共查询到20条相似文献,搜索用时 15 毫秒
1.
Eisenberg LM Eisenberg CA 《Birth defects research. Part C, Embryo today : reviews》2003,69(3):209-218
One of the most contentious issues in biology today concerns the existence of stem cell plasticity. The term "plasticity" refers to the capacity of tissue-derived stem cells to exhibit a phenotypic potential that extends beyond the differentiated cell phenotypes of their resident tissue. Although evidence of stem cell plasticity has been reported by multiple laboratories, other scientists have not found the data persuasive and have remained skeptical about these new findings. This review will provide an overview of the stem cell plasticity controversy. We will examine many of the major objections that have been made to challenge the stem cell plasticity data. This controversy will be placed in the context of the traditional view of stem cell potential and cell phenotypic diversification. What the implications of cell plasticity are, and how its existence may modulate our present understanding of stem cell biology, will be explored. In addition, we will examine a topic that is usually not included within a discussion of stem cell biology--the direct conversion of one differentiated cell type into another. We believe that these observations on the transdifferentiation of differentiated cells have direct bearing on the issue of stem cell plasticity, and may provide insights into how cell phenotypic diversification is realized in the adult and into the origin of cell phenotypes during evolution. 相似文献
2.
Drug resistance is a major obstacle in the targeted therapy of melanoma using BRAF/MEK inhibitors. This study was to identify BRAF V600E-associated oncogenic pathways that predict resistance of BRAF-mutated melanoma to BRAF/MEK inhibitors. We took in silico approaches to analyze the activities of 24 cancer-related pathways in melanoma cells and identify those whose activation was associated with BRAF V600E and used the support vector machine (SVM) algorithm to predict the resistance of BRAF-mutated melanoma cells to BRAF/MEK inhibitors. We then experimentally confirmed the in silico findings. In a microarray gene expression dataset of 63 melanoma cell lines, we found that activation of multiple oncogenic pathways preferentially occurred in BRAF-mutated melanoma cells. This finding was reproduced in 5 additional independent melanoma datasets. Further analysis of 46 melanoma cell lines that harbored BRAF mutation showed that 7 pathways, including TNFα, EGFR, IFNα, hypoxia, IFNγ, STAT3, and MYC, were significantly differently expressed in AZD6244-resistant compared with responsive melanoma cells. A SVM classifier built on this 7-pathway activation pattern correctly predicted the response of 10 BRAF-mutated melanoma cell lines to the MEK inhibitor AZD6244 in our experiments. We experimentally showed that TNFα, EGFR, IFNα, and IFNγ pathway activities were also upregulated in melanoma cell A375 compared with its sub-line DRO, while DRO was much more sensitive to AZD6244 than A375. In conclusion, we have identified specific oncogenic pathways preferentially activated in BRAF-mutated melanoma cells and a pathway pattern that predicts resistance of BRAF-mutated melanoma to BRAF/MEK inhibitors, providing novel clinical implications for melanoma therapy. 相似文献
3.
César Cobaleda Isidro Sánchez‐García 《BioEssays : news and reviews in molecular, cellular and developmental biology》2009,31(6):600-609
B‐cell acute lymphoblastic leukaemia (B‐ALL) is a clonal malignant disease originated in a single cell and characterized by the accumulation of blast cells that are phenotypically reminiscent of normal stages of B‐cell differentiation. B‐ALL origin has been a subject of continuing discussion, given the fact that human disease is diagnosed at late stages and cannot be monitored during its natural evolution from its cell of origin, although most B‐ALLs probably start off with chromosomal changes in haematopoietic stem cells. However, the cells responsible for maintaining the disease appear to differ between the different types of B‐ALLs and this remains an intriguing and exciting topic of research, since these cells have been posited to be responsible for resistance to conventional therapies, recurrence and dissemination. During the last years this problem has been addressed primarily by transplantation of purified subpopulations of human B‐ALL cells into immunodeficient mice. The results from these different reconstitution experiments and their interpretations are compared in this review in the context of normal B‐cell developmental plasticity. While the results from different research groups might appear mutually exclusive, we discuss how they could be reconciled with the biology of normal B‐cells and propose research avenues for addressing these issues in the future. 相似文献
4.
5.
Tissue-resident stem cells (SCs) are critical players in the maintenance of tissue homeostasis. SCs reside in complex and uniquely anatomically organized microenvironments (SC niches), that carefully control SC lineage outputs depending on localized tissue needs. Upon environmental perturbations and tissue stressors, SCs respond and restore the tissue to homeostasis, as well as protect it from secondary assaults. Critical to this function are two key processes, SC lineage plasticity and SC memory. In this review, we delineate the multifactorial determinants and key principles underlining these two remarkable SC behaviors. Understanding lineage plasticity and SC memory will be critical not only to design new regenerative therapies but also to determine how these processes are altered in a multitude of pathologies such as cancer and chronic tissue damage. 相似文献
6.
