首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  • Canopy soil (CS) volume reflect epiphyte community maturity, but little is known about the factors that retain CS or species succession within it. Humus fern species (e.g. Phlebodium areolatum) appear capable of retaining CS.
  • In ten Quercus spp. we sampled 987 epiphyte mats to examine the role of the common epiphyte species and crown traits determining CS volume, in order to infer successional stages and identify pioneer and late successional species. Branch traits (height, diameter and slope), CS volume and cover of the epiphyte species were determined for each mat. Nutrient content was determined in CS random samples of 12 epiphyte associations and sizes (one sample from each size quintile).
  • A total of 60% of the mats lack CS. Cover of Pareolatum was the main variable explaining CS volume, and this species was present in 46.8% of those with CS. Epiphyte composition was highly variable, but pioneer (species appearing in monospecific mats, without CS) and late successional species could be identified. Canopy soil nutrient content was similar among the associations of epiphytes. Magnesium, Ca and pH decreased with CS volume, while P and N increased.
  • Phlebodium areolatum is associated with high CS volumes and could act as a key species in its retention. Monospecific mats of pioneer species lack CS or have low volumes, while CS is much higher in mats with late successional species, but the mechanisms of CS formation and nutrient retention in response to interactions between epiphyte species remain to be tested.
  相似文献   

2.
The role of terrestrial soil nutrient supply in determining the composition and productivity of epiphyte communities has been little investigated. In a montane Hawaiian rainforest, we documented dramatic increases in the abundance and species richness of canopy epiphytes in a forest that had been fertilized annually with phosphorus (P) for 15 years; there was no response in forest that had been fertilized with nitrogen (N) or other nutrients. The response of N-fixing lichens to P fertilization was particularly strong, although mosses and non-N-fixing lichens also increased in abundance and diversity. We show that enhancement of canopy P availability is the most likely factor driving the bloom in epiphytes. These results provide strong evidence that terrestrial soil fertility may structure epiphyte communities, and in particular that the abundance of N-fixing lichens – a functionally important epiphyte group – may be particularly sensitive to ecosystem P availability.  相似文献   

3.
  • Leaf stoichiometry can characterize plant ecological strategies and correlate with plant responses to climate change. The role of vascular epiphytes in the ecosystem processes of tropical and subtropical forest ecosystems cannot be ignored. Vascular epiphytes are very vulnerable to climate change, however, the relationship between the response of epiphytes to climate change and leaf stoichiometry is not well understood.
  • We present data for 19 vascular epiphyte species that were collected during four consecutive censuses (in 2005, 2010, 2015, and 2020) over 15 years in a subtropical montane cloud forest. We assessed the relationships between the population dynamics and leaf stoichiometry of these vascular epiphytes.
  • Experiencing an extreme drought, 14 of the 19 epiphyte species showed an obvious decrease in the number of individuals, and all species showed negative growth in the number of populations. Subsequently, the total number of individuals gradually recovered, increasing from 7,195 in 2010 to 10,121 in 2015, then to 13,667 in 2020. The increase in the number of vascular epiphyte individuals from 2010 to 2015 was significantly negatively correlated with leaf nitrogen and phosphorus concentration, and was significantly positively correlated with the leaf carbon-nitrogen ratio.
  • Vascular epiphyte populations with higher leaf nutrient concentrations exhibited weaker resilience to the extreme drought, which demonstrated that a resource-conservative strategy was advantageous for the recovery of epiphyte populations. Our findings suggest that ecological stoichiometry can be a useful framework for forecasting the dynamics of vascular epiphyte populations in response to climate change.
  相似文献   

4.
Species richness, community composition and ecology of cryptogamic epiphytes (bryophytes, macrolichens) were studied in upper montane primary, early secondary and late secondary oak forests of the Cordillera de Talamanca, Costa Rica. Canopy trees of Quercus copeyensis were sampled with the aim of getting insight in patterns and processes of epiphyte succession and recovery of diversity in secondary forest following forest clearing. Species richness of cryptogamic epiphytes in secondary and primary forests were nearly the same, showing that primary forests are not necessarily more diverse than secondary forests. High species richness of secondary forests was presumed due to the closed canopy, resulting in permanently high atmospheric humidity in these forests. Similarity in species composition of secondary and primary forests increases with forest age, but after 40 years of succession one third (46 species) of primary forest species had not re-established in the secondary forest. Community composition in primary and secondary forests differed markedly and indicates that a long time is needed for the re-establishment of microhabitats and re-invasion of species and communities adapted to differentiated niches. Genera and species exclusive to primary forests are relevant as indicator taxa and conservation targets. Forty percent (68 species) of all species recorded are restricted to secondary forests, indicating the important contribution of secondary forest diversity to total species richness of the oak forests of Costa Rica.  相似文献   

