首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wang  Yechun  Bhuiya  Mohammad Wadud  Zhou  Rui  Yu  Oliver 《Annals of microbiology》2015,65(2):817-826
Pterostilbene (3,5-dimethoxy-4′-hydroxyl-trans-stilbene)—a derivative of resveratrol—is a natural dietary compound and the primary antioxidant component in berries. Pterostilbene has significant advantages over resveratrol in bioavailability, half-life in the body, cellular uptake, oral absorption and metabolic stability. Here, we expressed the resveratrol O-methyltransferase (ROMT) gene (VvROMT) from grape (Vitis vinifera) in Escherichia coli and Saccharomyces cerevisiae and confirmed its specific ability to catalyze the production of pterostilbene from resveratrol. By co-expressing an additional two genes from the resveratrol biosynthetic pathway—4-coumarate CoA-ligase (4CL) and stilbene synthase (STS)—a large amount of pterostilbene was produced, with a trace amount of pinostilbene detected. To understand the molecular basis of the catalytic activity, four key amino acid residues were identified in a 3D-model of VvROMT and mutagenized and assayed for augmented catalytic activity. Our results demonstrate the potential utility of the engineered microorganisms for pterostilbene production and provide protein engineering targets that will hopefully lead to increased activity of the ROMT enzyme.  相似文献   

2.
Branched C5 alcohols are promising biofuels with favorable combustion properties. A mevalonate (MVA)-based isoprenoid biosynthetic pathway for C5 alcohols was constructed in Escherichia coli using genes from several organisms, and the pathway was optimized to achieve over 50% theoretical yield. Although the MVA pathway is energetically less efficient than the native methylerythritol 4-phosphate (MEP) pathway, implementing the MVA pathway in bacterial hosts such as E. coli is advantageous due to its lack of endogenous regulation. The MVA and MEP pathways intersect at isopentenyl diphosphate (IPP), the direct precursor to isoprenoid-derived C5 alcohols and initial precursor to longer chain terpenes, which makes independent regulation of the pathways difficult. In pursuit of the complete “decoupling” of the MVA pathway from native cellular regulation, we designed novel IPP-bypass MVA pathways for C5 alcohol production by utilizing promiscuous activities of two enzymes, phosphomevalonate decarboxylase (PMD) and an E. coli-endogenous phosphatase (AphA). These bypass pathways have reduced energetic requirements, are further decoupled from intrinsic regulation, and are free from IPP-related toxicity. In addition to these benefits, we demonstrate that reduced aeration rate has less impact on the bypass pathway than the original MVA pathway. Finally, we showed that performance of the bypass pathway was primarily determined by the activity of PMD. We designed PMD mutants with improved activity and demonstrated titer increases in the mutant strains. These modified pathways would be a good platform for industrial production of isopentenol and related chemicals such as isoprene.  相似文献   

3.
Phenylalanine ammonia-lyase (PAL) is an important enzyme that links primary metabolism to secondary metabolism. Its efficiency is often a critical factor that affects the overall flux of a related metabolic pathway, the titer of the final products, and the efficacy of PAL-based therapies. Thus, PAL is a common target for metabolic engineering, and it is of significant interest to screen efficient PALs for industrial and medical applications. In this study, a novel and efficient visible reporter assay for screening of PAL efficiency in Escherichia coli was established based on a plant type III polyketide biosynthetic pathway. The candidate PALs were co-expressed with a 4-coumarate:CoA ligase 4CL1 from Arabidopsis thaliana and curcuminoid synthase (CUS) from Oryza sativa in E. coli BL21(DE3) to form a dicinnamoylmethane biosynthetic pathway. Taking advantage of the yellow color of the product, a microplate-based assay was designed to measure the titer of dicinnamoylmethane, which was validated by HPLC analysis. The different titers of the product reflect the overall performance (expression level and enzymatic activity) of the individual PALs in E. coli. Using this system, we have screened three PALs (PAL1, PAL3, and PAL4) from Trifolium pratense, among which PAL1 showed the best performance in E. coli. The engineered E. coli strain containing PAL1, 4CL1, and CUS led to the production of dicinnamoylmethane at a high level of 0.36 g/l. Supplement of 2-fluoro-phenylalanine yielded two fluorinated dicinnamoylmethane derivatives, 6,6′-difluoro-dicinnamoylmethane and 6-fluoro-dicinnamoylmethane, of which the latter is a new curcuminoid.  相似文献   

