首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perindopril is an effective antihypertensive drug in strong demand used to treat hypertension. l-norvaline is a vital intermediate of Perindopril production mainly produced by chemical synthesis with low purity. We developed an environmentally friendly method to produce l-norvaline with high purity based on a desymmetrization process. d-Norvaline was oxidized to the corresponding keto acid by d-amino acid oxidase from the substrate dl-norvaline. Asymmetric hydrogenation of the keto acid to l-norvaline was carried out by leucine dehydrogenase with concomitant oxidation of NADH to NAD+. A NADH regeneration system was introduced by overexpressing a formate dehydrogenase. The unwanted H2O2 by-product generated during d-norvaline oxidation was removed by adding catalase. A total of 54.09 g/L of l-norvaline was achieved, with an enantiomeric excess over 99% under optimal conditions, with a 96.7% conversion rate. Our desymmetrization method provides an environmental friendly strategy for the production of enantiomerically pure l-norvaline in the pharmaceutical industry.  相似文献   

2.
The alcohol dehydrogenase from Thermus sp. ATN1 (TADH) was characterized biochemically with respect to its potential as a biocatalyst for organic synthesis. TADH is a NAD(H)-dependent enzyme and shows a very broad substrate spectrum producing exclusively the (S)-enantiomer in high enantiomeric excess (>99%) during asymmetric reduction of ketones. TADH is active in the presence of 10% (v/v) water-miscible solvents like 2-propanol or acetone, which permits the use of these solvents as sacrificial substrates in substrate-coupled cofactor regeneration approaches. Furthermore, the presence of a second phase of a water-insoluble solvent like hexane or octane had only minor effects on the enzyme, which retained 80% of its activity, allowing the use of these solvents in aqueous/organic mixtures to increase the availability of low-water soluble substrates. A further activity of TADH, the production of carboxylic acids by dismutation of aldehydes, was investigated. This reaction usually proceeds without net change of the NAD+/NADH concentration, leading to equimolar amounts of alcohol and carboxylic acid. When applying cofactor regeneration at high pH, however, the ratio of acid to alcohol could be changed, and full conversion to the carboxylic acid was achieved.  相似文献   

3.
Brad Chazotte  Garret Vanderkooi 《BBA》1981,636(2):153-161
Local anesthetics and alcohols were found to inhibit mitochondrial electron transport at several points along the chain. The anesthetics employed were the tertiary amines procaine, tetracaine, dibucaine, and chlorpromazine, and the alcohols were n-butanol, n-pentanol, n-hexanol, and benzyl alcohol. Uncoupled sonic submitochondrial particles from beef heart and rat liver were studied. We report the following: (1) All of the anesthetics were found to inhibit each of the segments of the electron transport chain assayed; these included cytochrome c oxidase, durohydroquinone oxidase, succinate oxidase, NADH oxidase, succinate dehydrogenase, succinate-cytochrome c oxidoreductase, and NADH-cytochrome c oxidoreductase. (2) NADH oxidase and NADH-cytochrome c oxidoreductase required the lowest concentrations of anesthetic for inhibition, and cytochrome c oxidase required the highest concentrations. (3) We conclude that there are several points along the chain at which inhibition occurs, the most sensitive being in the region of Complex I (NADH dehydrogenase). (4) Beef heart submitochondrial particles are less sensitive to inhibition than are rat liver particles. (5) Low concentrations of several of the anesthetics gave enhancement of electron transport activity, whereas higher concentrations of the same agents caused inhibition. (6) The concentrations of anesthetics (alcohol and tertiary amine) which gave 50% inhibition of NADH oxidase were lower than the reported concentrations required for blockage of frog sciatic nerve.  相似文献   

