首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of Rhodococcus actinobacteria to transform betulin to betulone was proved and reported for the first time. Betulone, the product of regioselective oxidation of a 3β-hydroxyl group of betulin, is a useful intermediate in the synthesis of novel biologically active compounds. Of 56 strains of Rhodococcus tested, Rhodococcus rhodochrous IEGM 66 was selected because it had the highest betulin-transforming ability. It was shown that R. rhodochrous IEGM 66 growing cells transformed 0.5 g/L betulin to betulone with 45% conversion rate within 240 h. A substantial reduction in the time of betulin (0.5 g/L) biotransformation was achieved by using resting cells, which catalyzed the production of 75% betulone after 96 h. At higher initial betulin concentrations (1.0–3.0 g/L), resting cells catalyzed 40–60% betulone production within 24 h.  相似文献   

2.
The hydrophobic bacterium Rhodococcus rhodochrous NBRC15564 was employed as a whole-cell biocatalyst to examine its potential for bioconversion in solvent-free organic media. The genes encoding two different thermostable alcohol dehydrogenases (ADHTt1 and ADHTt2) of Thermus thermophilus HB27 were expressed in R. rhodochrous cells. To inactivate indigenous mesophilic enzymes in R. rhodochrous, transformant cells were heated at 70 °C for 10 min. Heat-treated hydrophobic wet cells were used for the bioconversion of 2,2,2-trifluoroacetophenone (TFAP) to α-(trifluoromethyl) benzyl alcohol (TFMBA) as a model reaction with ADHTt1. NADH, which was supplied in aqueous solution, was regenerated by converting cyclohexanol to cyclohexanone by ADHTt2. All reactions were performed by suspending heat-treated cells in solvent-free organic media consisting of 3.7 M TFAP and 4.8 M cyclohexanol (1:1, v/v ratio) at 60 °C. When 800 mg heat-treated R. rhodochrous cells were dispersed in 2 mL of solvent-free organic media (400 mg cells/mL), the product concentration reached about 3.6 M TFMBA by 48 h with a total NADH turnover number of approximately 900. The overall productivity was 190 mol TFMBA/kg cells/h.  相似文献   

3.
《Process Biochemistry》2010,45(11):1787-1794
This study investigates erythromycin toxicity toward activated sludge as a function of exposure time and antibiotic concentration. Batch experiments were conducted and microscopic techniques ranging from bright-field microscopy to epifluorescence and confocal laser scanning microscopy (CLSM), combined with a fluorescent viability indicator (BacLight® Bacterial Viability Kit, Molecular Probes), allowed us to study erythromycin time-kill activity. The erythromycin toxicity was observed at lower concentration when exposure time increased. A 4 μg/L erythromycin concentration was toxic to heterotrophic bacteria on a 5-day time exposure, and a 5 mg/L concentration inhibited nitrification. These findings are in agreement with the microscopic studies, which showed a latency time before the lower antibiotic concentrations began to kill bacteria. Microscope slide wells were used as micro-reactors in which erythromycin concentration ranged from 0.1 to 1 mg/L. After 45 min there were 94% (SD 3.8) of living bacteria in control micro-reactors, 67% (SD 3.1) in micro-reactors that contained 0.1 mg/L erythromycin and 37% (SD 18.6) in micro-reactors that contained 1 mg/L erythromycin. CLSM allowed visualization of isolated stained cells in the three-dimensional structure of damaged flocs.  相似文献   

4.
The cultures of the snow alga Chlamydomonas nivalis in the exponential phage were stressed by NaCl (up to 1.5%) for 0~48 h, followed by Nile Red staining-based cytomic analysis (flow cytometry and confocal laser scanning microscopy). The fluorescent intensities of total lipids, and neutral and polar lipids increased to the maximum within 7 h in the NaCl stressed cells with the highest increase in total lipids by 2-fold (0.75%-NaCl for 7 h), the highest increase in neutral lipids by 68-fold (1%-NaCl for 7 h) and the highest increase in polar lipids by 10-fold (1.25%-NaCl for 5 h), respectively. Seven types and 22 kinds of polar lipid molecules were selected and identified as biomarkers by UPLC/Q-TOF-MS-based lipidomic analysis, which demonstrated differences in total lipids between the stress group (0.75%-NaCl for 7 h) and the control. The biological roles of the biomarkers in the alga under NaCl stress were discussed. The integrated approach based on “omics” technologies developed in the present work is validated as a powerful tool to successfully reveal the regulation of lipid metabolism in microalgae in response to stress stimulation.  相似文献   

