首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to investigate the function and importance of infrahyoid muscles with the suprahyoid muscles during swallowing, and to investigate swallowing sequences using kinematic analysis, high-resolution manometry (HRM) and electromyography (EMG). As a preliminary study, ten healthy subjects were prospectively enrolled. A needle EMG evaluated the onset latency, peak latency and duration of the suprahyoid and infrahyoid muscles. HRM measured the time intervals among the velopharynx, tongue base, and upper esophageal sphincter. We also evaluated hyoid motion using an automated kinematic analysis software® (AKAS). All of these parameters were synchronized with a tilting motion of the epiglottis. In the EMG analysis, the activations of the suprahyoid muscles developed about 300 ms earlier than that of the infrahyoid muscles. There was a significant relationship between the differences of suprahyoid and infrahyoid muscles’ latency and total duration of the hyoid motion (p < 0.05). The interval time of anterior hyoid motion has a significant correlation in the upper esophageal sphincter (UES) opening time. In conclusions, the functions of the infrahyoid muscles are also as important as that of the suprahyoid muscles for prolonged laryngeal elevation and UES opening. Moreover, kinematic analysis of videofluoroscopic swallowing study (VFSS) and HRM studies could reflect results of needle EMG study and replace EMG study.  相似文献   

2.
IntroductionHuntington’s disease (HD) patients have difficulty in swallowing, leading to aspiration pneumonia, which is a major cause of death. It seems possible that submental muscles that are crucial for preventing an escape of a bolus into the airway, are affected by HD, but no previous studies have investigated this.ObjectiveTo assess surface electromyograph (sEMG) activity of submental muscles during swallowing and expiratory muscle training (EMT) tasks in HD patients in comparison to healthy volunteers.MethodssEMG activities of submental muscles during saliva, water swallowing, EMT tasks performed at 25% and 75% of maximum expiratory pressure were recorded and normalised by the sEMG activity during an effortful swallow in 17 early to mid stage HD patients and 17 healthy volunteers.ResultssEMG activity was greater (p < 0.05) during EMT tasks than saliva and water swallowing, but was not significantly different between groups for saliva, water swallowing and EMT at 25%. HD patients had lower sEMG activity for EMT at 75% (p < 0.05).ConclusionDecreases in submental muscle activity were not evident in HD patients except during EMT at 75%. This suggests that relative submental muscle weakness is observed only during a high intensity task in early to mid stage HD patients.  相似文献   

3.
The instant at which a muscle increases its level of activity from baseline represents the onset of muscle activity. Accurate identification of muscle onset allows determination of temporal and amplitude characteristics of the surface electromyography (sEMG) signal. This investigation determined the intra- and inter-tester reliability for determining the onset of medial gastrocnemius (MG) activity using visual and automated methods. One hundred hop cycles, performed at 2.2 Hz, were selected from sEMG recordings (bandpass filtered 50–500 Hz and full wave rectified) of ten participants who performed three trials of single-leg hopping. The onset of MG muscle activity was identified by 3 separate investigators on two separate occasions and an automated method (10% of the peak activation amplitude). The duration of the anticipatory period, from muscle onset to initial ground contact, was then determined. Intra-tester (ICC from 0.72 to 0.95) and inter-tester reliability (ICC from 0.70 to 0.88) were high as was comparison to the automated method (ICC = 0.90). These findings indicate that visual onset detection was highly reproducible between testing sessions, independent investigators and comparable to an automated method. These methods may be used reliably to determine the onset of MG muscle activity during a stretch-shorten-cycle muscle action.  相似文献   

