首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Tissue overloading is a major contributor to shoulder musculoskeletal injuries. Previous studies attempted to use regression-based methods to predict muscle activities from shoulder kinematics and shoulder kinetics. While a regression-based method can address co-contraction of the antagonist muscles as opposed to the optimization method, most of these regression models were based on limited shoulder postures. The purpose of this study was to develop a set of regression equations to predict the 10th percentile, the median, and the 90th percentile of normalized electromyography (nEMG) activities from shoulder postures and net shoulder moments. Forty participants generated various 3-D shoulder moments at 96 static postures. The nEMG of 16 shoulder muscles was measured and the 3-D net shoulder moment was calculated using a static biomechanical model. A stepwise regression was used to derive the regression equations. The results indicated the measured range of the 3-D shoulder moment in this study was similar to those observed during work requiring light physical capacity. The r2 of all the regression equations ranged between 0.228 and 0.818. For the median of the nEMG, the average r2 among all 16 muscles was 0.645, and the five muscles with the greatest r2 were the three deltoids, supraspinatus, and infraspinatus. The results can be used by practitioners to estimate the range of the shoulder muscle activities given a specific arm posture and net shoulder moment.  相似文献   

2.
Abstract

The purpose of this paper is an investigation of the peculiarities of biarticular muscles by means of modelling and analytical solution of the indeterminate problem. The basic model includes 10 muscle elements performing flexio/extensio in the shoulder, elbow and wrist. Four of them are biarticular muscles. Two modifications of the model with only monoarticular muscles are developed. The indeterminate problem is solved analytically using the objective criterion σciFi 2 where F( is the module of the i-th muscle force and Cj is a weight coefficient. The predicted muscle forces, joint reactions and moments are compared in-between the basic model and its two modifications for different joint angles, external loading and weight coefficients. The main conclusions are: it is impossible to formulate strict advantages of the biarticular muscles under quasistatical conditions, their peculiarities depend on limb position, external loading and neural control; in general, monoarticular muscles are more powerful than biarticular ones; the biarticular muscles fine tune muscle coordination, their control is more precise and graceful; the presence of biarticular muscles leads to an increase of the joint reactions and moments, thus stabilizing the limb.  相似文献   

3.
Accurate representation of musculoskeletal geometry is needed to characterise the function of shoulder muscles. Previous models of shoulder muscles have represented muscle geometry as a collection of line segments, making it difficult to account for the large attachment areas, muscle–muscle interactions and complex muscle fibre trajectories typical of shoulder muscles. To better represent shoulder muscle geometry, we developed 3D finite element models of the deltoid and rotator cuff muscles and used the models to examine muscle function. Muscle fibre paths within the muscles were approximated, and moment arms were calculated for two motions: thoracohumeral abduction and internal/external rotation. We found that muscle fibre moment arms varied substantially across each muscle. For example, supraspinatus is considered a weak external rotator, but the 3D model of supraspinatus showed that the anterior fibres provide substantial internal rotation while the posterior fibres act as external rotators. Including the effects of large attachment regions and 3D mechanical interactions of muscle fibres constrains muscle motion, generates more realistic muscle paths and allows deeper analysis of shoulder muscle function.  相似文献   

4.
A lot of non-linear objective criteria are applied for solving the indeterminate problems formulated for different biomechanical models--most of them can be covered by the expression [formula in text]. It might be noted, however, that most of the suggested criteria are not applicable if considerable antagonistic co-contractions exist. This could be an effect of treating the agonistic muscles and their respective antagonists in one and the same manner in the objective function. Using a completely inverse approach (the muscle forces are supposed to be known quantities) and a simple 1DOF model (actuated by three agonistic muscles and one corresponding antagonist) it has been shown which values of the weight factors c(i) may predict different levels of muscle forces from the two antagonistic groups. Three hypothetical border variants for magnitudes of the muscle forces are considered (flexor muscles are only active, extensor muscles are only active, considerable co-contraction of flexors and extensors exists). The main conclusions are: the signs of c(i) at agonistic muscles have to be opposite to the c(i) signs at their antagonists; the signs of the weight factors depend on the direction of the net external joint moment; the closer c(i) to zero, the bigger force will be predicted in the ith muscle.  相似文献   