5.
《Process Biochemistry》2014,49(12):2149-2157
The cell-bound cholesterol oxidase from the Rhodococcus sp. NCIM 2891 was purified three fold by diethylaminoethyl–sepharose chromatography. The estimated molecular mass (SDS-PAGE) and Km of the enzyme were ∼55.0 kDa and 151 μM, respectively. The purified cholesterol oxidase was immobilized on chitosan beads by glutaraldehyde cross-linking reaction and immobilization was confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. The optimum temperature (45 °C, 5 min) for activity of the enzyme was increased by 5 °C after immobilization. Both the free and immobilized cholesterol oxidases were found to be stable in many organic solvents except for acetone. Fe2+ and Pb2+ at 0.1 mM of each acted as inhibitors, while Ag+, Ca2+, Ni2+ and Zn2+ activated the enzyme at similar concentration. The biotransformation of cholesterol (3.75 mM) with the cholesterol oxidase immobilized beads (3.50 U) leads to ∼88% millimolar yield of cholestenone in a reaction time of 9 h at 25 °C. The immobilized enzyme retains ∼67% activity even after 12 successive batches of operation. The biotransformation method thus, shows a great promise for the production of pharmaceutically important cholestenone.  相似文献   

6.
Bisphenol A (BPA), a widely used chemical in the plastics industry that displays weak oestrogenic properties, is an emerging environmental pollutant, potentially harmful to living organisms. The presumed cytotoxicity of BPA to plant cells has been poorly studied. To understand how BPA might influence plant cell division and affect the underlying cytoskeleton, the effects of BPA on the microtubule (MT) arrays of meristematic root-tip cells of Pisum sativum L. were investigated. Root tips of young seedlings were exposed to 20, 50 and 100 mg/L BPA for 1, 3, 6, 12 and 24 h. The effects of each treatment were determined by means of confocal laser scanning microscopy after immunolabelling of tubulin and counterstaining of DNA, and by use of light and transmission electron microscopy. It was found that BPA affected normal chromosome segregation, hampered the completion of cytokinesis and deranged interphase and mitotic MT arrays. BPA effects were dependent on the stage of each cell at the time of BPA entrance. Moreover, BPA induced the formation of macrotubules with a mean diameter of 32 ± 0.14 nm, compared with 23 ± 0.70 nm for the MT arrays in untreated cells. Finally, all MT arrays and macrotubules were depolymerised upon longer treatment. Taken together, the data suggest that BPA exerts acute anti-mitotic effects on meristematic root-tip cells of P. sativum, MT arrays constitute a primary sub-cellular target of BPA toxicity, and the manifested chromosomal abnormalities could be attributed to the disruption of the MT cytoskeleton.  相似文献   

7.
In this paper, the pathways and kinetics for the production of diosgenin via biotransformation of Dioscorea zingiberensis C.H. Wright by Aspergillus oryzae CICC 2436 were analyzed. After 120 h of biotransformation at 30 °C, the concentration of diosgenin in the culture reached 36.87 ± 1.27 μmol/g raw herb, which was 21.2 times its initial concentration. A number of steroidal compounds were also isolated as minor products from the biotransformation, and one of these was identified as a novel compound named 3-O-β-d-glucopyranosyl (1  3) – β-d-glucopyranosyl (1  4) – β-d-glucopyranosyl-diosgenin (diosgenin-triglucoside). The biotransformation consisted of two stages: the release of steroids from the herb (accompanied by fungal growth) and hydrolysis of the steroids by glycosidases. Kinetic analysis and mathematical modelling showed that the process of biotransformation could be described by first-order kinetics under the condition of high Km/[S] values. It consisted of a cascade of consecutive and parallel reactions involving three kinds of enzymes, five steroid saponins and their sapogenin. The main hydrolysis reactions that led to the production of diosgenin were also discussed.  相似文献   