5.
Aim Non‐vascular epiphytes have been largely ignored in studies examining the biotic and abiotic determinants of spatial variation in epiphyte diversity. Our aim was to test whether the spatial patterning of species richness, biomass and community composition across geographic regions, among trees within regions, and among branches within trees is consistent between the vascular and non‐vascular components of the temperate rain forest flora. Location Coastal lowland podocarp‐broadleaved forests on the west coast of the South Island of New Zealand. Methods We collected single samples (30 × 25 cm) from 96 epiphyte assemblages located on the inner branches of 40 northern rata (Metrosideros robusta) trees. For each sample, branch characteristics such as branch height, branch diameter, branch angle, branch aspect, and minimum and maximum epiphyte mat depth were recorded. The biomass for each individual epiphyte species was determined. Results Northern rata was host to a total of 157 species, comprising 32 vascular and 125 non‐vascular species, with liverworts representing 41% of all species. Within epiphyte mats, the average total organic biomass of 3.5 kg m?2 of branch surface area consisted largely of non‐living biomass and roots. Vascular and non‐vascular epiphytes showed strikingly different spatial patterns in species richness, biomass and composition between sites, among trees within sites, and among branches within trees, which could not be explained by the branch structural characteristics we measured. The two plant groups had no significant association in community composition (r = 0.04, P = 0.08). However, the species richness of vascular plant seedlings was strongly linked to the presence/absence of lichens. Main conclusions Non‐vascular plants contributed substantially to the high species richness and biomass recorded in this study, which was comparable to that of some tropical rain forests. High variability in community composition among epiphyte mats, and very low correlation with any of the environmental factors measured possibly indicate high levels of stochasticity in seed or spore colonization, establishment success or community assembly among branches in these canopy communities. Although we found some evidence that vascular plant seedling establishment was linked to the presence of lichens and the biomass of non‐living components in the epiphyte mats, there was no correlation in the spatial patterning or determinants of species richness between non‐vascular and vascular plants. Consequently, variation in total epiphyte biodiversity could not be predicted from the measurement of vascular plant diversity alone, which highlights the crucial importance of sampling non‐vascular plants when undertaking epiphyte community studies.  相似文献   

6.
Vascular epiphytes are a conspicuous and highly diverse group in tropical wet forests; yet, we understand little about their mineral nutrition across sites. In this study, we examined the mineral nutrition of three dominant vascular epiphyte groups: ferns, orchids, and bromeliads, and their host trees from samples collected along a 2600 m elevational gradient in the tropical wet forests of Costa Rica. We predicted that the mineral nutrition of ferns, orchids, and bromeliads would differ because of their putative differences in nutrient acquisition mechanisms and nutrient sources—atmospherically dependent, foliar feeding bromeliads would have lower nitrogen (N) and phosphorous (P) concentrations and more depleted δ15N values than those in canopy soil-rooted ferns because canopy soil is higher in available N, and more enriched in δ15N than the atmospheric sources of precipitation and throughfall. We also predicted that epiphyte foliar chemistry would mirror that of host trees because of the likely contribution of host trees to the nutrient cycle of epiphytes via foliar leaching and litter contributions to canopy soil. In the same vein, we predicted that epiphyte and host tree foliar chemistry would vary with elevation reflecting ecosystem-level nutrients—soil N availability increases and P availability decreases with increasing elevation. Our results confirmed that canopy soil-rooted epiphytes had higher N concentrations than atmospheric epiphytes; however, our predictions were not confirmed with respect to P which did not vary among groups indicating fixed P availability within sites. In addition, foliar δ15N values did not match our prediction in that canopy soil-rooted as well as atmospheric epiphytes had variable signatures. Discriminant function analysis (DFA) on foliar measurements determined that ferns, orchids, and bromeliads are statistically distinct in mineral nutrition. We also found that P concentrations of ferns and orchids, but not bromeliads, were significantly correlated with those of host trees indicating a possible link in their mineral nutrition’s via canopy soil. Interestingly, we did not find any patterns of epiphyte foliar chemistry with elevation. These data indicate that the mineral nutrition of the studied epiphyte groups are distinct and highly variable within sites and the diverse uptake mechanisms of these epiphyte groups enhance resource partitioning which may be a mechanism for species richness maintenance in tropical forest canopies.  相似文献   

