首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 173 毫秒
1.
BackgroundThe Euratom directive 97/43 recommends the use of patient dose surveys in diagnostic radiology and the establishment of reference dose levels (DRLs).PurposeTo perform measurements of the dose delivered during diagnostic angiography of the lower limbs using thermoluminescence dosimeters (TLDs), extraction of DRLs and estimation of the effective dose and radiation risk for this particular examination.MethodsDose measurement was performed on 30 patients by using TLD sachets attached in 5 different positions not only on the patient, but also to the radiologist. All the appropriate factors were recorded. Measurement of the ESD was performed after each examination.ResultsThe mean entrance skin dose (ESD) was calculated to be 70.8, 67.7, 24.3, 18.4, 9.7 mGy at the level of aorta bifurcation, pelvis, femur, knees, and at feet, respectively. The average effective dose is 9.8 mSv with the radiation risks for fatal cancer to be 5.4 × 10?4. The effective dose of the radiologist was calculated to be 0.023 mSv per procedure.ConclusionRadiation dose variation depends on the physical characteristics of the patient, on the procedure preferences by radiologists and the difficulties in conducting procedures. The main reason for the increased patient dose, compared to other studies, is the number of frames rather than the duration of fluoroscopy. For DSA of the lower limbs, the DRL was chosen to be an entrance skin dose of 96.4 mGy in the pelvic region. The dose to the radiologist is negligible.  相似文献   

2.
3.
PurposeTo analyse the correlations between the eye lens dose estimates performed with dosimeters placed next to the eyes of paediatric interventional cardiologists working with a biplane system, the personal dose equivalent measured on the thorax and the patient dose.MethodsThe eye lens dose was estimated in terms of Hp(0.07) on a monthly basis, placing optically stimulated luminescence dosimeters (OSLDs) on goggles. The Hp(0.07) personal dose equivalent was measured over aprons with whole-body OSLDs. Data on patient dose as recorded by the kerma-area product (PKA) were collected using an automatic dose management system. The 2 paediatric cardiologists working in the facility were involved in the study, and 222 interventions in a 1-year period were evaluated. The ceiling-suspended screen was often disregarded during interventions.ResultsThe annual eye lens doses estimated on goggles were 4.13 ± 0.93 and 4.98 ± 1.28 mSv. Over the aprons, the doses obtained were 10.83 ± 0.99 and 11.97 ± 1.44 mSv. The correlation between the goggles and the apron dose was R2 = 0.89, with a ratio of 0.38. The correlation with the patient dose was R2 = 0.40, with a ratio of 1.79 μSv Gy−1 cm−2. The dose per procedure obtained over the aprons was 102 ± 16 μSv, and on goggles 40 ± 9 μSv. The eye lens dose normalized to PKA was 2.21 ± 0.58 μSv Gy−1 cm−2.ConclusionsMeasurements of personal dose equivalent over the paediatric cardiologist’s apron are useful to estimate eye lens dose levels if no radiation protection devices are typically used.  相似文献   

4.
AimThe aim of this study was to estimate the secondary malignancy risk from the radiation in FFB prostate linac-based radiotherapy for different organs of the patient.BackgroundRadiation therapy is one of the main procedures of cancer treatment. However, the application the radiation may impose dose to organs of the patient which can be the cause of some malignancies.Materials and methodsMonte Carlo (MC) simulation was used to calculate radiation doses to patient organs in 18 MV linear accelerator (linac) based radiotherapy. A humanoid MC phantom was used to calculate the equivalent dose s for different organs and probability of secondary cancer, fatal and nonfatal risk, and other risks and parameters related to megavoltage radiation therapy. In out-of-field radiation calculation, it could be seen that neutrons imparted a higher dose to distant organs, and the dose to surrounding organs was mainly due to absorbed scattered photons and electron contamination.ResultsOur results showed that the bladder and skin with 54.89 × 10−3 mSv/Gy and 46.09 × 10−3 mSv/Gy, respectively, absorbed the highest equivalent dose s from photoneutrons, while a lower dose was absorbed by the lung at 3.42 × 10−3 mSv/Gy. The large intestine and bladder absorbed 55.00 × 10−3 mSv/Gy and 49.08 × 10−3, respectively, which were the highest equivalent dose s due to photons. The brain absorbed the lowest out-of-field dose, at 1.87 × 10−3 mSv/Gy.ConclusionsWe concluded that secondary neutron portion was higher than other radiation. Then, we recommended more attention to neutrons in the radiation protection in linac based high energy radiotherapy.  相似文献   