8.
Insulin production in pancreatic β-cells is critically linked to mitochondrial oxidative phosphorylation. Increased ATP production triggered by blood glucose represents the β-cells' glucose sensor. Type-2 diabetes mellitus results from insulin resistance in peripheral tissues and impaired insulin secretion. Pathology of diabetic β-cells might be reflected by the altered morphology of mitochondrial network. Its characterization is however hampered by the complexity and density of the three-dimensional (3D) mitochondrial tubular networks in these cell types. Conventional confocal microscopy does not provide sufficient axial resolution to reveal the required details; electron tomography reconstruction of these dense networks is still difficult and time consuming. However, mitochondrial network morphology in fixed cells can also be studied by 4Pi microscopy, a laser scanning microscopy technique which provides an ~ 7-fold improved axial resolution (~ 100 nm) over conventional confocal microscopy. Here we present a quantitative study of these networks in insulinoma INS-1E cells and primary β-cells in Langerhans islets. The former were a stably-transfected cell line while the latter were transfected with lentivirus, both expressing mitochondrial matrix targeted redox-sensitive GFP. The mitochondrial networks and their partial disintegration and fragmentation are revealed by carefully created iso-surface plots and their quantitative analysis. We demonstrate that β-cells within the Langerhans islets from diabetic Goto Kakizaki rats exhibited a more disintegrated mitochondrial network compared to those from control Wistar rats and model insulinoma INS-1E cells. Standardization of these patterns may lead to development of morphological diagnostics for Langerhans islets, for the assessment of β-cell condition, before their transplantations.  相似文献   

9.
《Process Biochemistry》2014,49(5):807-812
Under the deacetylation of fungal endophyte Penicillium canescens, which was isolated from pigeon pea, a novel and highly efficient biotransformation method of astragalosides to astragaloside IV in Radix Astragali was investigated. After single factor tests of the biotransformation procedure, the optimum biotransformation conditions were confirmed as the liquid solid ratio 20:1, the biotransformation temperature 30 °C, time 36 h and pH 7, respectively. Final content of astragaloside IV in Radix Astragali reached 7.66 ± 0.44 mg/g, which was 5.51-fold to that of untreated one and contents of astragaloside I and astragaloside II significantly decreased. The immobilized Ca-alginate gel beads with P. canescens could be reused at least for 13 runs. This is the first report that fungal endophyte was applied for the biotransformation of astragalosides to astragaloside IV in Radix Astragali and this novel high-efficiency biotransformation method will be an alternative to enhance the content of astragaloside IV in Radix Astragali in commercial process.  相似文献   

10.
This work optimized the novel biotransformation process of podophyllotoxin to produce podophyllic acid by Pseudomonas aeruginosa CCTCC AB93066. Firstly, the biotransformation process was significantly affected by medium composition. 5 g/l of yeast extract and 5 g/l of peptone were favorable for podophyllic acid production (i.e. 25.3 ± 3.7 mg/l), while not beneficial for the cell growth of P. aeruginosa. This indicated that the accumulation of podophyllic acid was not corresponded well to the cell growth of P. aeruginosa. 0 g/l of sucrose was beneficial for podophyllic acid production (i.e. 34.3 ± 3.9 mg/l), which led to high podophyllotoxin conversion (i.e. 98.2 ± 0.1%). 1 g/l of NaCl was the best for podophyllic acid production (i.e. 47.6 ± 4.0 mg/l). Secondly, the production of podophyllic acid was significantly enhanced by fed-batch biotransformation. When each 100 mg/l of podophyllotoxin was added to the biotransformation system after 4, 10 and 25 h of culture, respectively, podophyllic acid concentration reached 99.9 ± 12.3 mg/l, enhanced by 284% comparing to one-time addition (i.e. 26.0 ± 2.1 mg/l). The fundamental information obtained in this study provides a simple and efficient way to produce podophyllic acid.  相似文献   