4.
Abstract Methanosphaera stadtmanae , a member of the Methanobacteriales reduces methanol, but not CO2 with H2 or 2-propanol to produce methane. In cell-free extracts of M. stadtmanae the activities of several enzymes involved in electron transfer were measured. The activities of an F420-nonreactive hydrogenase, NADP+: F420 oxidoreductase, NADP+-dependent 2-propanol dehydrogenase, and a methyl viologen dependent F420 dehydrogenase were observed. Based on the presence of these particular enzyme activities, their cofactor requirements and the absence of F420-dependent hydrogenase activity, a model of the electron transport pathway through the coenzyme F420 to provide electrons for biosynthesis, was formulated.  相似文献   

5.
Proton pumping NADH:ubiquinone oxidoreductase (complex I) is the largest and remains by far the least understood enzyme complex of the respiratory chain. It consists of a peripheral arm harbouring all known redox active prosthetic groups and a membrane arm with a yet unknown number of proton translocation sites. The ubiquinone reduction site close to iron-sulfur cluster N2 at the interface of the 49-kDa and PSST subunits has been mapped by extensive site directed mutagenesis. Independent lines of evidence identified electron transfer events during reduction of ubiquinone to be associated with the potential drop that generates the full driving force for proton translocation with a 4H+/2e stoichiometry. Electron microscopic analysis of immuno-labelled native enzyme and of a subcomplex lacking the electron input module indicated a distance of 35-60 Å of cluster N2 to the membrane surface. Resolution of the membrane arm into subcomplexes showed that even the distal part harbours subunits that are prime candidates to participate in proton translocation because they are homologous to sodium/proton antiporters and contain conserved charged residues in predicted transmembrane helices. The mechanism of redox linked proton translocation by complex I is largely unknown but has to include steps where energy is transmitted over extremely long distances. In this review we compile the available structural information on complex I and discuss implications for complex I function.  相似文献   

6.
An improved method for the simultaneous production of valine dehydrogenase and glucose dehydrogenase by Bacillus megaterium (ATCC 39118) is described. The highest yields in volumetric activities (8200 U.S-1' of glucose dehydrogenase and 7200 U.S1 of valine dehydrogenase) were obtained using a fed batch cultivation technique with glucose, yeast extract and corn steep liquor in the feed medium. The main characteristics (stability, optimal pH, Michaelis constants, substrate and product inhibitions) of valine dehydrogenase and glucose dehydrogenase from crude extracts were determined. B. megaterium crude extract was suitable for synthesis of L-valine from $aL-keto isovalerate with glucose dehydrogenase as the NADH-regenerating enzyme and the conditions of the conversion have been optimized. $aL-Keto acid was supplied in fed batch mode in order to avoid substrate inhibition and was not involved in side reactions. With the optimized system, a concentration of 95 mM L-valine was obtained in 45 hours with a molar conversion yield close to 100%.  相似文献   

7.

Background

Ferritin detoxifies excess of free Fe(II) and concentrates it in the form of ferrihydrite (Fe2O3·xH2O) mineral. When in need, ferritin iron is released for cellular metabolic activities. However, the low solubility of Fe(III) at neutral pH, its encapsulation by stable protein nanocage and presence of dissolved O2 limits in vitro ferritin iron release.

Methods

Physiological reducing agent, NADH (E1/2?=??330?mV) was inefficient in releasing the ferritin iron (E1/2?=?+183?mV), when used alone. Thus, current work investigates the role of low concentration (5–50?μM) of phenazine based electron transfer (ET) mediators such as FMN, PYO - a redox active virulence factor secreted by Pseudomonas aeruginosa and PMS towards iron mobilization from recombinant frog M ferritin.

Results

The presence of dissolved O2, resulting in initial lag phase and low iron release in FMN, had little impact in case of PMS and PYO, reflecting their better ET relay ability that facilitates iron mobilization. The molecular modeling as well as fluorescence studies provided further structural insight towards interaction of redox mediators on ferritin surface for electron relay.

Conclusions

Reductive mobilization of iron from ferritin is dependent on the relative rate of NADH oxidation, dissolved O2 consumption and mineral core reduction, which in turn depends on E1/2 of these mediators and their interaction with ferritin.