5.
PurposeWe aimed to evaluate the characteristics of optically stimulated luminescence dosimeters (OSLDs) with fully filled deep electron/hole traps, and determine the optimal bleaching conditions for these OSLDs to minimize the changes in dose sensitivity or linearity according to the accumulated dose.MethodsInLight nanoDots were used as OSLDs. The OSLDs were first pre-irradiated at a dose greater than 5 kGy to fill the deep electron and hole traps, and then bleached (OSLDfull). OSLDfull characteristics were investigated in terms of the full bleaching, fading, regeneration of luminescence, dose linearity, and dose sensitivity with various bleaching conditions. For comparison, OSLDs with un-filled deep electron/hole traps (OSLDempty) were investigated in the same manner.ResultsThe fading for OSLDfull exhibited stable signals after 10 min, for 1 and 10 Gy. The mean supra-linear index values for OSLDfull were 1.001 ± 0.001 for doses from 2 to 10 Gy. Small variations in dose sensitivity were obtained for OSLDfull within standard deviations of 0.85% and 0.71%, whereas those of OSLDempty decreased by 2.3% and 4.2% per 10 Gy for unfiltered and filtered bleaching devices, respectively.ConclusionsUnder the bleaching conditions determined in this study, clinical dosimetry with OSLDfull is highly stable, minimizing the changes in dose sensitivity or linearity for the clinical dose.  相似文献   

6.
PurposeConverting the measurable quantities to patient organ doses in projection radiography is usually based on a standard-sized patient model and a specific radiation quality, which are likely to differ from the real situation. Large inaccuracies can therefore be obtained in organ doses, because organ doses are dependent on the exposure parameters, exposure geometry and patient anatomy. In this study, the effect of radiation quality and patient thickness on the organ dose conversion factors were determined.MethodsIn this study, the posterior–anterior projection radiograph of the thorax was selected in order to determine the effect of radiation quality (tube voltages of 70–130 kV and total filtrations of 3 mmAl to 4 mmAl + 0.2 mmCu) and patient thickness (anterior–posterior thicknesses of 19.4–30.8 cm) on the breast and lung dose conversion factors. For this purpose, Monte Carlo simulation programs ImpactMC and PCXMC were used with computed tomography examination data of adult male and female patients and mathematical hermaphrodite phantoms, respectively.ResultsCompared to the reference beam quality and patient thickness, the relative variation range in organ dose conversion factors was up to 74% for different radiation qualities and 122% for different patient thicknesses.ConclusionsConversion factors should only be used with comprehensive understanding of the exposure conditions, considering the exposure parameters, exposure geometry and patient anatomy they are valid for. This study demonstrates that patient thickness-specific and radiation quality-specific conversion factors are needed in projection radiography.  相似文献   

7.
PurposeA novel position-sensitive mega-size polycarbonate (MSPC) dosimeter is introduced. It provides photoneutron (PN) dose equivalent matrix of positions in and out of a beam of a high energy X-ray medical accelerator under a single exposure.MethodsA novel position-sensitive MSPC dosimeter was developed and applied. It has an effective etched area of 50 × 50 cm2, as used in this study, processed in a mega-size electrochemical etching chamber to amplify PN-induced-recoil tracks to a point viewed by the unaided eyes. Using such dosimeters, PN dose equivalents, dose equivalent profiles and isodose equivalent distribution of positions in and out of beams for different X-ray doses and field sizes were determined in a Siemens ONCOR Linac.ResultsThe PN dose equivalent at each position versus X-ray dose was linear up to 20 Gy studied. As the field size increased, the PN dose equivalent in the beam was also increased but it remained constant at positions out of the beam up to 20 cm away from the beam edge. The jaws and MLCs due to material differences and locations relative to the target produce different PN contributions.ConclusionsThe MSPC dosimeter introduced in this study is a perfect candidate for PN dosimetry with unique characteristics such as simplicity, efficiency, dose equivalent response, large size, flexibility to be bent, resembling the patient’s skin, highly position-sensitive with high spatial resolution, highly insensitive to X-rays, continuity in measurements and need to a single dosimeter to obtain PN dose equivalent matrix data under a single X-ray exposure.  相似文献   

