首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Lipid signalling in plant responses to abiotic stress   总被引:2,自引:0,他引:2       下载免费PDF全文
Lipids are one of the major components of biological membranes including the plasma membrane, which is the interface between the cell and the environment. It has become clear that membrane lipids also serve as substrates for the generation of numerous signalling lipids such as phosphatidic acid, phosphoinositides, sphingolipids, lysophospholipids, oxylipins, N‐acylethanolamines, free fatty acids and others. The enzymatic production and metabolism of these signalling molecules are tightly regulated and can rapidly be activated upon abiotic stress signals. Abiotic stress like water deficit and temperature stress triggers lipid‐dependent signalling cascades, which control the expression of gene clusters and activate plant adaptation processes. Signalling lipids are able to recruit protein targets transiently to the membrane and thus affect conformation and activity of intracellular proteins and metabolites. In plants, knowledge is still scarce of lipid signalling targets and their physiological consequences. This review focuses on the generation of signalling lipids and their involvement in response to abiotic stress. We describe lipid‐binding proteins in the context of changing environmental conditions and compare different approaches to determine lipid–protein interactions, crucial for deciphering the signalling cascades.  相似文献   

2.
Phytohormones play central roles in boosting plant tolerance to environmental stresses, which negatively affect plant productivity and threaten future food security. Strigolactones (SLs), a class of carotenoid‐derived phytohormones, were initially discovered as an “ecological signal” for parasitic seed germination and establishment of symbiotic relationship between plants and beneficial microbes. Subsequent characterizations have described their functional roles in various developmental processes, including root development, shoot branching, reproductive development, and leaf senescence. SLs have recently drawn much attention due to their essential roles in the regulation of various physiological and molecular processes during the adaptation of plants to abiotic stresses. Reports suggest that the production of SLs in plants is strictly regulated and dependent on the type of stresses that plants confront at various stages of development. Recently, evidence for crosstalk between SLs and other phytohormones, such as abscisic acid, in responses to abiotic stresses suggests that SLs actively participate within regulatory networks of plant stress adaptation that are governed by phytohormones. Moreover, the prospective roles of SLs in the management of plant growth and development under adverse environmental conditions have been suggested. In this review, we provide a comprehensive discussion pertaining to SL‐mediated plant responses and adaptation to abiotic stresses.  相似文献   

3.
Sucrose is required for plant growth and development. The sugar status of plant cells is sensed by sensor proteins. The signal generated by signal transduction cascades, which could involve mitogen-activated protein kinases, protein phosphatases, Ca2+ and calmodulins, results in appropriate gene expression. A variety of genes are either induced or repressed depending upon the status of soluble sugars. Abiotic stresses to plants result in major alterations in sugar status and hence affect the expression of various genes by down- and up-regulating their expression. Hexokinase-dependent and hexokinase-independent pathways are involved in sugar sensing. Sucrose also acts as a signal molecule as it affects the activity of a proton-sucrose symporter. The sucrose transporter acts as a sucrose sensor and is involved in phloem loading. Fructokinase may represent an additional sensor that bypasses hexokinase phosphorylation especially when sucrose synthase is dominant. Mutants isolated on the basis of response of germination and seedling growth to sugars and reporter-based screening protocols are being used to study the response of altered sugar status on gene expression. Commoncis-acting elements in sugar signalling pathways have been identified. Transgenic plants with elevated levels of sugars/sugar alcohols like fructans, raffinose series oligosaccharides, trehalose and mannitol are tolerant to different stresses but have usually impaired growth. Efforts need to be made to have transgenic plants in which abiotic stress responsive genes are expressed only at the time of adverse environmental conditions instead of being constitutively synthesized.  相似文献   