5.
Static optimization is commonly employed in musculoskeletal modeling to estimate muscle and joint loading; however, the ability of this approach to predict antagonist muscle activity at the shoulder is poorly understood. Antagonist muscles, which contribute negatively to a net joint moment, are known to be important for maintaining glenohumeral joint stability. This study aimed to compare muscle and joint force predictions from a subject-specific neuromusculoskeletal model of the shoulder driven entirely by measured muscle electromyography (EMG) data with those from a musculoskeletal model employing static optimization. Four healthy adults performed six sub-maximal upper-limb contractions including shoulder abduction, adduction, flexion, extension, internal rotation and external rotation. EMG data were simultaneously measured from 16 shoulder muscles using surface and intramuscular electrodes, and joint motion evaluated using video motion analysis. Muscle and joint forces were calculated using both a calibrated EMG-driven neuromusculoskeletal modeling framework, and musculoskeletal model simulations that employed static optimization. The EMG-driven model predicted antagonistic muscle function for pectoralis major, latissimus dorsi and teres major during abduction and flexion; supraspinatus during adduction; middle deltoid during extension; and subscapularis, pectoralis major and latissimus dorsi during external rotation. In contrast, static optimization neural solutions showed little or no recruitment of these muscles, and preferentially activated agonistic prime movers with large moment arms. As a consequence, glenohumeral joint force calculations varied substantially between models. The findings suggest that static optimization may under-estimate the activity of muscle antagonists, and therefore, their contribution to glenohumeral joint stability.  相似文献   

6.
Shoulder muscle function has been documented based on muscle moment arms, lines of action and muscle contributions to contact force at the glenohumeral joint. At present, however, the contributions of individual muscles to shoulder joint motion have not been investigated, and the effects of shoulder and elbow joint position on shoulder muscle function are not well understood. The aims of this study were to compute the contributions of individual muscles to motion of the glenohumeral joint during abduction, and to examine the effect of elbow flexion on shoulder muscle function. A three-dimensional musculoskeletal model of the upper limb was used to determine the contributions of 18 major muscles and muscle sub-regions of the shoulder to glenohumeral joint motion during abduction. Muscle function was found to depend strongly on both shoulder and elbow joint positions. When the elbow was extended, the middle and anterior deltoid and supraspinatus were the greatest contributors to angular acceleration of the shoulder in abduction. In contrast, when the elbow was flexed at 90°, the anterior deltoid and subscapularis were the greatest contributors to joint angular acceleration in abduction. This dependence of shoulder muscle function on elbow joint position is explained by the existence of dynamic coupling in multi-joint musculoskeletal systems. The extent to which dynamic coupling affects shoulder muscle function, and therefore movement control, is determined by the structure of the inverse mass matrix, which depends on the configuration of the joints. The data provided may assist in the diagnosis of abnormal shoulder function, for example, due to muscle paralysis or in the case of full-thickness rotator cuff tears.  相似文献   

7.
There are many instances in daily life and sport in which force must be exerted when an individual performing the task is in an unstable condition. Instability can decrease the externally-measured force output of a muscle while maintaining high muscle activation. The high muscle activation of limbs and trunk when unstable can be attributed to the increased stabilization functions. The increased stress associated with instability has been postulated to promote greater neuromuscular adaptations, such as decreased co-contractions, improved coordination, and confidence in performing a skill. In addition, high muscle activation with less stress on joints and muscles could also be beneficial for general musculoskeletal health and rehabilitation. However, the lower force output may be detrimental to absolute strength gains when resistance training. Furthermore, other studies have reported increased co-contractions with unstable training. The positive effects of instability resistance training on sports performance have yet to be quantified. The examination of the literature suggests that when implementing a resistance training program for musculoskeletal health or rehabilitation, both stable and unstable exercises should be included to ensure an emphasis on both higher force (stable) and balance (unstable) stressors to the neuromuscular system.  相似文献   

8.
In this paper the concept of a three-dimensional biomechanical model of the human shoulder is introduced. This model is used to analyze static load sharing between the muscles, the bones and the ligaments. The model consists of all shoulder structures, which means that different positions and different load situations may be analyzed using the same model. Solutions can be found for the complete range of shoulder motion. However, this article focuses only on elevation in the scapular plane and on forces in structures attached to the humerus. The intention is to expand the model in future studies to also involve the forces acting on the other shoulder bones: the scapula and the clavicle. The musculoskeletal forces in the shoulder complex are predicted utilizing the optimization technique with the sum of squared muscle stresses as an objective function. Numerical results predict that among the muscles crossing the glenohumeral joint parts of the deltoideus, the infraspinatus, the supraspinatus, the subscapularis, the pectoralis major, the coracobrachialis and the biceps are the muscles most activated during this sort of abduction. Muscle-force levels reached values of 150 N when the hand load was 1 kg. The results from the model seem to be qualitatively accurate, but it is concluded that in the future development of the model the direction of the contact force in the glenohumeral joint must be constrained.  相似文献   