8.
AimThe aim of this study was to characterize the radiation contamination inside and outside the megavoltage radiotherapy room.BackgroundRadiation contamination components in the 18 MV linac room are the secondary neutron, prompt gamma ray, electron and linac leakage radiation.Materials and MethodsAn 18 MV linac modeled in a typical bunker employing the MCNPX code of Monte Carlo. For fast calculation, phase-space distribution (PSD) file modeling was applied and the calculations were conducted for the radiation contamination components dose and spectra at 6 locations inside and outside the bunker.ResultsThe results showed that the difference of measured and calculated percent depth-dose (PDD) and photo beam-profile (PBP) datasets were lower than acceptable values. At isocenter, the obtained photon dose and neutron fluence were 2.4 × 10−14 Gy/initial e° and 2.22 × 10-8 n°/cm2, respectively. Then, neutron apparent source strength (QN) value was found as 1.34 × 1012 n°/Gy X at isocenter and the model verified to photon and neutron calculations. A surface at 2 cm below the flattening filter was modeled as phase-space (PS) file for PDD and PBP calculations. Then by use of a spherical cell in the center of the linac target as a PS surface, contaminant radiations dose, fluence and spectra were estimated at 6 locations in a considerably short time, using the registered history of all particles and photons in the 13GB PSD file as primary source in the second step.ConclusionDesigning the PSD file in MC modeling helps user to solve the problems with complex geometry and physics precisely in a shorter run-time.  相似文献   

9.
PurposeThe log file-based patient dose estimation includes a residual dose estimation error caused by leaf miscalibration, which cannot be reflected on the estimated dose. The purpose of this study is to determine this residual dose estimation error.Methods and materialsModified log files for seven head-and-neck and prostate volumetric modulated arc therapy (VMAT) plans simulating leaf miscalibration were generated by shifting both leaf banks (systematic leaf gap errors: ±2.0, ±1.0, and ±0.5 mm in opposite directions and systematic leaf shifts: ±1.0 mm in the same direction) using MATLAB-based (MathWorks, Natick, MA) in-house software. The generated modified and non-modified log files were imported back into the treatment planning system and recalculated. Subsequently, the generalized equivalent uniform dose (gEUD) was quantified for the definition of the planning target volume (PTV) and organs at risks.ResultsFor MLC leaves calibrated within ±0.5 mm, the quantified residual dose estimation errors that obtained from the slope of the linear regression of gEUD changes between non- and modified log file doses per leaf gap are in head-and-neck plans 1.32 ± 0.27% and 0.82 ± 0.17 Gy for PTV and spinal cord, respectively, and in prostate plans 1.22 ± 0.36%, 0.95 ± 0.14 Gy, and 0.45 ± 0.08 Gy for PTV, rectum, and bladder, respectively.ConclusionsIn this work, we determine the residual dose estimation errors for VMAT delivery using the log file-based patient dose calculation according to the MLC calibration accuracy.  相似文献   

10.
IntroductionRadiation therapy is one of the most common tools for treating cancer. The aim is to deliver adequate doses of radiation to kill cancer cells and the most challenging part during this procedure is to protect normal cells from radiation. One strategy is to use a radioprotector to spare normal tissues from ionizing radiation effects. Researchers have pursued cerium oxide nanoparticles as a therapeutic agent, due to its diverse characteristics, which include antioxidant properties, making it a potential radioprotector.Materials and methodsOne hundred rats were divided into five groups of A) control group, intraperitoneal (IP) saline injection was done twice a week; B) bi-weekly IP injection of 14.5 nM (0.00001 mg/kg) CNP for two weeks; C) a single whole thorax radiation dose of 18 Gy; D) a single whole thorax radiation dose of 18 Gy + bi-weekly injection of 14.5 nM CNP for two weeks after radiation; E) bi-weekly IP injection of 14.5 nM CNP for two weeks prior to radiation + a single whole thorax radiation dose of 18 Gy. Thirty days after irradiation, 7 rats from each group were anesthetized and their lungs extracted for histopathological examination.ResultsStatistical analyses revealed that CNP significantly decreased the incidence of tissue collapse and neutrophile aggregation in rats receiving CNP before radiation in comparison with the radiation group.ConclusionThe results suggested the possibility of using CNP as a future radioprotector due to its ability to protect normal cells against radiation-induced damage.  相似文献   