7.
The composition and distribution of vascular epiphytes were studied in two 1‐ha plots in the KNUST Botanic garden, Ghana. One‐hectare plot each was randomly set up in secondary and cultivated forests for the identification and enumeration of trees and shrubs (≥10 cm dbh), and epiphytes. Each tree was carefully examined, noting the presence, positions and life‐forms of all epiphytes. Twenty‐nine epiphyte (29) species belonging to fourteen genera and eleven families were identified in the study. These were hosted by 48 tree species and occurred in three life‐forms: hemi‐epiphytes (45%), casual epiphytes (45%) and true epiphytes (10%). The vascular epiphyte species made up 25.7% of all the identified plant species (excluding herbs and climbers) encountered. Host species (P < 0.001), habitat (P = 0.001) and their interaction (P < 0.001) had strong effects on epiphyte composition in the forests. Moraceae was the most dominant family (44.8%), while Nephrolepis undulata J. Sm. and N. biserrata (Sw.) Scott. were the commonest species of epiphytes. In terms of vertical distribution, most epiphytes were located on the trunk, while a few occurred in the canopy.  相似文献   

8.
Cladophora glomerata is a widely distributed filamentous freshwater alga that hosts a complex microalgal epiphyte assemblage. We manipulated nutrients and epiphyte abundances to access their effects on epiphyte biomass, epiphyte species composition, and C. glomerata growth. C. glomerata did not grow in response to these manipulations. Similarly, nutrient and epiphyte removal treatments did not alter epiphyte biovolume. Epiphyte species composition, however, changed dramatically with nutrient enrichment. The epiphyte assemblage on unenriched C. glomerata was dominated by Epithemia sorex and Epithemia adnata, whereas the assemblage on enriched C. glomerata was dominated by Achnanthidium minutissimum, Nitzschia palea and Synedra spp. These results indicate that nutrients strongly structure epiphyte species composition. Interactions between C. glomerata and its epiphytes were not affected by epiphyte species composition in our experiment but may be when C. glomerata is actively growing.  相似文献   

9.
Vascular epiphytes are an understudied and particularly important component of tropical forest ecosystems. However, owing to the difficulties of access, little is known about the properties of epiphyte-host tree communities and the factors structuring them, especially in Asia. We investigated factors structuring the vascular epiphyte-host community and its network properties in a tropical montane forest in Xishuangbanna, SW China. Vascular epiphytes were surveyed in six plots located in mature forests. Six host and four micro-site environmental factors were investigated. Epiphyte diversity was strongly correlated with host size (DBH, diameter at breast height), while within hosts the highest epiphyte diversity was in the middle canopy and epiphyte diversity was significantly higher in sites with canopy soil or a moss mat than on bare bark. DBH, elevation and stem height explained 22% of the total variation in the epiphyte species assemblage among hosts, and DBH was the most important factor which alone explained 6% of the variation. Within hosts, 51% of the variation in epiphyte assemblage composition was explained by canopy position and substrate, and the most important single factor was substrate which accounted for 16% of the variation. Analysis of network properties indicated that the epiphyte host community was highly nested, with a low level of epiphyte specialization, and an almost even interaction strength between epiphytes and host trees. Together, these results indicate that large trees harbor a substantial proportion of the epiphyte community in this forest.  相似文献   

10.
Canopy soils can significantly contribute to aboveground labile biomass, especially in tropical montane forests. Whether they also contribute to the exchange of greenhouse gases is unknown. To examine the importance of canopy soils to tropical forest‐soil greenhouse gas exchange, we quantified gas fluxes from canopy soil cores along an elevation gradient with 4 yr of nutrient addition to the forest floor. Canopy soil contributed 5–12 percent of combined (canopy + forest floor) soil CO2 emissions but CH4 and N2O fluxes were low. At 2000 m, phosphorus decreased CO2 emissions (>40%) and nitrogen slightly increased CH4 uptake and N2O emissions. Our results show that canopy soils may contribute significantly to combined soil greenhouse gas fluxes in montane regions with high accumulations of canopy soil. We also show that changes in fluxes could occur with chronic nutrient deposition.  相似文献   