4.
Alterations in scapular muscle activity, including excess activation of the upper trapezius (UT) and onset latencies of the lower trapezius (LT) and serratus anterior (SA) muscles, are associated with abnormal scapular motion and shoulder impingement. Limited information exists on the reliability of neuromuscular activity to demonstrate the efficacy of interventions. The purpose of this study was to characterize the reproducibility of scapular muscle activity (mean activity, relative onset timing) over time and establish the minimal detectable change (MDC). Surface electromyography (sEMG) of the UT, LT, SA and anterior deltoid (AD) muscles in 16 adults were captured during an overhead lifting task in two sessions, one-week apart. sEMG data were also normalized to maximum isometric contraction and the relative onset and mean muscle activity during concentric and eccentric phases of the scapular muscles were calculated. Additionally, reliability of the absolute sEMG data during the lifting task and MVIC was evaluated. Both intrasession and intersession reliability of normalized and absolute mean scapular muscle activity, assessed with intraclass correlation coefficients (ICC), ranged from 0.62 to 0.99; MDC values were between 1.3% and 11.7% MVIC and 24 to 135 mV absolute sEMG. Reliability of sEMG during MVIC was ICC = 0.82–0.99, with the exception of intersession upper trapezius reliability (ICC = 0.36). Within session reliability of muscle onset times was ICC = 0.88–0.97, but between session reliability was lower with ICC = 0.43–0.73; MDC were between 39 and 237 ms. Small changes in scapular neuromuscular mean activity (>11.7% MVIC) can be interpreted as meaningful change, while change in muscle onset timing in light of specific processing parameters used in this study is more variable.  相似文献   

5.
The effects of fatigue on maximum voluntary contraction (MVC) parameters were examined by using force and surface electromyography (sEMG) signals of the biceps brachii muscles (BBM) of 12 subjects. The purpose of the study was to find the sEMG time interval of the MVC recordings which is not affected by the muscle fatigue. At least 10 s of force and sEMG signals of BBM were recorded simultaneously during MVC. The subjects reached the maximum force level within 2 s by slightly increasing the force, and then contracted the BBM maximally. The time index of each sEMG and force signal were labeled with respect to the time index of the maximum force (i.e. after the time normalization, each sEMG or force signal’s 0 s time index corresponds to maximum force point). Then, the first 8 s of sEMG and force signals were divided into 0.5 s intervals. Mean force, median frequency (MF) and integrated EMG (iEMG) values were calculated for each interval. Amplitude normalization was performed by dividing the force signals to their mean values of 0 s time intervals (i.e. ?0.25 to 0.25 s). A similar amplitude normalization procedure was repeated for the iEMG and MF signals. Statistical analysis (Friedman test with Dunn’s post hoc test) was performed on the time and amplitude normalized signals (MF, iEMG). Although the ANOVA results did not give statistically significant information about the onset of the muscle fatigue, linear regression (mean force vs. time) showed a decreasing slope (Pearson-r = 0.9462, p < 0.0001) starting from the 0 s time interval. Thus, it might be assumed that the muscle fatigue starts after the 0 s time interval as the muscles cannot attain their peak force levels. This implies that the most reliable interval for MVC calculation which is not affected by the muscle fatigue is from the onset of the EMG activity to the peak force time. Mean, SD, and range of this interval (excluding 2 s gradual increase time) for 12 subjects were 2353, 1258 ms and 536–4186 ms, respectively. Exceeding this interval introduces estimation errors in the maximum amplitude calculations of MVC–sEMG studies for BBM. It was shown that, simultaneous recording of force and sEMG signals was required to calculate the maximum amplitude of the MVC–sEMG more accurately.  相似文献   

6.
This study aimed to explore changes in the electrical activity distribution among synergist muscles involved in the maintenance of this bilateral multi-joint task. It also tested relations between changes in surface electromyographic (sEMG) parameters with endurance time. Eighteen subjects, trained and untrained in hiking, performed a submaximal (50% of maximal contraction) isometric hiking test until exhaustion. The electrical activity of main superficial muscles implicated in this posture was recorded bilaterally. Trained subjects sustained the hiking position for 315 ± 82 s, versus 225 ± 68 s for untrained subjects. Patterns of electrical activity and mean power frequency (MPF) were different between populations. MPF shift in abdominal muscles was higher than in other synergists for both groups. Although typical changes in sEMG parameters were observed, few relations with endurance time were found, and for untrained subjects only. Changes in the relative contribution among synergists were observed, mainly for trained subjects. It is hypothesized that the task (a complex multi-joint posture involving numerous joints and muscles) may allow some variability in the contribution of synergist muscles during fatigue especially for the trained group. This probably explains the absence of relationship between endurance time and sEMG changes for trained subjects.  相似文献   