11.
BackgroundTo analyze and compare dose distribution homogeneity in selected points (especially in the chest wall region) for patients irradiated with two different TBI techniques to achieve a uniform total dose (excluding lungs area) specified in the range of 11.4–14.0 Gy.Material and methodsFrom August 2000 to December 2009, a group of 158 patients was treated by the use of 15 MV photon irradiation consisting of six fractions: four opposed lateral and two anterior–posterior/posterior–anterior (AP/PA). Patients were irradiated with the fraction dose of 2 Gy twice a day for 3 consecutive days. The prescribed dose to PC point (specified at intersection of the beam axis with the mid-plane of the patient irradiated laterally) was 12 Gy. Since January 2010 until closing the study, another group of 50 patients was treated according to a modified protocol. The treatment was carried out in six lateral fractions only, twice a day, for three following days and a lateral lung shield was used for a part of total irradiation time. The measurements of doses in 20 selected points of patient's body were carried out by means of MOSFET detectors.ResultsThe modified TBI technique allows to achieve an expected homogenous dose in the points of interest similar to that obtained by using the initial protocol. The calculated and measured in vivo doses met the specified range of 11.4–14 Gy for both applied TBI protocols.ConclusionsOur results indicate that for all patients the homogenous dose distribution in the specified range was achieved.  相似文献   

12.
Background/AimTo analyse clinical response, overall (OS) and disease free survival (DFS) and toxicity in patients with unresectable oesophageal cancer treated by concomitant chemo-radiotherapy (CRT).Materials and methodsForty patients with stage IIa–IVa biopsy proven oesophageal carcinoma were treated with CRT. All patients were studied with endoscopy and CT and judged unresectable after multidisciplinary discussion. CRT consisted of 3 cycles of cisplatin 100 mg/m2 or carboplatin 300 mg/m2 on day 1 and 5-fluorouracil 1000 mg/m2 as a continuous infusion of 96 h associated with concurrent 3D-conformal RT. By using 15 MeV X-rays, a total dose of 60–66 Gy was delivered with daily fractions of 1.8–2.0 Gy.ResultsComplete response (CR), partial response (PR) and no response (NR) were observed in 50%, 20% and 20% of cases, respectively. Of the 20 patients with CR, 15 developed loco-regional recurrent disease. OS and DFS rates at 3 and 5 years were 38%, 8%, 49% and 10%, respectively. Total radiation dose ≥60 Gy improved loco-regional control and complete response (CR vs. PR + NR; p = 0.004) influenced both DFS and loco-regional control. Grade 3 gastrointestinal and haematological acute toxicity occurred in 3/40 patients (7.5%). One patient developed grade 4 renal failure. Late toxicity was reported in 2/40 patients (5.0%), consisting of grade 3 radiation pneumonitis.ConclusionsConcomitant CRT for unresectable oesophageal cancer can result in an acceptable loco-regional control with limited toxicity. Response after treatment and total radiation dose influenced the outcome.  相似文献   

13.
PurposeTo investigate the feasibility of carotid sparing intensity modulated radiation therapy (CS-IMRT) to minimize the radiation dose to carotid arteries for comprehensive irradiation of breast cancer patients who have risk factors for atherosclerosis. The dose distribution of CS-IMRT technique and the conventional irradiation technique were also compared.Patients and methodsTen patients who were previously treated with comprehensive three-dimensional conformal radiation therapy (3DCRT) were selected. DICOM data were used to contour the carotid artery and to create the virtual CS-IMRT plans for each patient. 3DCRT and CS-IMRT plans were compared in terms of conformity index, homogeneity index, and the doses to organ at risk and carotid arteries.ResultsThe homogeneity and conformity indices were better with CS-IMRT plans compared to 3DCRT plan. The homogeneity index was 1.13 vs 1.11 (p = 0.007) for 3DCRT and CS-IMRT and the conformity index was 0.96 vs 0.97 (p = 0.006) for 3DCRT and CS-IMRT. The radiation dose to the carotid arteries were reduced by applying CS-IMRT without compromising the target volume coverage. When the carotid artery was considered as organ at risk for CS-IMRT planning, the median of V50 was decreased to 0% from 12.5% compared to 3DCRT plans (p = 0.017). The median of the maximum dose to the carotid artery was decreased under 50 Gy with CS-IMRT.ConclusionsCS-IMRT can significantly reduce the unnecessary radiation dose to the carotid arteries compared with conventional 3DCRT technique while maintaining target volume coverage. CS-IMRT technique can be considered for breast cancer patient with high risk of atherosclerosis.  相似文献   