Hillen F Baeten CI van de Winkel A Creytens D van der Schaft DW Winnepenninckx V Griffioen AW 《Cancer immunology, immunotherapy : CII》2008,57(1):97-106
Various clinical and experimental observations detected an immunological host defense in cutaneous melanoma. In order to investigate
the prognostic value of leukocyte effector mechanisms, we examined the presence of different subsets of leukocytes in tumor
samples of 58 patients diagnosed with primary cutaneous melanoma. The presence of T lymphocytes, cytotoxic T lymphocytes,
B lymphocytes, CD16+ cells and macrophages was correlated to Breslow depth. A significantly higher amount of several subsets
of leukocytes was found in samples with a more progressed tumor stage and survival analysis demonstrated that a higher amount
of T lymphocytes and CD16+ cells was associated with a short survival. The amount of FOXP3+ regulatory T lymphocytes did not
correlate with survival, nevertheless, it correlated with the amount of total infiltrate. In contrast, analysis of the expression
of CD69, a marker for activated lymphocytes, demonstrated that patients with a higher amount of CD69+ lymphocytes had a better
survival. In addition, a new parameter for aggressiveness of melanoma, tumor cell plasticity [i.e., the presence of periodic
acid Schiff’s (PAS) reagent positive loops], also predicted short survival and a trend of a higher amount of tumor infiltrating
leukocytes in tumors with PAS positive loops was observed. These findings demonstrate that leukocyte infiltration and the
presence of PAS loops is a sign of tumor aggressiveness and may have prognostic value. 相似文献
7.
BCR-ABL tyrosine kinase inhibitors, such as imatinib (Gleevec) are highly effective in treating human Philadelphia chromosome-positive (Ph+) chronic myeloid leukaemia (CML) in chronic phase but not in terminal acute phase; acquired drug resistance caused mainly by the development of BCR-ABL kinase domain mutations prevents cure of the leukaemia. In addition, imatinib is ineffective in treating Ph+ B-cell acute lymphoblastic leukaemia (B-ALL) and CML blast crisis, even in the absence of the kinase domain mutations. This type of drug resistance that is unrelated to BCR-ABL kinase domain mutations is caused by the insensitivity of leukaemic stem cells to kinase inhibitors such as imatinib and dasatinib, and by activation of a newly-identified signalling pathway involving SRC kinases that are independent of BCR-ABL kinase activity for activation. This SRC pathway is essential for leukaemic cells to survive imatinib treatment and for CML transition to lymphoid blast crisis. Apart from BCR-ABL and SRC kinases, stem cell pathways must also be targeted for curative therapy of Ph+ leukaemia. 相似文献
8.
Conventional and targeted chemotherapies remain integral strategies to treat solid tumors. Despite the large number of anti-cancer drugs available, chemotherapy does not completely eradicate disease. Disease recurrence and the growth of drug resistant tumors remain significant problems in anti-cancer treatment. To develop more effective treatment strategies, it is important to understand the underlying cellular and molecular mechanisms of drug resistance. It is generally accepted that cancer cells do not function alone, but evolve through interactions with the surrounding tumor microenvironment. As key cellular components of the tumor microenvironment, fibroblasts regulate the growth and progression of many solid tumors. Emerging studies demonstrate that fibroblasts secrete a multitude of factors that enable cancer cells to become drug resistant. This review will explore how fibroblast secretion of soluble factors act on cancer cells to enhance cancer cell survival and cancer stem cell renewal, contributing to the development of drug resistant cancer. 相似文献
9.
Glioma incidence rates in the United States are near 20000 new cases per year, with a median survival time of 14.6 mo for high-grade gliomas due to limited therapeutic options. The origins of these tumors and their many subtypes remain a matter of investigation. Evidence from mouse models of glioma and human clinical data have provided clues about the cell types and initiating oncogenic mutations that drive gliomagenesis, a topic we review here. There has been mixed evidence as to whether or not the cells of origin are neural stem cells, progenitor cells or differentiated progeny. Many of the existing murine models target cell populations defined by lineage-specific promoters or employ lineagetracing methods to track the potential cells of origin. Our ability to target specific cell populations will likely increase concurrently with the knowledge gleaned from an understanding of neurogenesis in the adult brain. The cell of origin is one variable in tumorigenesis, as oncogenes or tumor suppressor genes may differentially transform the neuroglial cell types. Knowledge of key driver mutations and susceptible cell types will allow us to understand cancer biology from a developmental standpoint and enable early interventional strategies and biomarker discovery. 相似文献
10.