General significance

The current mechanism of in vitro iron mobilization from ferritin by using redox mediators involves different ET steps, which may help to understand the iron release pathway in vivo and to check microbial growth.  相似文献   

8.
A fructose dehydrogenase (FDH) modified electrode is produced by the electroadsorption of a layer of FDH on a platinum electrode followed by the electropolymerization of a polypyrrole (PPy) film around and over the enzyme. This immobilizes and stabilizes the enzyme as well as providing an electron transfer pathway to the electrode. The amperometric response to fructose and the enzymatic activity are measured as a function of PPy film thickness. The electrode is shown to have a maximum response at a PPy thickness of approximately the thickness of the enzyme layer. A measure of the electrode efficiency is also obtained, this is the amperometric response to fructose as a percentage of that expected on the basis of the enzyme activity. The functioning of the electrode is also dependent on the counter-ion used for PPy polymerization. This is shown to be mainly related to the nucleation and growth of the PPy film in the interfacial region.  相似文献   

9.
Three different coupled enzymatic systems used in the reduction of sulcatone by alcohol dehydrogenase from Thermoanaerobium brockii (TBADH), were kinetically compared. The first one involved the use of TBADH for both the principal and recycling reactions and 2-propanol 20%, v/v as the recycling substrate. The other two were based on the use of a different enzyme, glucose- or glucose-6-phosphate dehydrogenases, for in situ regeneration of NADPH. The coupled-substrate approach achieved 100% of conversion against 84% of the other two systems.  相似文献   

10.
D-甘露醇(D-mannitol)作为合成抗肿瘤药和免疫刺激剂的重要前体被广泛应用于制药和医疗等行业,酶法合成D-甘露醇反应成本昂贵无法满足工业化生产。本研究首先筛选关键酶获得较优性能的甘露醇脱氢酶Lp MDH和用于辅因子NADH再生的葡萄糖脱氢酶Ba GDH,在大肠杆菌(Escherichia coli)BL21(DE3)中共表达,实现了基于双酶级联反应催化底物D-果糖合成D-甘露醇,D-甘露醇的初步摩尔转化率为59.7%。针对双酶级联催化反应中辅酶再生用酶与催化用酶表达量不协调的问题,通过增加Bagdh拷贝量来提高辅因子循环能力,获得了双酶催化速率平衡的重组大肠杆菌E.coli BL21/pETDuet-Lpmdh-Bagdh-Bagdh。进一步对重组菌的全细胞转化条件进行优化,确定了最适转化条件为反应温度30℃,初始pH值6.5,菌体量OD600=30,底物D-果糖100.0 g/L,辅底物葡萄糖与底物1︰1摩尔当量。于最优转化条件下5 L发酵罐转化24 h,D-甘露醇的最高产量为81.9g/L,摩尔转化率为81.9%。本研究提供了一种绿色、高效生物催化生产D-甘露醇的方法,为实现其规模化生产奠定了基础,同时也对其他相关稀有糖醇的研究具有指导意义。  相似文献   

11.
Chronic ethanol consumption is a strong risk factor for the development of certain types of cancer including those of the upper aerodigestive tract, the liver, the large intestine and the female breast. Multiple mechanisms are involved in alcohol-mediated carcinogenesis. Among those the action of acetaldehyde (AA), the first metabolite of ethanol oxidation is of particular interest. AA is toxic, mutagenic and carcinogenic in animal experiments. AA binds to DNA and forms carcinogenic adducts. Direct evidence of the role of AA in alcohol-associated carcinogenesis derived from genetic linkage studies in alcoholics. Polymorphisms or mutations of genes coding for AA generation or detoxifying enzymes resulting in elevated AA concentrations are associated with increased cancer risk. Approximately 40% of Japanese, Koreans or Chinese carry the AA dehydrogenase 2*2 (ALDH2*2) allele in its heterozygous form. This allele codes for an ALDH2 enzyme with little activity leading to high AA concentrations after the consumption of even small amounts of alcohol. When individuals with this allele consume ethanol chronically, a significant increased risk for upper alimentary tract and colorectal cancer is noted. In Caucasians, alcohol dehydrogenase 1C*1 (ADH1C*1) allele encodes for an ADH isoenzyme which produces 2.5 times more AA than the corresponding allele ADH1C*2. In studies with moderate to high alcohol intake, ADH1C*1 allele frequency and rate of homozygosity was found to be significantly associated with an increased risk for cancer of the upper aerodigestive tract, the liver, the colon and the female breast. These studies underline the important role of acetaldehyde in ethanol-mediated carcinogenesis.  相似文献   