11.
We report a novel antileishmanial formulation of betulin (BET) attached to functionalized carbon nanotubes (f-CNTs). We conjugated betulin, a pentacyclic triterpenoid secondary metabolite, to carboxylic acid chains on f-CNTs to obtain BET attached functionalized carbon nanotubes (f-CNT-Bet). The drug release profile demonstrated a fairly slow release of BET. The in-vitro cytotoxicities of BET, f-CNT and f-CNT-BET on J774A.1 macrophage cell line were 211.05 ± 7.14 μg/ml; 24.67 ± 3.11 μg/ml and 72.63 ± 6.14 μg/ml, respectively. The IC50 of BET and f-CNT-BET against intracellular Leishmania donovani amastigotes were 8.33 ± 0.41 μg/ml and 0.69 ± 0.08 μg/ml, respectively. The results demonstrate better antileishmanial efficiency of f-CNT-BET formulation than BET alone and with no significant cytotoxicity observed on host cells.  相似文献   

12.
An in situ product adsorption technique was used to enhance the biotransformation of l-phenylalanine to 2-phenylethanol by Saccharomyces cerevisiae BD. As a suitable adsorbent, the non-polar macroporous resin D101, selected from several resins tested, showed high adsorption capacity for 2-phenylethanol but not l-phenylalanine. Product inhibition was effectively alleviated by the addition of macroporous resin D101 to the biotransformation medium. When 2 g of hydrated resin D101 was added to 30 mL of the biotransformation medium, the total 2-phenylethanol concentration achieved was 6.17 g/L, of which 3.15 g/L remained in the aqueous phase and 3.02 g/L was adsorbed onto the resin. The molar yield of 2-phenylethanol reached 0.70 after 24 h cultivation. Addition of the macroporous resin greatly increased the volumetric productivity of 2-phenylethanol, and made the downstream processing more feasible and easier to perform in an industrial application.  相似文献   

13.
The hydroquinone glucoside arbutin is a plant derived compound medically applied due to its uroantiseptic activity. It also has skin whitening properties and thus is widely used in dermatology and cosmetology. Origanum majorana L. (Lamiaceae) is known to produce arbutin, however the content of the compound in cultivated plants is very variable and low. Since plant cell and tissue cultures are capable to perform specific biotransformation reactions including glucosylation, this investigation targeted the formation of arbutin from hydroquinone in agitated O. majorana shoot cultures. For this purpose different doses of hydroquinone (96, 144, 192, 288 and 384 mg/L of medium) were added to the culture flasks in one, two or three portions. Arbutin was qualitatively and quantitatively determined in methanol extracts from dry biomass and lyophilized media using HPLC-DAD. Cells of O. majorana shoot cultures efficiently converted hydroquinone into arbutin. The product was accumulated in the biomass and was not observed (or in trace amounts) in the medium samples. Different doses as well as portioning of the precursor had a significant impact on the biotransformation process. Arbutin accumulation increased from 0.23 ± 0.03 mg/g DW up to 52.6 ± 4.8 mg/g DW in the biomass. The highest product content was observed after the addition of 192 mg/L hydroquinone in three portions. The highest efficiency of the biotransformation process, i.e. 67.5 ± 5.2% was calculated for a dose of 96 mg/L precursor divided into three portions. After further optimization of the biotransformation process, O. majorana shoot cultures could serve as a rich source of arbutin.  相似文献   