4.
Using in situ RNA/RNA hybridization, enzyme immunolocalization, and histochemical techniques, several phenylpropanoid biosynthetic activities and products were localized in tissue sections from various aerial parts of parsley (Petroselinum crispum) plants at different developmental stages. The enzymes and corresponding mRNAs analyzed included two representatives of general phenylpropanoid metabolism: phenylalanine ammonia-lyase (PAL) and 4-coumarate: CoA ligase (4CL), and one representative each from two distinct branch pathways: chalcone synthase (CHS; flavonoids) and S-adenosyl-L-methionine: bergaptol O-methyltransferase (BMT; furanocoumarins). In almost all cases, the relative timing of accumulation differed greatly for mRNA and protein and indicated short expression periods and short half-lives for all mRNAs as compared to the proteins. PAL and 4CL occurred almost ubiquitously in cell type-specific patterns, and their mRNAs and proteins were always coordinately expressed, whereas the cell type-specific localization of flavonoid and furanocoumarin biosynthetic activities was to a large extent mutually exclusive. However, the distribution patterns of CHS and BMT, when superimposed, closely matched those of PAL and 4CL in nearly all tissues analysed, suggesting that the flavonoid and furanocoumarin pathways together consituted a large majority of the total phenylpropanoid biosynthetic activity. Differential sites of synthesis and accumulation indicating intercellular translocation were observed both for flavonoids and for furanocoumarins in oil ducts and the surrounding tissue. The widespread occurrence of both classes of compounds, as well as selected, pathway-specific mRNAs and enzymes, in many cell types of all parsley organs including various flower parts suggests additional functions beyond the previously established roles of flavonoids in UV protection and furanocoumarins in pathogen defence.  相似文献   

5.
Because high-throughput screening tools are typically unavailable when using the pathway-engineering approach, we developed a new strategy, named intermediate sensor-assisted push–pull strategy, which enables sequential pathway optimization by incorporating a biosensor targeting a key pathway intermediate. As proof of concept, we constructed an l-Trp biosensor and used it to optimize the deoxyviolacein biosynthetic pathway, which we divided into two modules with l-Trp being the product of the upstream and the substrate of the downstream module for deoxyviolacein synthesis. Using the biosensor and fluorescence-activated cell sorting, the activities of the two modules were sequentially and independently optimized in Escherichia coli to achieve the desired phenotypes. By this means, we increased the deoxyviolacein titer 4.4-fold (1.92 g/L), which represents the greatest deoxyviolacein production reported. This work suggests that a biosynthetic pathway can be enhanced to produce a value-added secondary metabolite(s) without available end-product screening method by using a central metabolic junction molecule biosensor(s).  相似文献   

6.
Sugarcane (Saccharum spp. hybrids) is a major feedstock for commercial bioethanol production. The recent integration of conversion technologies that utilize lignocellulosic sugarcane residues as well as sucrose from stem internodes has elevated bioethanol yields. RNAi suppression of lignin biosynthetic enzymes is a successful strategy to improve the saccharification of lignocellulosic biomass. 4-coumarate:coenzyme A ligase (4CL) is a key enzyme in the biosynthesis of phenylpropanoid metabolites, such as lignin and flavonoids. Identifying a major 4CL involved in lignin biosynthesis among multiple isoforms with functional divergence is key to manipulate lignin biosynthesis. In this study, two full length 4CL genes (Sh4CL1 and Sh4CL2) were isolated and characterized in sugarcane. Phylogenetic, expression and RNA interference (RNAi) analysis confirmed that Sh4CL1 is a major lignin biosynthetic gene. An intragenic precision breeding strategy may facilitate the regulatory approval of the genetically improved events and was used for RNAi suppression of Sh4CL1. Both, the RNAi inducing cassette and the expression cassette for the mutated ALS selection marker consisted entirely of DNA sequences from sugarcane or the sexually compatible species Sorghum bicolor. Field grown sugarcane with intragenic RNAi suppression of Sh4CL1 resulted in reduction of the total lignin content by up to 16.5?% along with altered monolignol ratios without reduction in biomass yield. Mature, field grown, intragenic sugarcane events displayed 52–76?% improved saccharification efficiency of lignocellulosic biomass compared to wild type (WT) controls. This demonstrates for the first time that an intragenic approach can add significant value to lignocellulosic feedstocks for biofuel and biochemical production.  相似文献   