4.
5.
植物逆境胁迫抗性的功能基因组研究策略   总被引:2,自引:0,他引:2  
植物对逆境胁迫抗性的功能基因组研究主要是寻找胁迫抗性位点在相关物种基因组中的保守位置,发现胁迫反应中的高度保守序列,确定植物胁迫反应的调控机理,进而得到植物对逆境胁迫抗性的关键代谢途径和其中的关键调控因子,为进一步选择用于改良植物对逆境胁迫抗性的关键基因奠定基础。本文从主要模式植物(苔藓类植物、复苏植物、盐土植物和甜土植物)、主要技术策略(基因的差异表达分析、基因表达序列标签、cDNA芯片技术。基因表达序列分析和基因敲除和突变体筛选分析)和生物信息学方法(数据分析的生物信息学方法设计到序列比较、比较基因组学、电子克隆)等三个方面对国内外植物逆境胁迫抗性的功能基因组研究策略作了全面综述。  相似文献   

6.
植物蛋白激酶与作物非生物胁迫抗性的研究   总被引:3,自引:0,他引:3  
干旱、盐碱、高温等非生物逆境胁迫严重影响作物生长发育、产量和品质。在遭受非生物逆境的威胁时,植物通过信号受体,可感知、转导胁迫信号,启动一系列抗逆相关基因的表达,最终缓解或抵御非生物逆境胁迫对植物造成的危害。其中,蛋白激酶和蛋白磷酸酯酶的磷酸化/去磷酸化作用在植物感受外界胁迫信号的分子传递过程中起到开关的作用。正常情况下,蛋白激酶磷酸化开启信号转导途径,启动相应的抗逆基因表达反应;当信号消失后,蛋白激酶去磷酸化将信号转导途径关闭,达到调控植物正常生长的目的。因此,蛋白激酶在调控感受胁迫信号、启动各种非生物逆境胁迫响应中起到了极其重要的作用。近年来,对植物蛋白激酶参与非生物胁迫响应的研究倍受关注。本文阐述了不同类型蛋白激酶在改良作物非生物胁迫抗性上的应用,为进一步研究提供资料。  相似文献   

7.
植物应答非生物胁迫的代谢组学研究进展   总被引:4,自引:0,他引:4       下载免费PDF全文
代谢组学技术是研究植物代谢的理想平台, 通过现代检测分析技术对胁迫环境下植物中代谢产物进行定性和定量分析, 可以监测其随时间变化的规律。而各种组学平台包括基因组学、转录组学及代谢组学的整合, 更是一个强有力的工具箱, 将所获得的不同组学的信息联系起来, 有利于从整体研究生物系统对基因或环境变化的响应, 如可判断代谢物的变化是从哪一个层面开始发生的, 帮助人们揭开复杂的植物胁迫应答机制。该文对近期代谢组学技术及其与蛋白质组学、基因组学技术相结合探索植物应答非生物胁迫的研究进行了综述。代谢组学的应用, 拓展了对植物耐受非生物胁迫分子机制的认识, 开展更多这方面的研究, 再通过植物代谢组学、转录组学、蛋白质组学和基因组学整合, 有助于从整体水平上把握植物胁迫应答机制。  相似文献   

8.
Many abiotic stresses induce the generation of nitric oxide (NO) in plant tissues, where it functions as a signal molecule in stress responses. Plants modulate NO by oxidizing it to NO3 with plant hemoglobin (GLB), because excess NO is toxic to cells. At least eight genes encoding GLB have been identified in soybean, in three clades: GLB1, GLB2, and GLB3. However, it is still unclear which GLB genes are responsible for NO regulation under abiotic stress in soybean. We exposed soybean roots to flooding, salt, and two NO donors—sodium pentacyanonitrosylferrate (III) dihydrate (SNP) and S-nitroso-N-acetyl-d,l-penicillamine (SNAP)—and analyzed expression of GLB genes. GmGLB1, one of two GLB1 genes of soybean, significantly responded to both SNP and SNAP, and its induction was almost completely repressed by a NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. GmGLB1 responded to flooding but not to salt, suggesting that it is responsible for NO regulation under NO-inducing abiotic stresses such as flooding. GmGLB3, one of two GLB3 genes of soybean, did not respond to NO donors at all but did respond to flooding, at a lower level than GmGLB1. These results suggest that flooding induces not only NO but also unknown factor(s) that induce GmGLB3 gene in soybean.  相似文献   