14.
Cardiac ventricular trabeculae are widely used in the study of cardiac muscle function, primarily because their myocytes are axially-aligned. However, their collagen content has not been rigorously determined. In particular, it is unknown whether the content of collagen differs between specimens originating from the left (LV) and right (RV) ventricles and whether, indeed, either corresponds to the collagen content of the ventricular walls themselves. In order to redress this deficit of knowledge, we have used the techniques of fluorescence confocal microscopy and environmental scanning electron microscopy to quantify the proportion of perimysial collagen comprising the cross-sectional area of trabeculae carneae. In trabeculae from both the RV and LV of adult rat hearts, collagen may occupy as little as 1% or as much as 100% of the cross-section. For specimens of dimensions typically used experimentally, there was no difference in average collagen content (6.03 ± 5.14%, n = 33) of preparations from the two ventricles.  相似文献   

15.
Aquaporin-4 (AQP4) is a water channel protein mainly located in the astroglial plasma membrane, the precise function of which in the brain edema that accompanies hepatic encephalopathy (HE) is unclear. Since ammonia is the main pathogenic agent in HE, its effect on AQP4 expression and distribution in confluent primary astroglial cultures was examined via their exposure to ammonium chloride (1, 3 and 5 mM) for 5 and 10 days. Ammonia induced the general inhibition of AQP4 mRNA synthesis except in the 1 mM/5 day treatment. However, the AQP4 protein content measured was dependent on the method of analysis; an apparent increase was recorded in treated cells in in-cell Western assays, while an apparent reduction was seen with the classic Western blot method, perhaps due to differences in AQP4 aggregation. Ammonia might therefore induce the formation of insoluble AQP4 aggregates in the astroglial plasma membrane. The finding of AQP4 in the pellet of classic Western blot samples, plus data obtained via confocal microscopy, atomic force microscopy (using immunolabeled cells with gold nanoparticles) and scanning electron microscopy, all corroborate this hypothesis. The effect of ammonia on AQP4 seems not to be due to any osmotic effect; identical osmotic stress induced by glutamine and salt had no significant effect on the AQP4 content. AQP4 functional analysis (subjecting astrocytes to a hypo-osmotic medium and using flow cytometry to measure cell size) demonstrated a smaller water influx in ammonia-treated astrocytes suggesting that AQP4 aggregates are representative of an inactive status; however, more confirmatory studies are required to fully understand the functional status of AQP4 aggregates. The present results suggest that ammonia affects AQP4 expression and distribution, and that astrocytes change their expression of AQP4 mRNA as well as the aggregation status of the ensuing protein depending on the ammonia concentration and duration of exposure.  相似文献   

16.
This study aimed at visualization of cyclooxygenase-2 (COX-2) protein expression in melanoma cells by confocal laser induced cryofluorescence microscopy using 4-(3-(4-methoxyphenyl)-1H-indol-2-yl)benzene-sulfonamide (C1) representative for a novel class of autofluorescent 2,3-diarylsubstituted indole-based selective COX-2 inhibitors.COX-2 expression was measured in human melanoma cell lines A2058 and MelJuso by immunocytochemistry and immunoblotting. Cellular uptake experiments using varying C1 concentrations down to 0.1 nM (with/without molar excess of celecoxib as control) were performed at 37 °C. Cryofluorescence microscopy was conducted at 20 K.COX-2 protein expression was successfully visualized by C1 in A2058 cells. COX-2-negative MelJuso cells showed no specific accumulation of C1. Control experiments using celecoxib and, additionally, implemented fluorescence spectroscopy confirmed specificity of both cellular uptake and intracellular association of C1.Cryofluorescence microscopy in combination with spectroscopy allowed for visualization of COX-2 protein expression in melanoma cells in vitro using a selective COX-2 inhibitor at very low concentrations.  相似文献   

17.
Betulin, a naturally occurring abundant triterpene is converted in four steps to 3,28-di-O-acetyllupa-12,18-diene. When various 4-substituted urazoles were oxidized to the corresponding urazines with iodobenzene diacetate in the presence of 3,28-di-O-acetyllupa-12,18-diene, new heterocyclic betulin derivatives were produced. These betulin derivatives were examined in a microplate assay at 50 μM for their ability to inhibit the growth of Leishmania donovani axenic amastigotes, a species that causes the fatal visceral leishmaniasis. GI50 (concentration for 50% growth inhibition) values of the most effective compounds were determined and their cytotoxicity on the human macrophage cell line THP-1 evaluated. The anti-leishmanial activity on L. donovani amastigotes growing in macrophages was also examined. The heterocycloadduct between 3,28-di-O-acetyllupa-12,18-diene and 4-methylurazine was the most effective derivative with an GI50 = 8.9 μM against L. donovani amastigotes.  相似文献   

