首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to validate the MarkWiiR (MW) captured by the Nintendo Wii-Remote (100-Hz) to assess active marker displacement by comparison with 2D video analysis. Ten participants were tested on a treadmill at different walking (1<6 km · h−1) and running (10<13 km · h−1) speeds. During the test, the active marker for MW and a passive marker for video analysis were recorded simultaneously with the two devices. The displacement of the marker on the two axes (x-y) was computed using two different programs, Kinovea 0.8.15 and CoreMeter, for the camera and MW, respectively. Pearson correlation was acceptable (x-axis r≥0.734 and y-axis r≥0.684), and Bland–Altman plots of the walking speeds showed an average error of 0.24±0.52% and 1.5±0.91% for the x- and y-axis, respectively. The difference of running speeds showed average errors of 0.67±0.33% and 1.26±0.33% for the x- and y-axes, respectively. These results demonstrate that the two measures are similar from both the x- and the y-axis perspective. In conclusion, these findings suggest that the MarkWiiR is a valid and reliable tool to assess the kinematics of an active marker during walking and running gaits.  相似文献   

2.
To better understand methodological factors that alter landings strategies, we compared sagittal plane joint energetics during the initial landing phase of drop jumps (DJ) vs. drop landings (DL), and when shod vs. barefoot. Surface electromyography, kinematic and kinetic data were obtained on 10 males and 10 females during five consecutive drop landings and five consecutive drop jumps (0.45 m) when shod and when barefoot. Energy absorption was greater in the DJ vs. DL (P = .002), due to increased energy absorption at the hip during the DJ. Joint stiffness/impedance was more affected by shoe condition, where overall stiffness/impedance was greater in shod compared to barefoot conditions (P = .036). Further, hip impedance was greater in shod vs. barefoot for the DL only (via increased peak hip extensor moment in DL), while ankle stiffness was greater in the barefoot vs. shod condition for the DJ only (via decreased joint excursion and increased peak joint moment in DJ vs. DL) (P = .011). DJ and DL place different neuromechanical demands upon the lower extremities, and shoe wear may alter impact forces that modulate stiffness/impedance strategies. The impact of these methodological differences should be considered when comparing landing biomechanics across studies.  相似文献   

3.
4.
Evaluation of bladder wall mechanical behavior is important in understanding the functional changes that occur in response to pathologic processes such as partial bladder outlet obstruction (pBOO). In the murine model, the traditional approach of cystometry to describe bladder compliance can prove difficult secondary to small bladder capacity and surgical exposure of the bladder. Here, we explore an alternative technique to characterize murine mechanical properties by applying biaxial mechanical stretch to murine bladders that had undergone pBOO. 5–6 week old female C57/Bl6 mice were ovariectomized and subjected to pBOO via an open surgical urethral ligation and sacrificed after 4 weeks (n=12). Age matched controls (n=6) were also analyzed. Bladders were separated based on phenotype of fibrotic (n=6) or distended (n=6) at the time of harvest. Biaxial testing was performed in modified Kreb's solution at 37 °C. Tissue was preconditioned to 10 cycles and mechanical response was evaluated by comparing axial strain at 50 kPa. The normal murine bladders exhibited anisotropy and were stiffer in the longitudinal direction. All mice showed a loss of anisotropy after 4 weeks of pBOO. The two phenotypes observed after pBOO, fibrotic and distended, exhibited less and more extensibility, respectively. These proof-of-principle data demonstrate that pBOO creates quantifiable changes in the mechanics of the murine bladder that can be effectively quantified with biaxial testing.  相似文献   

5.
实验性羊胫骨骨折愈合生物力学研究   总被引:1,自引:0,他引:1  
本实验用山羊10只,线锯造成胫骨中部骨折,夹板固定。于术后2、4、6周分别处死动物。测量其胫骨骨折愈合的极限弯曲载荷。结果表明:(1)术后第2周,因为纤维性骨痂,无弯曲载荷测量;(2)术后第4周,极限弯曲载荷是150±24(N),其断裂发生在原骨折线,(3)术后第6周,原骨折线处不再发生断裂,干骺部出现断裂,其极限弯曲载荷为653±55(N)。这些结果对临床骨科是有意义的。  相似文献   

6.
    