12.
ABSTRACT

Both light and a redox mediator riboflavin (RF) were utilized to promote the electro-oxidation of an NADH model compound (1-benzyl-1,4-dihydronicotinamide, BNAH), which is a key process for enzymatic biofuel cells to obtain a high performance. At the cathode, H+ ions were simultaneously reduced to produce H2 gas. To elucidate the cell reactions of this photogalvanic cell, which is significant information about the fabrication of enzymatic biofuel cells with a high performance, the effect of the BNAH and RF concentrations on the cell current, the light wavelength dependence on the current, and reduction of the RF concentration were evaluated. The obtained results strongly suggest that the anodic reactions were composed of the following reactions: 1) the photo-excitation of RF, 2) the attack of the excited RF on the BNAH and the generation of the radical species of BNAH and RF, and 3) the chain reactions between the radical species.  相似文献   

13.
D-mannitol is a kind of hexitols widely applied in the food and medicinal fields due to its numerous benefits. Mannitol 2-dehydrogenase (MDH, EC 1.1.1.67) is a kind of oxidoreductase playing a pivotal part in the production of d-mannitol from d-fructose. In this work, we identified a highly thermostable d-mannitol-producing MDH from a thermo-tolerant bacterium, Caldicellulosiruptor morganii Rt8.B8. When using d-fructose as the substrate, the recombinant MDH was activated obviously in the presence of Mn2+ with an optimal pH as 8.0 and temperature at 75 °C. The specific activity, Michaelis-Menten constant (Km) and catalytic efficiency (kcat/Km) for d-fructose were determined as 115 U mg−1, 18 mM and 8.5 s-1 mM−1. Moreover, the half-life (t1/2) of recombinant MDH at 75, 85 and 95 °C was 19 h, 3.5 h and 1.62 h respectively, which was much higher than that of most MDHs. The optimal condition for the production of d-mannitol was determined to be pH at 7.5, the temperature at 70 °C, and 2:1 ratio of C. morganii MDH and Ogataea parapolymorpha formate dehydrogenase (FDH, EC 1.2.1.2). Meanwhile, approximately 80 % d-mannitol was generated by two enzymes after a 50 h reaction from 400 mM d-fructose, indicating a great potentiality in the industrial preparation of d-mannitol.  相似文献   

14.
15.
Sparganum proliferum is characterized by continuous branching and budding, the resulting progeny invading all tissues of the human body, causing fatal sparganosis. Its life cycle, definitive hosts and the route of infection to humans have not yet been disclosed. Because its morphology is similar to Spirometra erinacei, the phylogeny of S. proliferum has been thought to be identical to or closely related to S. erinacei. However, the taxonomy of S. proliferum has not been established up to present due to the lack of definitive observations. In order to clarify the phylogenetic relationship between S. proliferum and S. erinacei, nucleotide sequences of mitochondrial NADH dehydrogenase subunit 3 gene (ND3) and four mitochondrial tRNA coding genes of S. proliferum and other pseudophyllidean cestodes were analyzed. The sequences of S. proliferum showed high similarity to those of S. erinacei, although they were clearly different from each other, indicating that the phylogeny of S. proliferum and S. erinacei is distinct. This is the first report showing the phylogenetic relationship among S. proliferum and other pseudophyllidean cestodes at the DNA sequence level.  相似文献   