18.
The crystallographic microstructure of Meretrix lusoria shells was investigated using scanning electron microscopy (SEM), X-ray diffractometry (XRD), and transmission electron microscopy (TEM). Crystallite sizes were determined by XRD analysis as 72 nm, which was quite similar to the 70 nm as measured by SEM. The shell comprised aggregates of hexagonal plates of aragonite (500 nm wide, 70 nm high) and organic matter. These plates were fourth-order units of an aragonitic crossed order lamellar structure. Subsequent TEM images showed the hexagonal plates’ nanostructure. The electron diffraction pattern of the fourth-order units revealed a consistent orientation of the hexagonal plates. The fourth-order lamellae (hexagonal crystallites) were piled up in the [0 0 1] direction to produce slender prisms (third-order lamellae), arranged mutually parallel, thereby forming a broad tablet (second-order lamellae). The second-order lamellae were piled up in different directions to form the first-order lamellae. The orientation level obtained from XRD and SEM images showed that the crossed lamellar layer was piled up curvilinearly, forming semi-circular growth lines. X-ray diffraction patterns of the cross-sections of the middle layer (vertical and parallel to the growth line) showed that the c axes of aragonite have a disposition of about 20° to the growth direction.  相似文献   

19.
d-Lactic acid and pyruvic acid are two important building block intermediates. Production of d-lactic acid and pyruvic acid from racemic lactic acid by biotransformation is economically interesting. Biocatalyst prepared from 9 g dry cell wt l?1 of Pseudomonas stutzeri SDM could catalyze 45.00 g l?1 dl-lactic acid into 25.23 g l?1 d-lactic acid and 19.70 g l?1 pyruvic acid in 10 h. Using a simple ion exchange process, d-lactic acid and pyruvic acid were effectively separated from the biotransformation system. Co-production of d-lactic acid and pyruvic acid by enantioselective oxidation of racemic lactic acid is technically feasible.  相似文献   

20.
This study investigates the mitochondrial (mt) distribution in canine ovarian oocytes examined at recovery time, as related to the reproductive cycle stage, and in oviductal oocytes. Ovarian Germinal Vesicle (GV) stage oocytes were recovered from bitches in anestrous (A, n = 2), follicular phase (F, n = 4), ovulation (O, n = 2), early luteal (EL, n = 7) and mid/late luteal phase (MLL, n = 2). Oviductal GV, metaphase I (MI) or MII stage oocytes were recovered from six bitches between 56 and 110 h after ovulation. Mitochondria were revealed by using MitoTracker Orange CMTM Ros and confocal microscopy. In ovarian oocytes, three mt distribution patterns were found: (I) small aggregates diffused throughout the cytoplasm; (II) diffused tubular networks; (III) pericortical tubular networks. Significantly higher rates of oocytes showing heterogeneous mt patterns (II + III) were obtained from bitches in F (75%) and in O (96%) compared with bitches in A (31%; F vs. A: P < 0.05; O vs. A: P < 0.001), in EL (61%; O vs. EL: P < 0.01), or in MLL (0%; F vs. MLL: P < 0.05; O vs. MLL: P < 0.001). Fluorescence intensity did not vary according to mt distribution pattern except that it was lower in oocytes recovered in EL phase and showing small mt aggregations (P < 0.001). The majority of ovulated MII stage oocytes (79%) showed diffused tubular mt network. We conclude that mt distribution pattern of canine ovarian immature oocytes changes in relation to reproductive cycle stage and that patterns observed in oocytes recovered from bitches in periovulatory phases are heterogeneous and similar to those of in vivo matured oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号