This study aimed to clarify the differences in electromyographic activity between the quadratus lumborum anterior (QL-a) and posterior layers (QL-p), and the relationship among trunk muscles and gluteus medius (GMed) activities during forward landing. Thirteen healthy men performed double-leg and single-leg (ipsilateral or contralateral sides as the electromyography measurement of trunk muscles) forward landings from a 30 cm-height-box. The onset of electromyographic activity in pre-landing and the electromyographic amplitude of the unilateral QL-a, QL-p, abdominal muscles, lumbar multifidus (LMF), erector spinae (LES), and bilateral GMed were recorded. Two-way ANOVA was used to compare the onset of electromyographic activity (3 landing leg conditions × 10 muscles) and electromyographic amplitude among (3 landing leg conditions × 2 phases). The onset of QL-p was significantly earlier in contralateral-leg landing than in the double-leg and ipsilateral-leg landings. The onset of LMF and LES was significantly earlier than that of the abdominal muscles in contralateral-leg landing. QL-p activity and GMed activity on the contralateral leg side in the pre-landing were significantly higher in contralateral-leg landing than in the other leg landings. To prepare for pelvic and trunk movements after ground contact, LMF, LES, QL-p on non-support leg side, and GMed on support leg side showed early or high feedforward activation before ground contact during single-leg forward landing.  相似文献   

7.
When the foot impacts the ground in running, large forces and loading rates can arise that may contribute to the development of overuse injuries. Investigating which biomechanical factors contribute to these impact loads and loading rates in running could assist clinicians in developing strategies to reduce these loads. Therefore, the goals of our work were to determine variables that predict the magnitude of the impact peak and loading rate during running, as well as to investigate how modulation of knee and hip muscle activity affects these variables. Instrumented gait analysis was conducted on 48 healthy subjects running at 3.3 m/s on a treadmill. The top four predictors of loading rate and impact peak were determined using a stepwise multiple linear regression model. Forward dynamics was performed using a whole body musculoskeletal model to determine how increased muscle activity of the knee flexors, knee extensors, hip flexors, and hip extensors during swing altered the predictors of loading rate and impact peak. A smaller impact peak was associated with a larger downward acceleration of the foot, a higher positioned foot, and a decreased downward velocity of the shank at mid-swing while a lower loading rate was associated with a higher positioned thigh at mid-swing. Our results suggest that an alternative to forefoot striking may be increased hip flexor activity during swing to alter these mid-swing kinematics and ultimately decrease the leg's velocity at landing. The decreased velocity would decrease the downward momentum of the leg and hence require a smaller force at impact.  相似文献   

8.
    
National Biomechanics Day (NBD) was initiated in 2016 as a nation-wide effort to introduce Biomechanics to high school students throughout the United States. After that initial year, many people around the world joined NBD to promote Biomechanics in their own countries. National Biomechanics Day became international. We describe NBD procedures and events in four of these countries with the intent of demonstrating mechanisms that may enable Biomechanists around the world to successfully join the NBD celebration.  相似文献   

9.
    
A review of Endo's experimental and theoretical procedures and data indicates that the magnitude of the principal strains in the glabella region of both humans and gorillas are low as compared to other parts of the face. Therefore, his data do not provide support for the hypothesis that the glabella region is a highly stressed region during biting. In addition, increased levels of strain in the supraorbital region are directly related to increased levels of masticatory muscle and reaction forces, and not necessarily to anterior tooth loading as opposed to posterior tooth loading. His data also indicate that the supraorbital region in extant humans cannot be accurately modeled as a beam. These conclusions either differ from those of Endo or are not clearly presented or emphasized throughout any of Endo's papers. Therefore, we suggest that a number of investigators have made unsupported or erroneous conclusions based on Endo's work. This is particularly true for those studies that have emphasized the existence of powerful bending stress in the glabella region during incisor biting in both humans and non-human primates.  相似文献   