9.
The goal of this study was to define the effect on hip contact forces of including subject-specific moment generating capacity in the musculoskeletal model by scaling isometric muscle strength and by including geometrical information in control subjects, hip osteoarthritis and total hip arthroplasty patients. Scaling based on dynamometer measurements decreased the strength of all flexor and abductor muscles. This resulted in a model that lacked the capacity to generate joint moments required during functional activities. Scaling muscle forces based on functional activities and inclusion of MRI-based geometrical detail did not compromise the model strength and resulted in hip contact forces comparable to previously reported measured contact forces.  相似文献   

10.
Accurate muscle geometry (muscle length and moment arm) is required to estimate muscle function when using musculoskeletal modelling. In shoulder, muscles are often modelled as a collection of independent line segments, leading to non-physiological muscles trajectory, especially for the rotator cuff muscles. To prevent this, a surface mesh model was developed and validated against 7 MRI positions in one participant. Mean moment arm errors was 11.4% for the line vs. 8.8% for the mesh model. While the model with independent lines led to some non-physiological trajectories, the mesh model gave lower misestimations of muscle lengths and moment arms.  相似文献   

11.
Inverse-dynamic models often use cost functions to solve the load-sharing problem. Although it is often assumed that energy is minimised, most cost functions are based on mechanically related measures like muscle force or stress. The aim of this study was to analyse the relationships of two cost functions with experimentally determined data on muscle energy consumption. Four subjects performed isometric contractions generating combinations of elbow flexion/extension and pro/supination moments. Muscle oxygen consumption (VO2) of the m. biceps breve, m. biceps longum, m. brachioradialis and m. triceps laterale was measured with near infrared spectroscopy. Both cost functions were implemented into an existing inverse-dynamic shoulder and elbow model and the individual cost values per muscle were calculated, normalised and subsequently compared to experimental VO2 values. The minimum stress cost function led to a good correspondence between VO2 and cost for the m. triceps laterale but for the flexor muscles cost was significantly lower. A newly proposed energy-related cost function showed, however, a far better correspondence. The inclusion of a linear term and muscle mass in the new criterion led model results to correspond better to experimental results. The energy-related cost function appeared to be a better measure for muscle energy consumption than the stress cost function and led to more realistic predictions of muscle activation.  相似文献   

12.
The net force and moment of a joint have been widely used to understand joint disease in the foot. Meanwhile, it does not reflect the physiological forces on muscles and contact surfaces. The objective of the study is to estimate active moments by muscles, passive moments by connective tissues and joint contact forces in the foot joints during walking. Joint kinematics and external forces of ten healthy subjects (all males, 24.7 ± 1.2 years) were acquired during walking. The data were entered into the five-segment musculoskeletal foot model to calculate muscle forces and joint contact forces of the foot joints using an inverse dynamics-based optimization. Joint reaction forces and active, passive and net moments of each joint were calculated from muscle and ligament forces. The maximum joint reaction forces were 8.72, 4.31, 2.65, and 3.41 body weight (BW) for the ankle, Chopart’s, Lisfranc and metatarsophalangeal joints, respectively. Active and passive moments along with net moments were also obtained. The maximum net moments were 8.6, 8.4, 5.4 and 0.8%BW∙HT, respectively. While the trend of net moment was very similar between the four joints, the magnitudes and directions of the active and passive moments varied between joints. The active and passive moments during walking could reveal the roles of muscles and ligaments in each of the foot joints, which was not obvious in the net moment. This method may help narrow down the source of joint problems if applied to clinical studies.  相似文献   