Glioma incidence rates in the United States are near 20000 new cases per year, with a median survival time of 14.6 mo for high-grade gliomas due to limited therapeutic options. The origins of these tumors and their many subtypes remain a matter of investigation. Evidence from mouse models of glioma and human clinical data have provided clues about the cell types and initiating oncogenic mutations that drive gliomagenesis, a topic we review here. There has been mixed evidence as to whether or not the cells of origin are neural stem cells, progenitor cells or differentiated progeny. Many of the existing murine models target cell populations defined by lineage-specific promoters or employ lineage-tracing methods to track the potential cells of origin. Our ability to target specific cell populations will likely increase concurrently with the knowledge gleaned from an understanding of neurogenesis in the adult brain. The cell of origin is one variable in tumorigenesis, as oncogenes or tumor suppressor genes may differentially transform the neuroglial cell types. Knowledge of key driver mutations and susceptible cell types will allow us to understand cancer biology from a developmental standpoint and enable early interventional strategies and biomarker discovery. 相似文献
11.
12.
Ruth Halaban Wengeng Zhang Antonella Bacchiocchi Elaine Cheng Fabio Parisi Stephan Ariyan Michael Krauthammer James P. McCusker Yuval Kluger Mario Sznol 《Pigment cell & melanoma research》2010,23(2):190-200
BRAFV600E/K is a frequent mutationally active tumor-specific kinase in melanomas that is currently targeted for therapy by the specific inhibitor PLX4032. Our studies with melanoma tumor cells that are BRAFV600E/K and BRAFWT showed that, paradoxically, while PLX4032 inhibited ERK1/2 in the highly sensitive BRAFV600E/K, it activated the pathway in the resistant BRAFWT cells, via RAF1 activation, regardless of the status of mutations in NRAS or PTEN. The persistently active ERK1/2 triggered downstream effectors in BRAFWT melanoma cells and induced changes in the expression of a wide-spectrum of genes associated with cell cycle control. Furthermore, PLX4032 increased the rate of proliferation of growth factor-dependent NRAS Q61L mutant primary melanoma cells, reduced cell adherence and increased mobility of cells from advanced lesions. The results suggest that the drug can confer an advantage to BRAFWT primary and metastatic tumor cells in vivo and provide markers for monitoring clinical responses. 相似文献
13.
14.
Recent advances in the study of human hepatocytes derived from induced pluripotent stem cells (iPSC) represent new promises for liver disease study and drug discovery. Human hepatocytes or hepatocyte-like cells differentiated from iPSC recapitulate many functional properties of primary human hepatocytes and have been demonstrated as a powerful and efficient tool to model human liver metabolic diseases and facilitate drug development process. In this review, we summarize the recent progress in this field and discuss the future perspective of the application of human iPSC derived hepatocytes. 相似文献
15.
X Zheng J Naiditch M Czurylo C Jie T Lautz S Clark N Jafari Y Qiu F Chu M B Madonna 《Cell death & disease》2013,4(7):e740
Numerous studies have confirmed that cancer stem cells (CSCs) are more resistant to chemotherapy; however, there is a paucity of data exploring the effect of long-term drug treatment on the CSC sub-population. The purpose of this study was to investigate whether long-term doxorubicin treatment could expand the neuroblastoma cells with CSC characteristics and histone acetylation could affect stemness gene expression during the development of drug resistance. Using n-myc amplified SK-N-Be(2)C and non-n-myc amplified SK-N-SH human neuroblastoma cells, our laboratory generated doxorubicin-resistant cell lines in parallel over 1 year; one cell line intermittently treated with the histone deacetylase inhibitor (HDACi) vorinostat and the other without exposure to HDACi. Cells'' sensitivity to chemotherapeutic drugs, the ability to form tumorspheres, and capacity for in vitro invasion were examined. Cell-surface markers and side populations (SPs) were analyzed using flow cytometry. Differentially expressed stemness genes were identified through whole genome analysis and confirmed with real-time PCR. Our results indicated that vorinostat increased the sensitivity of only SK-N-Be(2)C-resistant cells to chemotherapy, made cells lose the ability to form tumorspheres, and reduced in vitro invasion and the SP percentage. CD133 was not enriched in doxorubicin-resistant or vorinostat-treated doxorubicin-resistant cells. Nine stemness-linked genes (ABCB1, ABCC4, LMO2, SOX2, ERCC5, S100A10, IGFBP3, TCF3, and VIM) were downregulated in vorinostat-treated doxorubicin-resistant SK-N-Be(2)C cells relative to doxorubicin-resistant cells. A sub-population of cells with CSC characteristics is enriched during prolonged drug selection of n-myc amplified SK-N-Be(2)C neuroblastoma cells. Vorinostat treatment affects the reversal of drug resistance in SK-N-Be(2)C cells and may be associated with downregulation of stemness gene expression. This work may be valuable for clinicians to design treatment protocols specific for different neuroblastoma patients. 相似文献
16.