10.
While the mechanics of trees are well known, a systematic and comprehensive study of the mechanical consequences of a tree's fractal structure has been lacking. Here, we analyze the structure of botanical trees using computer modeling and show that many relevant measures of support throughout all the branches of a tree follow specific patterns which can be described by characteristic probability distributions and well-defined spatial relationships. Most notably, moments, forces, and axial and shear stresses throughout the different branches all exhibit power-law distributions. These results suggest a new approach to the study of the mechanics of trees, one accounting for the implications of the above results.  相似文献   

11.
As the density of development increases, there is a growing need to address the cumulative effects of project developments on the environment. In Canada this need has been recognized in legislation whereby new project developments that require an environmental assessment under the Canadian Environmental Assessment Act are required to address the cumulative effects of proposed project activities relative to the existing environmental condition. Unfortunately, existing stressor-based and effects-based approaches to environmental assessment do not adequately address cumulative effects as defined under the Act when used in isolation. However, elements from each approach can be conceptually incorporated into a holistic cumulative effects assessment framework. Key framework components include: (1) an effects-based assessment to determine existing accumulated environmental state, (2) a stressor-based assessment to predict potential impacts of new development relative to the existing environmental state, (3) post-development monitoring to assess the accuracy of impact predictions and to provide an avenue for adaptive management, and (4) decision-making frameworks to link scientific information to public opinion and managerial action. The key advantage of this framework is that it provides a more holistic, systematic approach for incorporation of ecological information into a scientific and management framework for cumulative effects assessment.  相似文献   

12.
    
Knee kinetic asymmetries are present during jump-landings in athletes returning to sport following anterior cruciate ligament (ACL) reconstruction, and are associated with an increased risk for sustaining a second ACL injury. The loadsol® is a wireless load sensing insole that can be used in non-laboratory settings. The purpose of this study was to determine if the loadsol® could be used to predict knee extension moment and power symmetry during a bilateral stop jump task in healthy recreational athletes. Forty-two uninjured recreational athletes completed seven bilateral stop jumps. During each landing, the loadsol® (100 Hz) measured plantar load while 3D ground reaction forces (1920 Hz) and lower extremity kinematics (240 Hz) were collected simultaneously. Peak impact force, loading rate, and impulse were quantified using the loadsol® and peak knee extension moment, average knee extension moment, and total knee work was quantified using the laboratory instrumentation. Limb symmetry indices were quantified for each outcome measure. Multivariate backwards regressions were used to determine if loadsol® symmetry could predict knee kinetic symmetry. Intraclass correlation coefficients (ICCs) and Bland-Altman plots were used to determine the agreement and error between predicted and actual knee kinetic symmetry. Loadsol® impulse and peak impact force symmetry significantly predicted kinetic knee symmetry and explained 42–61% of its variance. There was good agreement (ICCs = 0.742–0.862) between predicted and actual knee kinetic symmetry, and the error in the predicted outcomes range from ±18 to ±43. These results support using the loadsol® to screen for kinetic symmetries during landing in athletes following ACL reconstruction.  相似文献   

13.
We present a model of the human elbow and study the problem of existence and stability of equilibrium states. Our main goal is to demonstrate that stable equilibrium states exist just on grounds of the mechanical properties of the muscles and the skeleton. In particular, additional control mechanisms such as reflexes are not necessary to obtain stability. We assume that the activation of flexor and extensor muscles is constant and such that the right angle is an equilibrium state. We give a complete bifurcation diagram of all equilibrium states in terms of the elbow angle, the activation of the muscles and the mass of a load. Moreover, we define a dimensionless model parameter which allows to determine whether or not there are stable equilibria at an angle of ninety degrees. It turns out that the dependency of the muscle forces on the length of the muscles is the crucial factor for the stability of such an equilibrium.  相似文献   

14.
    