9.
10.
胚胎发育晚期丰富蛋白(LEA蛋白)在自然条件下主要在种子发育晚期大量积累,植物LEA基因也在多种非生物胁迫下诱导表达。植物LEA蛋白是植物应对失水胁迫(包括干旱、盐碱、冷冻等)逆境的一种广泛存在的亲水性应答蛋白,具有很强的热稳定性。本论文就LEA蛋白的结构、分类、功能及抗逆性分子机制进行了概述与总结,为分离新的LEA蛋白成员,进行功能分析以及进一步发掘其潜在应用价值提供参考。  相似文献   

11.
CIPK(calcineurin B-like-interacting protein kinase)是一类丝氨酸/苏氨酸蛋白激酶,在植物响应逆境胁迫和激素信号转导中发挥重要作用。本研究利用大豆基因组数据库,在全基因组水平鉴定获得52个CIPK蛋白激酶。蛋白比对分析发现所有Gm CIPK含有高度保守特征性的N端激酶区、连接区和C端调控区。系统进化树分析发现大豆Gm CIPK与拟南芥、水稻CIPK分类一致,分为4个亚家族,且每个亚家族含有3个不同物种的成员,表明Gm CIPK基因的分化早于物种的分化。启动子分析表明,多数Gm CIPK基因的启动子区含有逆境和激素应答元件。组织表达分析发现,Gm CIPK基因呈现多样化的组织表达特性。进一步选取组织表达量相对较高的14个Gm CIPK进行荧光定量PCR分析,结果表明这些菜用大豆CIPK基因在不同程度上均受高温、干旱、高盐胁迫以及ABA、ACC、SA、Me JA激素的诱导表达。采用蛋白同源比对和蛋白互作在线数据库对拟南芥及大豆同源CIPK蛋白激酶与其他蛋白的互作关系进行了预测分析,发现17对同源CIPK与其他蛋白(激酶、磷酸酶、转录因子等)存在互作。本研究为菜用大豆CIPK基因的功能研究与利用奠定了基础。  相似文献   

12.
13.
14.
Lipids play an important role in protecting poikilotherms from cold stress, but relatively little is known about the regulation of lipid metabolism under cold stress, especially in crustaceans. In the present study, red-clawed crayfish Cherax quadricarinatus was employed as a model organism. Animals were divided into four temperature groups (25, 20, 15 and 9 °C) and treated for 4 weeks, with the 25 °C group serving as a control. The total lipid content in the hepatopancreas as well as the triglyceride, cholesterol and free fatty acid levels in the hemolymph were determined. Lipids stored in the hepatopancreas and hemolymph decreased with decreasing temperature, with changes in the 9 °C group most pronounced, indicating that lipids are the main energy source for crayfish at low temperatures. Furthermore, enzyme activity of lipase, fatty acid synthase, acetyl-CoA carboxylase, and lipoprotein esterase, and gene expression analysis of fatty acid synthase gene, acetyl-CoA carboxylase gene and carnitine palmitoyltransferase gene showed that the digestion, synthesis and oxidation of lipids in the hepatopancreas were inhibited under low temperature stress, but expression of sphingolipid delta-4 desaturase (DEGS) was increased, indicating an increase in the demand for highly unsaturated fatty acids at low temperatures. Analysis of the expression of genes related to the AMP-activated protein kinase (AMPK) signalling pathway revealed that the adiponectin receptor gene was rapidly upregulated at low temperatures, which may in turn activate the expression of the downstream AMPKα gene, thereby inhibiting lipid anabolism.  相似文献   