13.
14.
To investigate lower-limb muscle function during sidestep cutting, prior studies have analysed electromyography (EMG) data together with three dimensional motion analysis. Such an approach does not directly quantify the biomechanical role of individual lower-limb muscles during a sidestep cut. This study recorded three dimensional motion analysis, ground reaction force (GRF) and EMG data for eight healthy males executing an unanticipated sidestep cut. Using a musculoskeletal modelling approach, muscle function was determined by computing the muscle contributions to the GRFs and lower-limb joint moments. We found that bodyweight support (vertical GRF) was primarily provided by the vasti, gluteus maximus, soleus and gastrocnemius. These same muscles, along with the hamstrings, were also primarily responsible for modulating braking and propulsion (anteroposterior GRF). The vasti, gluteus maximus and gluteus medius were the key muscles for accelerating the centre-of-mass towards the desired cutting direction by generating a medially-directed GRF. Our findings have implications for designing retraining programs to improve sidestep cutting technique.  相似文献   

15.
The estimation of muscle forces in musculoskeletal shoulder models is still controversial. Two different methods are widely used to solve the indeterminacy of the system: electromyography (EMG)-based methods and stress-based methods. The goal of this work was to evaluate the influence of these two methods on the prediction of muscle forces, glenohumeral load and joint stability after total shoulder arthroplasty. An EMG-based and a stress-based method were implemented into the same musculoskeletal shoulder model. The model replicated the glenohumeral joint after total shoulder arthroplasty. It contained the scapula, the humerus, the joint prosthesis, the rotator cuff muscles supraspinatus, subscapularis and infraspinatus and the middle, anterior and posterior deltoid muscles. A movement of abduction was simulated in the plane of the scapula. The EMG-based method replicated muscular activity of experimentally measured EMG. The stress-based method minimised a cost function based on muscle stresses. We compared muscle forces, joint reaction force, articular contact pressure and translation of the humeral head. The stress-based method predicted a lower force of the rotator cuff muscles. This was partly counter-balanced by a higher force of the middle part of the deltoid muscle. As a consequence, the stress-based method predicted a lower joint load (16% reduced) and a higher superior–inferior translation of the humeral head (increased by 1.2 mm). The EMG-based method has the advantage of replicating the observed cocontraction of stabilising muscles of the rotator cuff. This method is, however, limited to available EMG measurements. The stress-based method has thus an advantage of flexibility, but may overestimate glenohumeral subluxation.  相似文献   

16.
Current electromyography (EMG)-driven musculoskeletal models are used to estimate joint moments measured from an individual?s extremities during dynamic movement with varying levels of accuracy. The main benefit is the underlying musculoskeletal dynamics is simulated as a function of realistic, subject-specific, neural-excitation patterns provided by the EMG data. The main disadvantage is surface EMG cannot provide information on deeply located muscles. Furthermore, EMG data may be affected by cross-talk, recording and post-processing artifacts that could adversely influence the EMG?s information content. This limits the EMG-driven model?s ability to calculate the multi-muscle dynamics and the resulting joint moments about multiple degrees of freedom. We present a hybrid neuromusculoskeletal model that combines calibration, subject-specificity, EMG-driven and static optimization methods together. In this, the joint moment tracking errors are minimized by balancing the information content extracted from the experimental EMG data and from that generated by a static optimization method. Using movement data from five healthy male subjects during walking and running we explored the hybrid model?s best configuration to minimally adjust recorded EMGs and predict missing EMGs while attaining the best tracking of joint moments. Minimally adjusted and predicted excitations substantially improved the experimental joint moment tracking accuracy than current EMG-driven models. The ability of the hybrid model to predict missing muscle EMGs was also examined. The proposed hybrid model enables muscle-driven simulations of human movement while enforcing physiological constraints on muscle excitation patterns. This might have important implications for studying pathological movement for which EMG recordings are limited.  相似文献   

17.
Large knee adduction moments during gait have been implicated as a mechanical factor related to the progression and severity of tibiofemoral osteoarthritis and it has been proposed that these moments increase the load on the medial compartment of the knee joint. However, this mechanism cannot be validated without taking into account the internal forces and moments generated by the muscles and ligaments, which cannot be easily measured. Previous musculoskeletal models suggest that the medial compartment of the tibiofemoral joint bears the majority of the tibiofemoral load, with the lateral compartment unloaded at times during stance. Yet these models did not utilise explicitly measured muscle activation patterns and measurements from an instrumented prosthesis which do not portray lateral compartment unloading. This paper utilised an EMG-driven model to estimate muscle forces and knee joint contact forces during healthy gait. Results indicate that while the medial compartment does bear the majority of the load during stance, muscles provide sufficient stability to counter the tendency of the external adduction moment to unload the lateral compartment. This stability was predominantly provided by the quadriceps, hamstrings, and gastrocnemii muscles, although the contribution from the tensor fascia latae was also significant. Lateral compartment unloading was not predicted by the EMG-driven model, suggesting that muscle activity patterns provide useful input to estimate muscle and joint contact forces.  相似文献   