An animal's fitness is influenced by the ability to move safely through its environment. Recent models have shown that aspects of body geometry, for example, limb length and center of mass (COM) position, appear to set limits for pitch control in cursorial quadrupeds. Models of pitch control predict that the body shape of these and certain other primates, with short forelimbs and posteriorly positioned COM, should allow them to decelerate rapidly while minimizing the risk of pitching forward. We chose to test these models in two non-cursorial lemurs: Lemur catta, the highly terrestrial ring-tailed lemur, and Eulemur fulvus, the highly arboreal brown lemur. We modeled the effects of changes in limb length and COM position on maximum decelerative potential for both species, as well as collecting data on maximal decelerations across whole strides. In both species, maximum measured decelerations fell below the range of pitch-limited deceleration values predicted by the geometric model, with the ring-tailed lemur approaching its pitch limit more closely. Both lemurs showed decelerative potential equivalent to or higher than horses, the only comparative model currently available. These data reinforce the hypothesis that a relatively simple model of body geometry can predict aspects of maximum performance in animals. In this case, it appears that the body geometry of primates is skewed toward avoiding forward pitch in maximal decelerations.  相似文献   

15.
The assessment of the behavior of immediately loaded dental implants using biomechanical methods is of particular importance. The primary goal of this investigation is to optimize the function of the implants to serve for immediate loading. Animal experiments on reindeer antlers as a novel animal model will serve for investigation of the bone remodeling processes in the implant bed. The main interest is directed towards the time and loading-dependant behavior of the antler tissue around the implants. The aim and scope of this work was to design an autonomous loading device that has the ability to load an inserted implant in the antler with predefined occlusal forces for predetermined time protocols. The mechanical part of the device can be attached to the antler and is capable of cyclically loading the implant with forces of up to 100 N. For the calibration and testing of the loading device a biomechanical measuring system has been used. The calibration curve shows a logarithmic relationship between force and motor current and is used to control the force on the implant. A first test on a cast reindeer antler was performed successfully.  相似文献   

16.
    
We investigated the simple and multivariate associations between knee pain and gait biomechanics. 279 patients with medial knee osteoarthritis (OA) and discordant changes in pain between limbs after walking completed bilateral three-dimensional gait analysis. For each limb, patients rated their pain before and after a 6-min walk and the change in pain was recorded as an increase (≥1 points) or not (≤0 points). Among paired limbs, the simple and multivariate associations between an increase in pain and the external moments in each orthogonal plane were evaluated using conditional logistic regression. The analyses were then repeated for knee angles. Univariate analyses demonstrated associations in each plane that varied in both magnitude and direction, with larger associations for the knee moments [Odds Ratio (95% confidence interval) = first peak adduction moment: 2.80 (2.02, 3.88), second peak adduction moment: 2.36 (1.73, 3.24), adduction impulse: 6.65 (3.50, 12.62), flexion moment: 0.46 (0.36, 0.60), extension moment: 0.56 (0.44, 0.71), internal rotation moment: 7.54 (3.32, 17.13), external rotation moment: 0.001 (0.00, 0.04)]. Multivariate analyses with backward elimination resulted in a model including only the adduction impulse [5.35 (2.51, 11.42)], flexion moment [0.32 (0.22, 0.46)] and extension moment [0.28 (0.19, 0.42)]. The varus, flexion and extension angles were included in the final multivariate model for the knee angles. When between-person confounding is lessened by comparing limbs within patients, there are strong independent associations between knee pain and multiple external knee moments that vary in magnitude and direction. While controlling for other knee moments, a greater adduction impulse and lower flexion and extension moments were independently associated with greater odds of an increase in pain.  相似文献   

17.
    