7.
Purpose: To verify the precision of surface electromyography (sEMG) in locating the innervation zone of the gracilis muscle, by comparing the location of the IZ estimated by means of sEMG with in vivo location of the nerve bundle entry point in patients before graciloplasty procedure due to fecal incontinence. Methods: Nine patients who qualified for the graciloplasty procedure underwent sEMG on both gracilis muscle before their operations. During surgery the nerve bundle was identified by means of electrical stimulation. The distance between the proximal attachment and the nerve entry point into the muscle’s body was measured. Both measurements (sEMG and in vivo identification) were compared for each subject. Results: On average, the IZ was located 65.5 mm from the proximal attachment. The mean difference in location of the innervation zones in each individual was 10 ± 9.7 mm, maximal – 30 mm, the difference being statistically significant (p = 0.017). It was intraoperatively confirmed, that the nerve entered the muscle an average of 62 mm from the proximal attachment. The largest difference between the EMG IZ estimation and nerve bundle entry point was 5 mm (mean difference 2.8 mm, p = 0.767). Conclusion: Preoperative surface electromyography of both gracilis muscles is a safe, precise and reliable method of assessing the location of the innervation zones of the gracilis muscles. The asymmetry of the IZ location in left and right muscles may be important in context of technical aspects of the graciloplasty procedure.  相似文献   

8.
The aim of this work is the development of an improved formulation of the double threshold algorithm for sEMG onset–offset detection presented by Bonato and co-workers. The original formulation, which keeps the threshold fixed, suffers from performance degradation whenever the SNR changes during the analysis. The novel approach is designed to be adaptive to SNR changes in either burst or inter-burst zones of sEMG signals recorded in static and dynamic conditions. The detection parameters (i.e. detection and false alarm probabilities) are updated on the basis of an on-line estimation of the SNR. The proposed formulation has been assessed on both simulated and real sEMG data. For constant SNR the performance of the original formulation is confirmed (for SNR > 8 dB, bias and standard deviation less than 10 and 15 ms, respectively; detection percentage higher than 95%), while the novel implementation performs better with time-varying SNR (for SNR varying in the range 10–25 dB the standard approach detection percentage decreases at 50%). Detection on signals recorded during isometric contractions at different force levels confirms the performance on simulated signals (StD = 134 ms; FP = 22%, and StD = 42 ms; FP = 2%, respectively for standard and novel implementation calculated as average on five experimental trials). The pseudo real-time detection allowed by this formulation can be profitably exploited by biofeedback applications based on myoelectric information.  相似文献   

9.
PurposeTo compare a new normalization technique (wax pad, WAX) with the currently utilized cotton roll (COT) method in surface electromyography (sEMG) of the masticatory muscles.MethodssEMG of the masseter and anterior temporalis muscles of 23 subjects was recorded while performing two repetitions of 5 s maximum voluntary clenches (MVC) on COT and WAX. For each task, the mean value of sEMG amplitude and its coefficient of variation were calculated, and the differences between the two repetitions computed. The standard error of measurement (SEM) was calculated. For each subject and muscle, the COT-to-WAX maximum activity increment was computed. Participant preference between tasks was also recorded.ResultsWAX MVC tasks had larger maximum EMG amplitude than COT MVC tasks (P < 0.001), with COT-to-WAX maximum amplitude increments of 61% (temporalis) and 94% (masseter) (P = 0.006). WAX MVC had better test-retest repeatability than COT. For both MVC modalities, the mean amplitude (P > 0.391) and its coefficient of variation were unchanged (P > 0.180). The WAX task was the more comfortable for 18/23 subjects (P = 0.007).ConclusionWAX normalization ensures the same stability level of maximum EMG amplitude as COT normalization, but it is more repeatable, elicits larger maximum muscular contraction, and is felt to be more comfortable by subjects.  相似文献   