11.
The impact of human disturbance on colonisation dynamics of vascular epiphytes is poorly known. We studied abundance, diversity and floristic composition of epiphyte seedling establishing on isolated and adjacent forest trees in a tropical montane landscape. All vascular epiphytes were removed from plots on the trunk bases of Piptocoma discolor. Newly established epiphyte seedlings were recorded after 2 years, and their survival after another year. Seedling density, total richness at family and genus level, and the number of families and genera per plot were significantly reduced on isolated trees relative to forest trees. Seedling assemblages on trunks of forest trees were dominated by hygrophytic understorey ferns, those on isolated trees by xerotolerant canopy taxa. Colonisation probability on isolated trees was significantly higher for plots closer to forest but not for plots with greater canopy or bryophyte cover. Seedling mortality on isolated trees was significantly higher for mesophytic than for xerotolerant taxa. Our results show that altered recruitment can explain the long-term impoverishment of post-juvenile epiphyte assemblages on isolated remnant trees. We attribute these changes to a combination of dispersal constraints and the harsher microclimate documented by measurements of temperature and humidity. Although isolated trees in anthropogenic landscapes are considered key structures for the maintenance of forest biodiversity in many aspects, our results show that their value for the conservation of epiphytes can be limited. We suggest that abiotic seedling requirements will increasingly constitute a bottleneck for the persistence of vascular epiphytes in the face of ongoing habitat alteration and atmospheric warming.  相似文献   

12.
Because isolated trees in pasture experience greater exposure than forest trees, the epiphytes on them should be more drought and sun-tolerant. In Veracruz, Mexico, we compared the structure and nutrient content of the epiphyte community on five forest oaks (FO) in a fragment of lower montane cloud forest to that of five isolated oaks in pasture (IO). IO supported fewer epiphyte species than FO; 62.8% of the 35 epiphyte species were recorded only in one habitat (51.4% on FO and 11.4% on IO). Polypodium plebeium and Tillandsia spp. seedlings were more abundant on FO, while T. kirchhoffiana and T. punctulata were more abundant on IO. Evenness was lower on IO, which supported higher epiphyte biomass. pH, Ca, Mg, N, K, and Na concentrations were similar for FO and IO, with only Pextractable being lower on IO than FO. We concluded that when an epiphyte community is isolated (IO), the populations of some species expand while those of other diminish or disappear, a phenomenon that changes the structure of the epiphyte community becoming less even.  相似文献   

13.
Abstract

The range of microhabitats and microclimatic conditions provided by epiphytes has been linked to the high diversity of invertebrates in many forest canopies worldwide, but comparably little is known about the invertebrate fauna in this habitat in New Zealand. This study compiled an inventory of the invertebrate fauna of epiphyte mats in the canopy of northern rata (Myrtaceae: Metrosideros robusta A. Cunn.) at two study sites on the West Coast of the South Island. A total of 242 069 invertebrate specimens was collected over one year, representing 4 phyla, 9 classes and more than 160 families, 225 genera and 446 species. At least 10 new species and 3 new genera were identified, while 5 species were recorded outside their known geographical range. Epiphyte mats provided habitat for an invertebrate fauna, highly diverse and abundant both taxonomically and functionally, dominated in terms of abundance by Acari, Collembola and Hymenoptera (largely ants), and in terms of feeding guilds by epiphyte grazers and ants. As the first inventory of this taxonomic depth and breadth compiled for New Zealand forest epiphyte habitats, this study provides important baseline data for the conservation of biodiversity in New Zealand's indigenous forests.  相似文献   