In this paper the experimental results obtained by means of a prototype measuring device dedicated to the evaluation of the rehabilitation level of the lower limb are presented. The analysis of the experimental data collected on non-pathological subjects allows the identification of the characteristic meaning of the most significant parameters typical of healthy subjects. These data have been employed for a systematic comparison with the same parameters measured on two pathological subjects, in order to define quantitative indicators of the rehabilitation degree of the lower limbs and indicators of the “quality” of the movement.  相似文献   

18.
    
Elevated impact loading can be detrimental to runners as it has been linked to the increased risk of tibial stress fracture and plantar fasciitis. The objective of this study was to investigate the combined effects of foot strike pattern, step rate, and anterior trunk lean gait modifications on impact loading in runners. Nineteen healthy runners performed 12 separate gait modification trials involving: three foot strike patterns (rearfoot, midfoot, and forefoot strike), two step rates (natural and 10% increased), and two anterior trunk lean postures (natural and 10-degree increased flexion). Overall, forefoot strike combined with increased step rate led to the lowest impact loading rates, and rearfoot strike combined with anterior trunk lean led to the highest impact loading rates. In addition, there were interaction effects between foot strike pattern and step rate on awkwardness and effort, such that it was both more natural and easier to transition to a combined gait modification involving forefoot strike and increased step rate than to an isolated gait modification involving either forefoot strike or increased step rate. These findings could help to inform gait modifications for runners to reduce impact loading and associated injury risks.  相似文献   

19.
    
Female athletes are more prone to anterior cruciate ligament (ACL) injury. A neuromuscular imbalance called leg dominance may provide a biomechanical explanation. Therefore, the purpose of this study was to compare the side-to-side lower limb differences in movement patterns, muscle forces and ACL forces during a single-leg drop-landing task from two different heights. We hypothesized that there will be significant differences in lower limb movement patterns (kinematics), muscle forces and ACL loading between the dominant and non-dominant limbs. Further, we hypothesized that significant differences between limbs will be present when participants land from a greater drop-landing height. Eight recreational female participants performed dominant and non-dominant single-leg drop landings from 30 to 60 cm. OpenSim software was used to develop participant-specific musculoskeletal models and to calculate muscle forces. We also predicted ACL loading using our previously established method. There were no significant differences between dominant and non-dominant leg landing except in ankle dorsiflexion and GMED muscle forces at peak GRF. Landing from a greater height resulted in significant differences among most kinetics and kinematics variables and ACL forces. Minimal differences in lower-limb muscle forces and ACL loading between the dominant and non-dominant legs during single-leg landing may suggest similar risk of injury across limbs in this cohort. Further research is required to confirm whether limb dominance may play an important role in the higher incidence of ACL injury in female athletes with larger and sport-specific cohorts.  相似文献   

20.
Lack of the necessary magnitude of energy dissipation by lower extremity joint muscles may be implicated in elevated impact stresses present during landing from greater heights. These increased stresses are experienced by supporting tissues like cartilage, ligaments and bones, thus aggravating injury risk. This study sought to investigate frontal plane kinematics, kinetics and energetics of lower extremity joints during landing from different heights. Eighteen male recreational athletes were instructed to perform drop-landing tasks from 0.3- to 0.6-m heights. Force plates and motion-capture system were used to capture ground reaction force and kinematics data, respectively. Joint moment was calculated using inverse dynamics. Joint power was computed as a product of joint moment and angular velocity. Work was defined as joint power integrated over time. Hip and knee joints delivered significantly greater joint power and eccentric work (p<0.05) than the ankle joint at both landing heights. Substantial increase (p<0.05) in eccentric work was noted at the hip joint in response to increasing landing height. Knee and hip joints acted as key contributors to total energy dissipation in the frontal plane with increase in peak ground reaction force (GRF). The hip joint was the top contributor to energy absorption, which indicated a hip-dominant strategy in the frontal plane in response to peak GRF during landing. Future studies should investigate joint motions that can maximize energy dissipation or reduce the need for energy dissipation in the frontal plane at the various joints, and to evaluate their effects on the attenuation of lower extremity injury risk during landing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号