10.
This study investigated (a) the feasibility and repeatability of intramuscular fine-wire electromyographic (fEMG) recordings from leg muscles during the repetitive, high-velocity cycling movement, (b) the influence of amplitude normalization technique on repeatability and statistical sensitivity, (c) the influence of test-retest interval duration on repeatability, and (d) differences between fEMG and surface EMG (sEMG) recordings of cycling. EMG activity of leg muscles was recorded using surface and fine-wire electrodes during one (n = 12, to investigate statistical sensitivity and compare sEMG and fEMG) or two sessions (T1 and T2, 5–20 days apart, n = 10, to investigate repeatability). fEMG recordings were feasible and there was high repeatability of fEMG recordings normalised to maximum measured EMG amplitude (MAX); mean coefficients of multiple correlation (CMC) ranged from .83 ± .13 to .88 ± .07. Data normalised to maximal (MVC) or submaximal contractions (sMVC) were less repeatable (p < .01). Statistical sensitivity was also greatest for data normalised to MAX (p < .01). Repeatability of fEMG increased with greater test-retest intervals (p < .01). The global pattern of muscle recruitment was consistent between sEMG and fEMG but sEMG recordings were characterized by additional myoelectric content. These findings support and guide the use of fEMG techniques to investigate leg muscle recruitment during cycling.  相似文献   

11.
The aim of the present study was to determine whether any specific frequency bands of surface electromyographic (sEMG) signals are more susceptible to alterations in patients with temporomandibular disorders (TMD), when compared with healthy subjects. Twenty-seven healthy adults (19 women and eight men; mean age: 23 ± 6.68 years) and 27 TMD patients (20 women and seven men; mean age: 24 ± 5.89 years) voluntarily participated in the experiment. sEMG data were recorded from the right and left masseter muscles (RM and LM) and the right and left anterior temporalis muscles (RT and LT) as the participants performed tests of chewing (CHW) and maximal clenching effort (MCE). Frequency domain analysis of the sEMG signal was used to analyze differences between TMD patients and healthy subjects in relation to the Power Spectral Density Function (PSDF). The analysis focused on the median frequency (MDF) of the sEMG signal and PSDF frequency bands after the EMG spectrum was divided into twenty-five frequency band of 20 Hz each. The Mann-Whitney test was used to compare MDF between TMD patients and healthy subjects and the frequency bands were analyzed using three-way ANOVA with three factors: frequency band, muscle and group. The results of the analysis confirmed that the median frequency values in TMD patients were significantly higher (p < 0.05) than those recorded for healthy subjects in the two experimental conditions (MCE and CHW), for all of the muscles assessed (RM, LM, RT and LT). In addition, frequency content between 20 and 100 Hz of the normalized PSDF range was significantly lower (p < 0.05) in TMD patients than in healthy. This study contributes to quantitatively identify TMD dysfunctions, by non-invasive sEMGs; this assessment is clinically important and still lacking nowadays.  相似文献   