16.
17.
Illumination of the dark-incubated cells of Synechocystis PCC6803 caused recovery of both respiratory activity of oxygen uptake and PS I-cyclic electron flow, which was monitored by the dark reduction of P700+ in the presence of DCMU after a 50 ms pulse light (MT) under background far-red light, but the effects were much smaller in those of the mutant M55, which has an ndh-B defective gene. Activity of an NADPH-NBT oxidoreductase with a higher molecular mass (around 380 kDa), which was only found in wild type but not in M55, became evident after the dark-incubated cells were exposed to the light. Immuno-blotting analysis indicated that the NADPH-NBT oxidoreductase contains the NdhB subunit of NDH. The expression of NdhB decreased in dark-incubated cells and increased upon transfer of the cells back to light. These results indicate that an NADPH-specific NDH participates in the light-regulated cyclic electron transport around Photosystem I as well as in respiratory electron transport to the intersystem chain in Synechocystis 6803. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Aim: The aim of this study was to find suitable yeast isolates as potential microbial feed additives for ruminants. Methods and Results: Yeast isolates from traditional fermented food (tapai) and home‐made wine were selected based on their tolerance to volatile fatty acids (VFA) mixture of acetic, propionic and butyric acids and to pH and temperature according to the rumen condition. The ability to grow in and produce ethanol was determined in yeast extract peptone glucose broth supplemented with a VFA mixture (VFA‐YEPG medium). Fifty‐five isolates showed OD660nm values between 0·35–0·6, and 27 isolates showed ethanol production in the range of 0·17–0·30% (v/v). All selected isolates were identified as Kluyveromyces marxianus base on biochemical tests (BioLog kit; Biolog Inc., Hayward, CA) and molecular techniques. The best isolate in terms of ethanol production (K. marxianus WJ1) significantly (P < 0·01) improved in vitro apparent dry matter (DM) digestibility of alfalfa (Medicago sativa), guinea grass (Panicum maximum) and timothy (Phleum pretense) hay by rumen microbes. Conclusion: Yeast isolates from tapai and wine were able to grow in VFA‐YEPG medium, and K. marxianus WJ1 improved in vitro DM digestibility of plant substrates. Significance and Impact of the Study: This study indicated the possibility of using K. marxianus as a microbial feed additive.  相似文献   

19.
BackgroundBolus is an accessory that is directly placed on the surface region to shift the radiation dose up to the skin during high energy photon and electron beam irradiations. The aim of this study was to mold the bolus using natural rubber material and assess both the physical and dosimetric characteristics.Materials and methodsA natural rubber with additional plasticizer material was fabricated as a bolus sheet. The physical properties of natural rubber bolus sheets have been investigated using computed tomography (CT) images. Gafchromic EBT3 films were used to acquire the dose at depth of 0, 2, 3, and 3.5 cm for the 9-MeV therapeutic electron beam. A comparison of our natural rubber bolus sheets to the commercial bolus sheets was studied.ResultsThe in-house natural rubber bolus sheets with the thickness of 0.32 and 0.52 cm were successfully made. Relative electron density of the two sheets was consistent with each other. However, similar to the commercial boluses, the natural rubber boluses were not provided with the same CT number over the whole sheet. Different bolus material gave different dose at the surface. Both material and thickness of the bolus showed a stronger impact on the dose beyond the depth of maximum dose.ConclusionBecause of the density, simple fabrication, and vast availability, natural rubber material has an effective potential to be used as a bolus sheet in radiotherapy  相似文献   

20.
Abstract A considerable amount of methylformate accumulated in the culture medium of methanol-grown methylotrophic yeasts. Methylformate is considered as an intermediate in a novel formaldehyde oxidation pathway. Through investigations with Pichia methanolica , methylformate formation was found to be catalysed by a new type of alcohol dehydrogenase, which was named methylformate synthase. When cells were grown on a relatively high concentration of methanol or exposed to a high concentration of formaldehyde, formation of methylformate was enhanced and the level of methylformate synthase in the cells increased. How methylformate synthase is involved in formaldehyde oxidation and formaldehyde detoxification is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号