17.
A. N. Saprin E. V. Kalinina V. A. Serezhenkov Ya. N. Kotova V. S. Solomka N. P. Shcherbak 《Biophysics》2006,51(3):435-439
The free-radical state of K562 human erythroleukemia cells changes during the development of resistance to doxorubicin, an antitumor antibiotic with prooxidant action widely used in oncology. It was found that the level of superoxide anion in the resistant cells decreased. The addition of doxorubicin to the culture medium induced a much smaller increase in O 2 ? generation in the resistant cells than in the sensitive cells. Again, the semiquinone-type EPR signal with a g-factor of 2.006 considerably decreased in the resistant cells grown without doxorubicin as compared with the sensitive cells under the same conditions. The EPR study has shown that the level of paramagnetic nitrosyl complexes of nonheme iron in the resistant cells decreased, which indicates that the content of free nonheme iron declined in development of drug resistance. In addition, we have found with the use of RT-PCR that the level of mRNA of the transferrin receptor decreased in the resistant cells. The data suggest that the suppression of free-radical processes during the development of resistance of K562 cells to doxorubicin is a coordinated redox-dependent adaptive response. 相似文献
18.
19.
【背景】随着竹鼠养殖业不断发展,人工养殖技术的限制导致细菌性疾病不断发生,其中大肠杆菌病成为防治的重点。【目的】分离导致四川绵阳某规模化竹鼠养殖场竹鼠死亡的病原菌,对病原菌进行遗传进化分析和耐药情况分析,为竹鼠细菌性疾病防治提供案例支撑。【方法】采用形态学观察与16SrRNA基因序列分析对病原菌进行鉴定,并进行病理组织学观察、遗传进化分析、药敏试验和耐药基因分析。【结果】从竹鼠肝脏中分离到一株致病性大肠杆菌,病理组织切片可见肺脏、肝脏、肾脏病变严重,脾脏组织病变程度不大;药敏试验表明该株大肠杆菌对丁胺卡那霉素、庆大霉素、大观霉素、氨苄西林、头孢他啶、头孢吡肟、头孢噻肟、多粘菌素、四环素、多西环素等10种药物高度敏感,对左氧氟沙星、诺氟沙星、恩诺沙星、新霉素、红霉素、氟苯尼考、复方新诺明等7种药物耐药;该菌携带氨基糖苷类耐药基因[aac(3)-II、aph(3′)-II]和氯霉素类耐药基因(cmlA、floR)。【结论】该竹鼠养殖场疾病由致病性大肠杆菌导致,该株致病性大肠杆菌携带氨基糖苷类耐药基因和氯霉素类耐药基因。 相似文献
20.
Elisabetta Rovida Silvia Peppicelli Silvia Bono Francesca Bianchini Ignazia Tusa Giulia Cheloni 《Cell cycle (Georgetown, Tex.)》2014,13(20):3169-3175
This Perspective addresses the interactions of cancer stem cells (CSC) with environment which result in the modulation of CSC metabolism, and thereby of CSC phenotype and resistance to therapy. We considered first as a model disease chronic myeloid leukemia (CML), which is triggered by a well-identified oncogenetic protein (BCR/Abl) and brilliantly treated with tyrosine kinase inhibitors (TKi). However, TKi are extremely effective in inducing remission of disease, but unable, in most cases, to prevent relapse. We demonstrated that the interference with cell metabolism (oxygen/glucose shortage) enriches cells exhibiting the leukemia stem cell (LSC) phenotype and, at the same time, suppresses BCR/Abl protein expression. These LSC are therefore refractory to the TKi Imatinib-mesylate, pointing to cell metabolism as an important factor controlling the onset of TKi-resistant minimal residual disease (MRD) of CML and the related relapse. Studies of solid neoplasias brought another player into the control of MRD, low tissue pH, which often parallels cancer growth and progression. Thus, a 3-party scenario emerged for the regulation of CSC/LSC maintenance, MRD induction and disease relapse: the “hypoxic” versus the “ischemic” vs. the “acidic” environment. As these environments are unlikely constrained within rigid borders, we named this model the “metabolically-modulated stem cell niche.” 相似文献