12.
This study proposes a comprehensive assessment of myoelectric activity of the main muscles involved in the Functional Reach (FR) test, in 24 elderly subjects. A specific protocol for the surface electromyography (sEMG) signal acquisition during FR-test was developed. Results show that anterior muscles activate following a caudo-cranial order. Tibialis Anterior (TA) is the first to be activated (−18.0 ± 16.3% of the FR-period), together with Rectus Femoris (−10.4 ± 17.9%). Then, Rectus Abdominis (19.7 ± 24.7%) and Sternocleidomastoideus (19.9 ± 15.6%) activate after the FR-start. Hamstrings, Soleus, and L4-level Erectores Spinae (posterior muscles) activate after the FR-start in this order (11.4 ± 16.8%, 17.7 ± 16.6%, and 35.2 ± 29.0%, respectively) and remain active until the movement end. The analysis of the kinematic strategies adopted by subjects revealed an association between TA-activation patterns and two kinematic strategies (hip/mixed strategy), quantified by an increase (p < 0.05) of TA-activity duration in subjects adopting the hip strategy (89.9 ± 34.5) vs. subjects adopting the mixed strategy (27.0 ± 16.8). This suggests that TA sEMG activity could be able to discriminate among kinematic strategies, providing different information on balance control. Thus, the present analysis represents the first attempt to quantify the sEMG activity during FR-test in elderly subjects, providing an early contribution in building a reference frame for balance assessment in clinical context.  相似文献   

13.
The purpose of this study was to investigate the reliability of surface electromyography (sEMG) measurements after submersion (swimming) for 90 min. Isometric maximal voluntary contractions (MVC) on land and in water were collected from eight muscles on the right side of the body in 12 healthy participants (6 women and 6 men). Repeated measures analyses of variance (general linear model ANOVA) showed no significant differences in the peak amplitude MVC scores between land pre and post measurements for all muscles, p > .05. The mean of the Intraclass correlation coefficient (1, 1) for land pre and land post was .985 with (95% Cl = .978–.990), for land pre and water pre .976 (95% Cl = .964–.984) and for land pre and post, water pre and post .981 (95% Cl = .974–.987). Measuring sEMG on land before and after a prolonged submersion is highly reliable without additional waterproofing when using electrodes with 57 mm diameter.  相似文献   

14.
A relationship exists between muscles of the lumbar spine and those of the lower extremity where the quadriceps become more inhibited after lumbar paraspinal. The purpose of this experiment was to compare surface electromyography (sEMG) total frequency content after lumbar paraspinal fatiguing exercise. Scope: 50 subjects performed fatiguing lumbar extension exercise indexed by downward shifts in median frequency calculated from lumbar paraspinal sEMG signal. Before and after each exercise set we recorded maximal, isometric knee extension torque and quadriceps central activation ratio (QI) using the superimposed burst technique while recording vastus lateralis sEMG. We calculated total frequency content of the sEMG signal (fEMGTOTAL) as the area of the quadriceps sEMG frequency spectrum. Quadriceps fEMGTOTAL decreased from baseline following the first and second exercise sets. There was no significant change in quadriceps sEMG median frequency among baseline and post-exercise measures. The change in fEMGTOTAL was correlated with the change in QI following the first (r = ?0.41, P = 0.003) and second (r = ?0.32, P = 0.02) exercise sets. Conclusion: Quadriceps fEMGTOTAL decreased following fatiguing lumbar extension exercise, in the absence of a significant change in quadriceps median frequency.  相似文献   

15.
PurposeField study, cross-sectional study to measure the posture and sEMG of the lumbar spine during office work for a better understanding of the lumbar spine within such conditions.ScopeThere is high incidence of low back pain in office workers. Currently there is little information about lumbar posture and the activity of lumbar muscles during extended office work.MethodsThirteen volunteers were examined for around 2 h of their normal office work. Typical tasks were documented and synchronised to a portable long term measuring device for sEMG and posture examination. The correlation of lumbar spine posture and sEMG was tested statistically.ResultsThe majority of time spent in office work was sedentary (82%). Only 5% of the measured time was undertaken in erect body position (standing or walking). The sEMG of the lumbar muscles under investigation was task dependent. A strong relation to lumbar spine posture was found within each task. The more the lumbar spine was flexed, the less there was activation of lumbar muscles (P < .01). Periods of very low or no activation of lumbar muscles accounted for about 30% of relaxed sitting postures.ConclusionBecause of very low activation of lumbar muscles while sitting, the load is transmitted by passive structures like ligaments and intervertebral discs. Due to the viscoelasticity of passive structures and low activation of lumbar muscles, the lumbar spine may incline into de-conditioning. This may be a reason for low back pain.  相似文献   