18.
Interlimb and sex-based differences in gait mechanics and neuromuscular control are common after anterior cruciate ligament reconstruction (ACLR). Following ACLR, individuals typically exhibit elevated co-contraction of knee muscles, which may accelerate knee osteoarthritis (OA) onset. While directed (medial/lateral) co-contractions influence tibiofemoral loading in healthy people, it is unknown if directed co-contractions are present early after ACLR and if they differ across limbs and sexes. The purpose of this study was to compare directed co-contraction indices (CCIs) of knee muscles in both limbs between men and women after ACLR. Forty-five participants (27 men) completed overground walking at a self-selected speed 3 months after ACLR during which quadriceps, hamstrings, and gastrocnemii muscle activities were collected bilaterally using surface electromyography. CCIs of six muscle pairs were calculated during the weight acceptance interval. The CCIs of the vastus lateralis/biceps femoris muscle pair (lateral musculature) was greater in the involved limb (vs uninvolved; p = 0.02). Compared to men, women exhibited greater CCIs in the vastus medialis/lateral gastrocnemius and vastus lateralis/lateral gastrocnemius muscle pairs (p < 0.01 and p = 0.01, respectively). Limb- and sex-based differences in knee muscle co-contractions are detectable 3 months after ACLR and may be responsible for altered gait mechanics.  相似文献   

19.
Chronic shoulder impingement is a common problem for manual wheelchair users. The loading associated with performing manual wheelchair activities of daily living is substantial and often at a high frequency. Musculoskeletal modeling and optimization techniques can be used to estimate the joint contact forces occurring at the shoulder to assess the soft tissue loading during an activity and to possibly identify activities and strategies that place manual wheelchair users at risk for shoulder injuries. The purpose of this study was to validate an upper extremity musculoskeletal model and apply the model to wheelchair activities for analysis of the estimated joint contact forces. Upper extremity kinematics and handrim wheelchair kinetics were measured over three conditions: level propulsion, ramp propulsion, and a weight relief lift. The experimental data were used as input to a subject-specific musculoskeletal model utilizing optimization to predict joint contact forces of the shoulder during all conditions. The model was validated using a mean absolute error calculation. Model results confirmed that ramp propulsion and weight relief lifts place the shoulder under significantly higher joint contact loading than level propulsion. In addition, they exhibit large superior contact forces that could contribute to impingement. This study highlights the potential impingement risk associated with both the ramp and weight relief lift activities. Level propulsion was shown to have a low relative risk of causing injury, but with consideration of the frequency with which propulsion is performed, this observation is not conclusive.  相似文献   

20.
In the pediatric shoulder, injury and pathology can disrupt the muscle force balance, resulting in severe functional losses. As little data exists pertaining to in vivo pediatric shoulder muscle function, musculoskeletal data are crucially needed to advance the treatment of pediatric shoulder pathology/injury. Therefore, the purpose of this study was to develop a pediatric database of in vivo volumes for the major shoulder muscles and correlate these volumes with maximum isometric flexion/extension, internal/external rotation, and abduction/adduction joint moments. A methodology was developed to derive 3D shoulder muscle volumes and to divide the deltoid into sub-units with unique torque producing capabilities, based on segmentation of three-dimensional magnetic resonance images. Eleven typically developing children/adolescents (4F/7M, 12.0±3.2 years, 150.8±16.7 cm, 49.2±16.4 kg) participated. Correlation and regression analyses were used to evaluate the relationship between volume and maximum, voluntary, isometric joint torques. The deltoid demonstrated the largest (30.4±1.2%) and the supraspinatus the smallest (4.8±0.5%) percent of the total summed volume of all six muscles evaluated. The anterior and posterior deltoid sections were 43.4±3.9% and 56.6±3.9% of the total deltoid volume. The percent volumes were highly consistent across subjects. Individual muscle volumes demonstrated moderate-high correlations with torque values (0.70–0.94, p<0.001). This study presents a comprehensive database documenting normative pediatric shoulder muscle volume. Using these data a clear relationship between shoulder volume and the torques they produce was established in all three rotational degrees-of-freedom. This study furthers the understanding of shoulder muscle function and serves as a foundation for evaluating shoulder injury/pathology in the pediatric/adolescent population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号