated with a gain in mitotic cells and increased cell death. Increases in apoptosis and Yorkie signaling were responsible for compensatory proliferation and tissue inflammation. Using an RNA interference screen, we identified regulators of autophagy and membrane trafficking that phenocopied Rab21 knockdown. We further showed that Rab21 knockdown-induced hyperplasia was rescued by inhibition of epidermal growth factor receptor signaling. Moreover, quantitative proteomics identified proteins affected by Rab21 depletion. Of these, we validated changes in apolipoprotein ApoLpp and the trehalose transporter Tret1-1, indicating roles for enterocyte Rab21 in lipid and carbohydrate homeostasis, respectively. Our data shed light on an important role for early endosomal trafficking, and Rab21, in enterocyte-mediated intestinal epithelium maintenance.  相似文献   

16.
The glucose transporter type 4 (glut4) is critical for metabolic homeostasis. Insulin regulates glut4 by modulating its expression on the cell surface. This regulation is mainly achieved by targeting the endocytic recycling of glut4. We identify general receptor for 3-phosphoinositides 1 (Grp1) as a guanine nucleotide exchange factor for ADP-ribosylation factor 6 (ARF6) that promotes glut4 vesicle formation. Grp1 also promotes the later steps of glut4 recycling through ARF6. Insulin signaling regulates Grp1 through phosphorylation by Akt. We also find that mutations that mimic constitutive phosphorylation of Grp1 can bypass upstream insulin signaling to induce glut4 recycling. Thus, we have uncovered a major mechanism by which insulin regulates glut4 recycling. Our findings also reveal the complexity by which a single small GTPase in vesicular transport can coordinate its multiple steps to accomplish a round of transport.  相似文献   

17.
mTOR是细胞生长和增殖的中枢调控因子。mTOR形成2个不同的复合物mTORC1和mTORC2。mTORC1受多种信号调节,如生长因子、氨基酸和细胞能量,同时,mTORC1调节许多重要的细胞过程,包括翻译、转录和自噬。AMPK作为一种关键的生理能量传感器,是细胞和有机体能量平衡的主要调节因子,协调多种代谢途径,平衡能量的供应和需求,最终调节细胞和器官的生长。能量代谢平衡调控是由多个与之相关的信号通路所介导,其中AMPK/mTOR信号通路在细胞内共同构成一个合成代谢和分解代谢过程的开关。此外,AMPK/mTOR信号通路还是一个自噬的重要调控途径。本文着重于目前对AMPK和mTOR信号传导之间关系的了解,讨论了AMPK/mTOR在细胞和有机体能量稳态中的作用。  相似文献   

18.
Autophagy and endocytic pathway are highly regulated catabolic processes. Both processes are crucial for cell growth, development, differentiation, disease and homeostasis and exhibit membrane rearrangement for their function. Autophagy and endocytic pathway represent branches of the lysosomal digestive system, autophagy being responsible for degradation of cytoplasmic components and endocytic pathway for degradation of exogenous substances. Here we report that autophagy is activated when endocytic pathway regulatory genes such as rab-5 and rabx-5 are disrupted. Defects in the ubiquitin binding domain of RABX-5 are critical in activating autophagy. We also observed that the elevated autophagy level does not contribute to lifespan extension of rabx-5 mutant. Our results suggest that autophagy may compensate for the endocytic pathway when regulatory genes for the endocytic pathway malfunction, providing a case of complementation between two functionally related cellular processes.  相似文献   

19.
Tendons are vital collagen-dense specialized connective tissues transducing the force from skeletal muscle to the bone, thus enabling movement of the human body. Tendon cells adjust matrix turnover in response to physiological tissue loading and pathological overloading (tendinopathy). Nevertheless, the regulation of tendon matrix quality control is still poorly understood and the pathogenesis of tendinopathy is presently unsolved. Autophagy, the major mechanism of degradation and recycling of cellular components, plays a fundamental role in the homeostasis of several tissues. Here, we investigate the contribution of autophagy to human tendons’ physiology, and we provide in vivo evidence that it is an active process in human tendon tissue. We show that selective autophagy of the endoplasmic reticulum (ER-phagy), regulates the secretion of type I procollagen (PC1), the major component of tendon extracellular matrix. Pharmacological activation of autophagy by inhibition of mTOR pathway alters the ultrastructural morphology of three-dimensional tissue-engineered tendons, shifting collagen fibrils size distribution. Moreover, autophagy induction negatively affects the biomechanical properties of the tissue-engineered tendons, causing a reduction in mechanical strength under tensile force. Overall, our results provide the first evidence that autophagy regulates tendon homeostasis by controlling PC1 quality control, thus potentially playing a role in the development of injured tendons.Subject terms: Physiology, Cell biology  相似文献   

20.
The mammalian class III phosphatidylinositol 3-kinase (PI3K-III) complex regulates fundamental cellular functions, including growth factor receptor degradation, cytokinesis and autophagy. Recent studies suggest the existence of distinct PI3K-III sub-complexes that can potentially confer functional specificity. While a substantial body of work has focused on the roles of individual PI3K-III subunits in autophagy, functional studies on their contribution to endocytic receptor downregulation and cytokinesis are limited. We therefore sought to elucidate the specific nature of the PI3K-III complexes involved in these two processes. High-content microscopy-based assays combined with siRNA-mediated depletion of individual subunits indicated that a specific sub-complex containing VPS15, VPS34, Beclin 1, UVRAG and BIF-1 regulates both receptor degradation and cytokinesis, whereas ATG14L, a PI3K-III subunit involved in autophagy, is not required. The unanticipated role of UVRAG and BIF-1 in cytokinesis was supported by a strong localisation of these proteins to the midbody. Importantly, while the tumour suppressive functions of Beclin 1, UVRAG and BIF-1 have previously been ascribed to their roles in autophagy, these results open the possibility that they may also contribute to tumour suppression via downregulation of mitogenic signalling by growth factor receptors or preclusion of aneuploidy by ensuring faithful completion of cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号