16.
PurposePrevious studies have suggested that muscle coactivation could be reduced by a recurrent activity (training, daily activities). If this was correct, skilled athletes should show a specific muscle activation pattern with a low level of coactivation of muscles which are typically involved in their discipline. In particular, the aim of this study was to verify the hypothesis that the amount of antagonist activation of biceps brachii (BB) and triceps brachii (TB) is different between tennis players and non-players individuals during maximal isokinetic contractions.MethodsTen young healthy men and eight male tennis players participated in the study. The surface electromyographic signals (sEMG) were recorded from the BB and TB muscles during three maximal voluntary isometric contractions (MVC) of elbow flexors and extensors and a set of three maximal elbow flexions and extensions at 15°, 30°, 60°, 120°, 180° and 240°/s. Normalized root mean square (RMS) of sEMG was calculated as an index of sEMG amplitude.ResultsAntagonist activation (%RMSmax) of TB was significantly lower in tennis players (from 14.0 ± 7.9% at MVC to 16.3 ± 8.9% at 240°/s) with respect to non-players (from 27.7 ± 19.7% at MVC to 38.7 ± 17.6% at 240°/s) at all angular velocities. Contrary to non-players, tennis players did not show any difference in antagonist activation between BB and TB muscles.ConclusionsTennis players, with a constant practice in controlling forces around the elbow joint, learn how to reduce coactivation of muscles involved in the control of this joint. This has been shown by the lower antagonist muscular activity of triceps brachii muscle during isokinetic elbow flexion found in tennis players with respect to non-players.  相似文献   

17.
ObjectiveThe objective of this work was to study modifications in motor control through surface electromyographic (sEMG) activity during a very short all-out cycling exercise.MethodsTwelve male cyclists (age 23 ± 4 years) participated in this study. After a warm-up period, each subject performed three all-out cycling exercises of 6 s separated by 2 min of complete rest. This protocol was repeated three times with a minimum of 2 days between each session. The braking torque imposed on cycling motion was 19 N m. The sEMG of the vastus lateralis was recorded during the first seven contractions of the sprint. Time–frequency analysis of sEMG was performed using continuous wavelet transform. The mean power frequency (MPF, qualitative modifications in the recruitment of motor units) and signal energy (a quantitative indicator of modifications in the motor units recruitment) were computed for the frequency range 10–500 Hz.ResultssEMG energy increased (P ? 0.05) between contraction number 1 and 2, decreased (P ? 0.05) between contraction number 2 and 3 then stabilized between contraction number 3 and 7 during the all-out test. MPF increased (P ? 0.05) during the all-out test. This increase was more marked during the first two contractions.ConclusionsThe decrease in energy and the increase in the sEMG MPF suggest a large spatial recruitment of motor units (MUs) at the beginning of the sprint followed by a preferential recruitment of faster MUs at the end of the sprint, respectively.  相似文献   

18.
Mandibular kinematic and standardized surface electromyography (sEMG) characteristics of masticatory muscles of subjects with short lasting TMD of mild-moderate severity were examined.Volunteers were submitted to clinical examination and questionnaire of severity. Ten subjects with TMD (age 27.3 years, SD 7.8) and 10 control subjects without TMD, matched by age, were selected.Mandibular movements were recorded during free maximum mouth opening and closing (O–C) and unilateral, left and right, gum chewing. sEMG of the masseter and temporal muscles was performed during maximum teeth clenching either on cotton rolls or in intercuspal position, and during gum chewing. sEMG indices were obtained. Subjects with TMD, relative to control subjects, had lower relative mandibular rotation at the end of mouth opening, larger mean number of intersection between interincisal O–C paths during mastication and smaller asymmetry between working and balancing side, with participation beyond the expected of the contralateral muscles (P < 0.05, t-test). Overall, TMD subjects showed similarities with the control subjects in several kinematic parameters and the EMG indices of the static test, although some changes in the mastication were observed.  相似文献   