7.
Countless reports describe the isolation and structural characterization of natural products, yet this information remains disconnected and underutilized. Using a cheminformatics approach, we leverage the reported observations of iridoid glucosides with the known phylogeny of a large iridoid producing plant family (Lamiaceae) to generate a set of biosynthetic pathways that best explain the extant iridoid chemical diversity. We developed a pathway reconstruction algorithm that connects iridoid reports via reactions and prunes this solution space by considering phylogenetic relationships between genera. We formulate a model that emulates the evolution of iridoid glucosides to create a synthetic data set, used to select the parameters that would best reconstruct the pathways, and apply them to the iridoid data set to generate pathway hypotheses. These computationally generated pathways were then used as the basis by which to select and screen biosynthetic enzyme candidates. Our model was successfully applied to discover a cytochrome P450 enzyme from Callicarpa americana that catalyzes the oxidation of bartsioside to aucubin, predicted by our model despite neither molecule having been observed in the genus. We also demonstrate aucubin synthase activity in orthologues of Vitex agnus-castus, and the outgroup Paulownia tomentosa, further strengthening the hypothesis, enabled by our model, that the reaction was present in the ancestral biosynthetic pathway. This is the first systematic hypothesis on the epi-iridoid glucosides biosynthesis in 25 years and sets the stage for streamlined work on the iridoid pathway. This work highlights how curation and computational analysis of widely available structural data can facilitate hypothesis-based gene discovery.  相似文献   

8.
The enzyme 4-coumarate:CoA ligase (4CL) plays a key role in channelling carbon flow into diverse branch pathways of phenylpropanoid metabolism which serve important functions in plant growth and adaptation to environmental perturbations. Here we report on the cloning of the 4CL gene family from Arabidopsis thaliana and demonstrate that its three members, At4CL1, At4CL2 and At4CL3, encode isozymes with distinct substrate preference and specificities. Expression studies revealed a differential behaviour of the three genes in various plant organs and upon external stimuli such as wounding and UV irradiation or upon challenge with the fungus, Peronospora parasitica. Phylogenetic comparisons indicate that, in angiosperms, 4CL can be classified into two major clusters, class I and class II, with the At4CL1 and At4CL2 isoforms belonging to class I and At4CL3 to class II. Based on their enzymatic properties, expression characteristics and evolutionary relationships, At4CL3 is likely to participate in the biosynthetic pathway leading to flavonoids whereas At4CL1 and At4CL2 are probably involved in lignin formation and in the production of additional phenolic compounds other than flavonoids.  相似文献   

9.
Propionyl-CoA carboxylase (PCC) is a promising enzyme in the fields of biological CO2 utilization, synthesis of natrual products, and so on. The activity and substrate specificity of PCC are dependent on its key subunit carboxyltransferase (CT). To obtain PCC with high enzyme activity, seven pccB genes encoding CT subunit from diverse microorganisms were expressed in recombinant E. coli, and PccB from Bacillus subtilis showed the highest activity in vitro. To further optimize this protein using directed evolution, a genetic screening system based on oxaloacetate availability was designed to enrich the active variants of PccBBs. Four amino acid substitutions (D46G, L97Q, N220I and I391T) proved of great assistance in PccBBs activity improvement, and a double mutant of PccBBs (N220I/I391T) showed a 94-fold increase of overall catalytic efficiency indicated by kcat/Km. Moreover, this PccBBs double mutant was applied in construction of new succinate biosynthetic pathway. This new pathway produces succinate from acetyl-CoA with fixation of two CO2 molecules, which was confirmed by isotope labeling experiment with NaH13CO3. Compared with previous succinate production based on carboxylation of phosphoenolpyruvate or pyruvate, this new pathway showed some advantages including higher CO2 fixation potentiality and availability under aerobic conditions. In summary, this study developed a PCC with high enzyme activity which can be widely used in biotechnology field, and also demonstrated the feasibility of new succinate biosynthetic pathway with two CO2 fixation reactions.  相似文献   