14.
15.
PurposePancreatic tumor treatment dose distribution variations associated with supine and prone patient positioning were evaluated.MethodsA total of 33 patients with pancreatic tumors who underwent CT in the supine and prone positions were analyzed retrospectively. Gross tumor volume (GTV), planning target volume (PTV), and organs at risk (OARs) (duodenum and stomach) were contoured. The prescribed dose of 55.2 Gy (RBE) was planned from four beam angles (0°, 90°, 180°, and 270°). Patient collimator and compensating boli were designed for each field. Dose distributions were calculated for each field in the supine and prone positions. To improve dose distribution, patient positioning was selected from supine or prone for each beam field.ResultsCompared with conventional beam angle and patient positioning, D2cc of 1st-2nd portion of duodenum (D1-D2), 3rd-4th portion of duodenum (D3-D4), and stomach could be reduced to a maximum of 6.4 Gy (RBE), 3.5 Gy (RBE), and 4.5 Gy (RBE) by selection of patient positioning. V10 of D1-D2, D3-D4, and stomach could be reduced to a maximum of 7.2 cc, 11.3 cc, and 11.5 cc, respectively. D95 of GTV and PTV were improved to a maximum of 6.9% and 3.7% of the prescribed dose, respectively.ConclusionsOptimization of patient positioning for each beam angle in treatment planning has the potential to reduce OARs dose maintaining tumor dose in pancreatic treatment.  相似文献   

16.
AimTo analyse the possible relationship between the EQD2(α/β=3Gy) at 2 cm3 of the vagina and late toxicity in vaginal-cuff-brachytherapy (VBT) after external-beam-irradiation (EBRT) for postoperative endometrial carcinoma (EC).Materials and methodsFrom 2014 to 2016, 62 postoperative EC patients were treated with EBRT + VBT. The median EBRT dose was 45 Gy (44 Gy–50.4 Gy). VBT involved a single 7 Gy dose. Toxicity was prospectively evaluated using the RTOG score for the rectum and bladder and the objective LENT-SOMA criteria for the vagina. EQD2(α/β = 3Gy) at 2 cm3 of the most exposed part of the vagina was calculated by the sum of the EBRT + VBT dose. Statistics: Boxplot, Student’s t and Chi-square tests and ROC curves.ResultsMean follow-up: 39.2 months (15–68). Late toxicity: bladder:0 patient; rectum:2 patients-G1; Vagina: 26 patients-17G1, 9G2; median EQD2(α/β=3Gy) at 2 cm3 in G0-G1 patients was 70.4 Gy(SD2.36), being 72.5 Gy(SD2.94) for G2p. The boxplot suggested a cut-point identifying the absence of G2: 100 % of G2p received >68 Gy, ROC curves showed an area under the curve of 0.72 (sensitivity of 1 and specificity of 0.15).ConclusionsDoses >68 Gy EQD2(α/β=3Gy) at 2 cm3 to the most exposed area of the vagina were associated with late G2 vaginal toxicity in postoperative EC patients treated with EBRT + VBT suggesting a very good dose limit to eliminate the risk of G2 late toxicity. The specificity obtained indicates the need for prospective analyses.  相似文献   