19.
Musicians activate their muscles in different patterns, depending on their posture, the instrument being played, and their experience level. Bipolar surface electrodes have been used in the past to monitor such activity, but this method is highly sensitive to the location of the electrode pair. In this work, the spatial distribution of surface EMG (sEMG) of the right trapezius and right and left erector spinae muscles were studied in 16 violin players and 11 cello players. Musicians played their instrument one string at a time in sitting position with/without backrest support. A 64 sEMG electrode (16 × 4) grid, 10 mm inter-electrode distance (IED), was placed over the middle and lower trapezius (MT and LT) of the bowing arm. Two 16 × 2 electrode grids (IED = 10 mm) were placed on the left and right erector spinae muscles. Subjects played each of the four strings of the instrument either in large (1 bow/s) or detaché tip/tail (8 bows/s) bowing in two sessions (two days). In each of two days, measurements were repeated after half an hour of exercise to see the effect of exercise on the muscle activity and signal stability. A “muscle activity index” (MAI) was defined as the spatial average of the segmented active region of the RMS map. Spatial maps were automatically segmented using the watershed algorithm and thresholding. Results showed that, for violin players, sliding the bow upward from the tip toward the tail results in a higher MAI for the trapezius muscle than a downward bow. On the contrary, in cello players, higher MAI is produced in the tail to tip movement. For both instruments, an increasing MAI in the trapezius was observed as the string position became increasingly lateral, from string 1 (most medial) toward string 4 (most lateral). Half an hour of performance did not cause significant differences between the signal quality and the MAI values measured before and after the exercise. The MAI of the left and right erector spinae was smaller in the case of backrest support, especially for violin players. Back muscles of violin and cello players were activated asymmetrically, specifically in fast movements (detaché tip/tail). These findings demonstrate the sensitivity and stability of the technique and justify more extensive investigation following this proof of concept.  相似文献   

20.
This study evaluated the flexion–relaxation phenomenon (FRP) and flexion–relaxation ratios (FR-ratios) using surface electromyography (sEMG) of the cervical extensor muscles of computer workers with and without chronic neck pain, as well as of healthy subjects who were not computer users. This study comprised 60 subjects 20–45 years of age, of which 20 were computer workers with chronic neck pain (CPG), 20 were computer workers without neck pain (NPG), and 20 were control individuals who do not use computers for work and use them less than 4 h/day for other purposes (CG). FRP and FR-ratios were analyzed using sEMG of the cervical extensors. Analysis of FR-ratios showed smaller values in the semispinalis capitis muscles of the two groups of workers compared to the control group. The reference FR-ratio (flexion relaxation ratio [FRR], defined as the maximum activity in 1 s of the re-extension/full flexion sEMG activity) was significantly higher in the computer workers with neck pain compared to the CG (CPG: 3.10, 95% confidence interval [CI95%] 2.50–3.70; NPG: 2.33, CI95% 1.93–2.74; CG: 1.99, CI95% 1.81–2.17; p < 0.001). The FR-ratios and FRR of sEMG in this study suggested that computer use could increase recruitment of the semispinalis capitis during neck extension (concentric and eccentric phases), which could explain our results. These results also suggest that the FR-ratios of the semispinalis may be a potential functional predictive neuromuscular marker of asymptomatic neck musculoskeletal disorders since even asymptomatic computer workers showed altered values. On the other hand, the FRR values of the semispinalis capitis demonstrated a good discriminative ability to detect neck pain, and such results suggested that each FR-ratio could have a different application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号