10.
Biological synthesis of pharmaceuticals and biochemicals offers an environmentally friendly alternative to conventional chemical synthesis. These alternative methods require the design of metabolic pathways and the identification of enzymes exhibiting adequate activities. Cinnamoyl, dihydrocinnamoyl, and benzoyl anthranilates are natural metabolites which possess beneficial activities for human health, and the search is expanding for novel derivatives that might have enhanced biological activity. For example, biosynthesis in Dianthus caryophyllus is catalyzed by hydroxycinnamoyl/benzoyl-CoA:anthranilate N-hydroxycinnamoyl/ benzoyltransferase (HCBT), which couples hydroxycinnamoyl-CoAs and benzoyl-CoAs to anthranilate. We recently demonstrated the potential of using yeast (Saccharomyces cerevisiae) for the biological production of a few cinnamoyl anthranilates by heterologous co-expression of 4-coumaroyl:CoA ligase from Arabidopsis thaliana (4CL5) and HCBT. Here we report that, by exploiting the substrate flexibility of both 4CL5 and HCBT, we achieved rapid biosynthesis of more than 160 cinnamoyl, dihydrocinnamoyl, and benzoyl anthranilates in yeast upon feeding with both natural and non-natural cinnamates, dihydrocinnamates, benzoates, and anthranilates. Our results demonstrate the use of enzyme promiscuity in biological synthesis to achieve high chemical diversity within a defined class of molecules. This work also points to the potential for the combinatorial biosynthesis of diverse and valuable cinnamoylated, dihydrocinnamoylated, and benzoylated products by using the versatile biological enzyme 4CL5 along with characterized cinnamoyl-CoA- and benzoyl-CoA-utilizing transferases.  相似文献   

11.
Resveratrol has been the subject of numerous scientific investigations due to its health-promoting activities against a variety of diseases. However, developing feasible and efficient microbial processes remains challenging owing to the requirement of supplementing expensive phenylpropanoic precursors. Here, various metabolic engineering strategies were developed for efficient de novo biosynthesis of resveratrol. A recombinant malonate assimilation pathway from Rhizobium trifolii was introduced to increase the supply of the key precursor malonyl-CoA and simultaneously, the clustered regularly interspaced short palindromic repeats interference system was explored to down-regulate fatty acid biosynthesis pathway to inactivate the malonyl-CoA consumption pathway. Down-regulation of fabD, fabH, fabB, fabF, fabI increased resveratrol production by 80.2, 195.6, 170.3, 216.5 and 123.7%, respectively. Furthermore, the combined effect of these genetic perturbations was investigated, which increased the resveratrol titer to 188.1 mg/L. Moreover, the efficiency of this synthetic pathway was improved by optimizing the expression level of the rate-limiting enzyme TAL based on reducing mRNA structure of 5′ region. This further increased the final resveratrol titer to 304.5 mg/L. The study described here paves the way to the development of a simple and economical process for microbial production of resveratrol.  相似文献   

12.
Sphingomyelin synthase (SMS) is a key enzyme in sphingomyelin biosynthetic pathway, whose activity is highly related to the atherosclerosis progression. SMS2 could serve as a promising therapeutic target for atherosclerosis. Based on the structure of lead compound D2, a series of oxazolopyridine derivatives were designed, synthesized, and their inhibitory activities against purified SMS1 and SMS2 enzymes were evaluated respectively. The representative molecules QY4 and QY16 possess micromolar inhibitory activities against SMS2 and excellent isoform preferences over SMS1, qualified to be selected as potential molecules in further discovery of specific SMS2 inhibitors.  相似文献   