17.
BackgroundHigh-energy photon and electron therapeutic beams generated in medical linear accelerators can cause the electronuclear and photonuclear reactions in which neutrons with a broad energy spectrum are produced. A low-energy component of this neutron radiation induces simple capture reactions from which various radioisotopes originate and in which the radioactivity of a linac head and various objects in the treatment room appear.AimThe aim of this paper is to present the results of the thermal/resonance neutron fluence measurements during therapeutic beam emission and exemplary spectra of gamma radiation emitted by medical linac components activated in neutron reactions for four X-ray beams and for four electron beams generated by various manufacturers’ accelerators installed in typical concrete bunkers in Polish oncological centers.Materials and methodsThe measurements of neutron fluence were performed with the use of the induced activity method, whereas the spectra of gamma radiation from decays of the resulting radioisotopes were measured by means of a portable high-purity germanium detector set for field spectroscopy.ResultsThe fluence of thermal neutrons as well as resonance neutrons connected with the emission of a 20 MV X-ray beam is ~106 neutrons/cm2 per 1 Gy of a dose in water at a reference depth. It is about one order of magnitude greater than that for the 15 MV X-ray beams and about two orders of magnitude greater than for the 18–22 MeV electron beams regardless of the type of an accelerator.ConclusionThe thermal as well as resonance neutron fluence depends strongly on the type and the nominal potential of a therapeutic beam. It is greater for X-ray beams than for electrons. The accelerator accessories and other large objects should not be stored in a treatment room during high-energy therapeutic beam emission to avoid their activation caused by thermal and resonance neutrons. Half-lives of the radioisotopes originating from the simple capture reaction (n,γ) (from minutes to hours) are long enough to accumulate radioactivity of components of the accelerator head. The radiation emitted by induced radioisotopes causes the additional doses to staff operating the accelerators.  相似文献   

18.
PurposeStudies using split field IMRT to spare dysphagia/aspiration related structures (DARS) have raised concern regarding dose uncertainty at matchline. This study explores the utility of hybrid VMAT in sparing the DARS and assesses matchline dose uncertainty in postoperative oral cavity cancer patients and compares it with VMAT.Methods & materialsTen postoperative oral cavity cancer patients were planned with h-VMAT and VMAT using the same planning CT dataset. PTV and DARS were contoured using standard delineation guidelines. In h-VMAT 80% of the neck dose was planned using AP/PA technique and then VMAT optimization was done for the total PTV by keeping the corresponding AP/PA plan as the base dose. Planning goal for PTV was V95%  95% and for DARS, adequate sparing. Plans and dose volume histograms were analyzed using dosimetric indices. Absolute point and portal dose measurements were done for h-VMAT plans to verify dose at the matchline.ResultsCoverage in both the techniques was comparable. Significant differences were observed in mean doses to DARS (Larynx: 24.36 ± 2.51 versus 16.88 ± 2.41 Gy; p < 0.0006, Pharyngeal constrictors: 25.16 ± 2.41 versus 21.2 ± 2.1 Gy; p < 0.005, Esophageal inlet: 18.71 ± 2 versus 12.06 ± 0.79 Gy; p < 0.0002) favoring h-VMAT. Total MU in both the techniques was comparable. Average percentage variations in point dose measurements in h-VMAT done at +3.5 and −3.5 positions were (1.47 ± 1.48 and 2.28 ± 1.35%) respectively. Average gamma agreement for portal dose measured was 97.07%.Conclusionh-VMAT achieves better sparing of DARS with no matchline dose uncertainty. Since these patients have swallowing dysfunction post-operatively, attempts should be made to spare these critical structures as much as possible.  相似文献   

19.
PurposeThree MOSkins dosimeters were assembled over a rectal probe and used to perform in vivo dosimetry during HDR brachytherapy treatments of vaginal cancer. The purpose of this study was to verify the applicability of the developed tool to evaluate discrepancies between planned and measured doses to the rectal wall.Materials and methodsMOSkin dosimeters from the Centre for Medical Radiation Physics are particularly suitable for brachytherapy procedures for their ability to be easily incorporated into treatment instrumentation. In this study, 26 treatment sessions of HDR vaginal brachytherapy were monitored using three MOSkin mounted on a rectal probe. A total of 78 measurements were collected and compared to doses determined by the treatment planning system.ResultsMean dose discrepancy was determined as 2.2 ± 6.9%, with 44.6% of the measurements within ±5%, 89.2% within ±10% and 10.8% higher than ±10%. When dose discrepancies were grouped according to the time elapsed between imaging and treatment (i.e., group 1: ≤90 min; group 2: >90 min), mean discrepancies resulted in 4.7 ± 3.6% and 7.1 ± 5.0% for groups 1 and 2, respectively. Furthermore, the position of the dosimeter on the rectal catheter was found to affect uncertainty, where highest uncertainties were observed for the dosimeter furthest inside the rectum.ConclusionsThis study has verified MOSkin applicability to in-patient dose monitoring in gynecological brachytherapy procedures, demonstrating the dosimetric rectal probe setup as an accurate and convenient IVD instrument for rectal wall dose verification. Furthermore, the study demonstrates that the delivered dose discrepancy may be affected by the duration of treatment planning.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号