15.
Abiotic stress has become a challenge to food security due to occurrences of climate change and environmental degradation. Plants initiate molecular, cellular and physiological changes to respond and adapt to various types of abiotic stress. Understanding of plant response mechanisms will aid in strategies aimed at improving stress tolerance in crop plants. One of the most common and early symptoms associated with these stresses is the disturbance in plant–water homeostasis, which is regulated by a group of proteins called “aquaporins”. Aquaporins constitute a small family of proteins which are classified further on the basis of their localization, such as plasma membrane intrinsic proteins, tonoplast intrinsic proteins, nodulin26-like intrinsic proteins (initially identified in symbiosomes of legumes but also found in the plasma membrane and endoplasmic reticulum), small basic intrinsic proteins localized in ER (endoplasmic reticulum) and X intrinsic proteins present in plasma membrane. Apart from water, aquaporins are also known to transport CO2, H2O2, urea, ammonia, silicic acid, arsenite and wide range of small uncharged solutes. Besides, aquaporins also function to modulate abiotic stress-induced signaling. Such kind of versatile functions has made aquaporins a suitable candidate for development of transgenic plants with increased tolerance toward different abiotic stress. Toward this endeavor, the present review describes the versatile functions of aquaporins in water uptake, nutrient balancing, long-distance signal transfer, nutrient/heavy metal acquisition and seed development. Various functional genomic studies showing the potential of specific aquaporin isoforms for enhancing plant abiotic stress tolerance are summarized and future research directions are given to design stress-tolerant crops.  相似文献   

16.
外生菌根在林木共生系统中占据重要的地位,具有提高宿主植物抗逆性的作用.在菌根学领域中,外生菌根与非生物胁迫互作的研究要远少于其他类型的菌根,尤其是缺乏综合、全面的总结性评述.文中总结了近5年来的相关研究,阐述了非生物胁迫(干旱、寒冷、高温、盐碱、重金属和有毒物质)下菌根共生体与植物抗逆性的关系,其他因子与外生菌根协同提...  相似文献   

17.
14-3-3 proteins and the response to abiotic and biotic stress   总被引:1,自引:0,他引:1  
14-3-3 proteins function as regulators of a wide range of target proteins in all eukaryotes by effecting direct protein-protein interactions. Primarily, interactions between 14-3-3 proteins and their targets are mediated by phosphorylation at specific sites on the target protein. Hence, interactions with 14-3-3s are subject to environmental control through signalling pathways which impact on 14-3-3 binding sites. Because 14-3-3 proteins regulate the activities of many proteins involved in signal transduction, there are multiple levels at which 14-3-3 proteins may play roles in stress responses in higher plants. In this article, we review evidence which implicates 14-3-3 proteins in responses to environmental, metabolic and nutritional stresses, as well as in defence responses to wounding and pathogen attack. This evidence includes stress-inducible changes in 14-3-3 gene expression, interactions between 14-3-3 proteins and signalling proteins and interactions between 14-3-3 proteins and proteins with defensive functions.  相似文献   

18.
MYB转录因子家族是植物中最大的转录因子家族之一,在植物体内的多种生理生化反应中起着关键性作用,其中一项重要功能就是对非生物逆境的应答。这类转录因子通过调控生长发育,影响代谢产物的合成和影响激素信号等多方面参与非生物逆境的应答。介绍了MYB转录因子的结构特点和分类上的新发现,并综述了近几年MYB转录因子家族在植物响应干旱、高温、低温和高盐等非生物胁迫方面的研究进展。  相似文献   

19.
Plants in their natural environment frequently face various abiotic stresses, such as drought, high salinity, and chilling. Plant mitochondria contain an alternative oxidase (AOX), which is encoded by a small family of nuclear genes. AOX genes have been shown to be highly responsive to abiotic stresses. Using transgenic plants with varying levels of AOX expression, it has been confirmed that AOX genes are im- portant for abiotic stress tolerance. Although the roles of AOX under abiotic stresses have been extensively studied and there are several excellent reviews on this topic, the differential expression patterns of the AOX gene family members and the signal regulation of AOX gene(s) under abiotic stresses have not been extensively summarized. Here, we review and discuss the current progress of these two important issues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号