13.
白藜芦醇是一种极具药用价值的植物源芪类化合物。为了在E. coli实现白藜芦醇的从头合成,构建了由酪氨酸解氨酶(TAL),香豆酸-CoA合成酶(4CL)和白藜芦醇合成酶(STS)组成的非天然合成途径。经3天发酵后,白藜芦醇产量仅为2.67 mg/L,而其中间体香豆酸的积累达到了95.64 mg/L。为了进一步改善异源途径的效率,对4CL和STS模块采取融合表达、高拷贝表达及启动子工程改造的策略,最终使白藜芦醇产量提高到了9.6倍,达到了25.76 mg/L,同时香豆酸的积累减少到了20.38 mg/L。这些研究结果为更高效白藜芦醇从头合成工程菌的构建及最终实现白藜芦醇的微生物大规模生产奠定了基础。  相似文献   

14.
The action of light on the formation of stilbenes and the induction of stilbene synthase in dark-grown and light-grown callus of peanut (Arachis hypogaea) was investigated over the wavelength range from 250 to 400 nm. Ultraviolet light of 260–270 nm had a significant and selective effect on the formation of resveratrol and isopentenylresveratrol. The callus responded by the production of stilbene synthase, with maximal activity appearing 4 h after irradiation with a fluence rate of 1 W m-2 (270 nm) applied for 10 min. At lower fluence rates, maximal responses in enzyme activity were shifted to longer induction periods. The efficiency of the biosynthetic pathway, and the form and maxima of enzyme profiles depended on the duration of exposure. We failed to demonstrate any significant influence of red light at low energy irradiation (672 nm, 726 nm and 753 nm).  相似文献   

15.
To identify the substrates and enzymes related to resveratrol biosynthesis in Alternaria sp. MG1, different substrates were used to produce resveratrol, and their influence on resveratrol production was analyzed using high performance liquid chromatography (HPLC). Formation of resveratrol and related intermediates was identified using mass spectrum. During the biotransformation, activities of related enzymes, including phenylalanine ammonia-lyase (PAL), trans-cinnamate 4-hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL), were analyzed and tracked. The reaction system contained 100 mL 0.2 mol/L phosphate buffer (pH 6.5), 120 g/L Alternaria sp. MG1 cells, 0.1 g/L MgSO4, and 0.2 g/L CaSO4 and different substrates according to the experimental design. The biotransformation was carried out for 21 h at 28 °C and 120 rpm. Resveratrol formation was identified when phenylalanine, tyrosine, cinnamic acid, and p-coumaric acid were separately used as the only substrate. Accumulation of cinnamic acid, p-coumaric acid, and resveratrol and the activities of PAL, C4H, and 4CL were identified and changed in different trends during transformation with phenylalanine as the only substrate. The addition of carbohydrates and the increase of phenylalanine concentration promoted resveratrol production and yielded the highest value (4.57 μg/L) when 2 g/L glucose, 1 g/L cyclodextrin, and phenylalanine (4.7 mmol/L) were used simultaneously.  相似文献   

16.
17.
4-Coumarate:CoA ligase (4CL) is a key enzyme in the phenylpropanoid synthesis pathway. The Pto4CL2 promoter was cloned from Populus tomentosa Carr. and fused to the reporter gene encoding β-glucuronidase (GUS); the complex expression patterns directed by the Pto4CL2 promoter were then characterized in Nicotiana tabacum Xanthi by histochemical assays. The promoter 5′-deletion and histochemical assay conducted on transformants indicated that the ?317 to ?292 nt region supports Pto4CL2 expression in the epidermis and petals and the deletion of the ?266 to ?252 nt region resulted in the loss of tissue specificity and a dramatic reduction in GUS activity. Furthermore, electrophoretic mobility shift assays testified that an adenine and cytosine-rich element (?264 to ?255 nt) and an abscisic acid-responsive element (?242 to ?235 nt) in the Pto4CL2 promoter would have functions for the complex expression profiling and efficient basal expression, respectively. These results further clarify the mode of the regulatory expression of class II 4CL promoters in higher plants.  相似文献   

18.
Addition of cell wall fragments from Phytophthora species or cellulase from Trichoderma viride, but not pectolyase from Aspergillus japonicus, to tobacco (Nicotiana tabacum) cell suspension cultures induced the accumulation of the extracellular sesquiterpenoid capsidiol. Pulse-labeling experiments with [14C]acetate and [3H]mevalonate suggested that enzymatic steps preceding mevalonate were limiting capsidiol biosynthesis in the pectolyase-treated cell cultures. Treatment of the cell cultures with either Phytophthora cell wall fragments or cellulase induced 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and sesquiterpene cyclase activities, enzymes of the sesquiterpene biosynthetic pathway, and phenylalanine ammonia lyase activity, an enzyme of the general phenylpropanoid pathway. Pectolyase treatment induced sesquiterpene cyclase and phenylalanine ammonia lyase activities, but not HMGR activity. These results corroborate the importance of inducible HMGR enzyme activity for sesquiterpene accumulation.  相似文献   

19.
4-Coumaroyl-CoA ligase (4CL) is ubiquitous in the plant kingdom, and plays a central role in the biosynthesis of phenylpropanoids such as lignins, flavonoids, and coumarins. 4CL catalyzes the formation of the coenzyme A thioester of cinnamates such as 4-coumaric, caffeic, and ferulic acids, and the regulatory position of 4CL in the phenylpropanoid pathway renders the enzyme an attractive target that controls the composition of phenylpropanoids in plants. In this study, we designed and synthesized mechanism-based inhibitors for 4CL in order to develop useful tools for the investigation of physiological functions of 4CL and chemical agents that modulate plant growth with the ultimate goal to produce plant biomass that exhibits features that are beneficial to humans. The acylsulfamide backbone of the inhibitors in this study was adopted as a mimic of the acyladenylate intermediates in the catalytic reaction of 4CL. These acylsulfamide inhibitors and the important synthetic intermediates were fully characterized using two-dimensional NMR spectroscopy. Five 4CL proteins with distinct substrate specificity from four plant species, i.e., Arabidopsis thaliana, Glycine max (soybean), Populus trichocarpa (poplar), and Petunia hybrida (petunia), were used to evaluate the inhibitory activity, and the half-maximum inhibitory concentration (IC50) of each acylsulfamide in the presence of 4-coumaric acid (100?µM) was determined as an index of inhibitory activity. The synthetic acylsulfamides used in this study inhibited the 4CLs with IC50 values ranging from 0.10 to 722?µM, and the IC50 values of the most potent inhibitors for each 4CL were 0.10–2.4?µM. The structure–activity relationship observed in this study revealed that both the presence and the structure of the acyl group of the synthetic inhibitors strongly affect the inhibitory activity, and indicates that 4CL recognizes the acylsulfamide inhibitors as acyladenylate mimics.  相似文献   

20.
Betalains are the nitrogenous pigments that replace anthocyanins in the plant order Caryophyllales. Here, we describe unconventional decarboxylated betalains in quinoa (Chenopodium quinoa) grains. Decarboxylated betalains are derived from a previously unconsidered activity of the 4,5-DOPA-extradiol-dioxygenase enzyme (DODA), which has been identified as the key enzymatic step in the established biosynthetic pathway of betalains. Here, dopamine is fully characterized as an alternative substrate of the DODA enzyme able to yield an intermediate and structural unit of plant pigments: 6-decarboxy-betalamic acid, which is proposed and described. To characterize this activity, quinoa grains of different colors were analyzed in depth by chromatography, time-of-flight mass spectrometry, and reactions were performed in enzymatic assays and bioreactors. The enzymatic-chemical scheme proposed leads to an uncharacterized family of 6-decarboxylated betalains produced by a hitherto unknown enzymatic activity. All intermediate compounds as well as the final products of the dopamine-based biosynthetic pathway of pigments have been unambiguously determined and the reactions have been characterized from the enzymatic and functional perspectives. Results evidence a palette of molecules in quinoa grains of physiological relevance and which explain minor betalains described in plants of the Caryophyllales order. An entire family of betalains is anticipated.

A biosynthetic pathway produces unconventional plant pigments betalains derived from dopamine in quinoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号