14.
云南哀牢山山地湿性常绿阔叶林附生植物的多样性和分布   总被引:20,自引:3,他引:17  
附生植物对山地森林生态系统的物种多样性形成及其维持机制、生态系统的水分和养分循环等有重要作用。作者调查分析了云南哀牢山原生山地湿性常绿阔叶林 80株不同种类、不同径级乔木上附生植物种类、数量及空间分布特征,结果表明该区森林附生植物种类较为丰富。共收集到附生植物 69种,分属 33科 49属,其中维管束植物32种,苔藓植物 37种。附生维管束植物的Shannon Wiener指数和Simpson指数分别为 2. 93和 0. 91,附生苔藓植物分别为 3. 31和 0. 95。附生维管束植物中蕨类较为丰富,以棕鳞瓦韦 (Lepisorusscolopendrium)、拟书带蕨 (Vittariaflexuosoides)、柔毛水龙骨(Polypodiodesamoenavar. pilosa)等为主;附生种子植物以黄杨叶芒毛苣苔 (Aeschynanthusbuxifolius)、长叶粗筒苣苔(Briggsialongifolia)、白花树萝卜 (Agapetesmannii)等为主。该地区全年气候潮湿、温凉,使得附生苔藓植物非常丰富,主要优势种类包括东亚鞭苔 (Bazzaniapraerupta)、小叶鞭苔 (B. ovistipula)、齿边广萼苔(Chandonanthushirtellus)、树平藓 (Homaliodendronflabellatum)、刺果藓 (Symphyodonperrottetii)、青毛藓 (Dicran odontiumdenudatum)、小蔓藓(Meteoriellasoluta)、尖喙藓(Kindbergiapraelonga)等。从空间分布特点上看,  相似文献   

15.
The rain forest canopy hosts a large percentage of the world's plant biodiversity, which is maintained, in large part, by internal nutrient cycling. This is the first study to examine the effects of site (canopy, forest floor) and tree species (Dipteryx panamensis, Lecythis ampla, Hyeronima alchorneoides) on decay rates of a common substrate and in situ leaf litter in a tropical forest in Costa Rica. Decay rates were slower for both substrates within the canopy than on the forest floor. The slower rate of mass loss of the common substrate in the canopy was due to differences in microclimate between sites. Canopy litter decay rates were negatively correlated with litter lignin:P ratios, while forest floor decay rates were negatively correlated with lignin concentrations, indicating that the control of litter decay rates in the canopy is P availability while that of the forest floor is carbon quality. The slower cycling rates within the canopy are consistent with lower foliar nutrient concentrations of epiphytes compared with forest floor-rooted plants. Litter decay rates, but not common substrate decay rates, varied among tree species. The lack of variation in common substrate decay among tree species eliminated microclimatic variation as a possible cause for differences in litter decay and points to variation in litter quality, nutrient availability and decomposer community of tree species as the causal factors. The host tree contribution to canopy nutrient cycling via litter quality and inputs may influence the quality and quantity of canopy soil resources.  相似文献   

16.
Epiphytes in tree canopies make a considerable contribution to the species diversity, aboveground biomass, and nutrient pools in forest ecosystems. However, the nutrient status of epiphytes and their possible adaptations to nutrient deficiencies in the forest canopy remain unclear. Therefore, we analyzed the stoichiometry of five macroelements (C, N, P, K, and Ca) in four taxonomic groups (lichens, bryophytes, ferns, and spermatophytes) to investigate this issue in a subtropical montane moist evergreen broad‐leaved forest in Southwest China. We found that the interspecific variations in element concentrations and mass ratios were generally greater than the intraspecific variations. And there were significant stoichiometric differences among functional groups. Allometric relationships between N and P across the epiphyte community indicated that P might be in greater demand than N with an increase in nutrients. Although canopy nutrients were deficient, most epiphytes could still maintain high N and P concentrations and low N:P ratios. Moreover, ferns and spermatophytes allocated more limited nutrients to leaves than to stems and roots. To alleviate frequent drought stress in the forest canopy, vascular epiphytes maintained several times higher K concentrations in their leaves than in the tissues of lichens and bryophytes. Our results suggest that epiphytes may have evolved specific nutrient characteristics and adaptations, so that they can distribute in heterogeneous canopy habitats and maintain the stability of nutrient metabolism.  相似文献   

17.
  1. Forest canopies play a crucial role in structuring communities of vascular epiphytes by providing substrate for colonization, by locally varying microclimate, and by causing epiphyte mortality due to branch or tree fall. However, as field studies in the three‐dimensional habitat of epiphytes are generally challenging, our understanding of how forest structure and dynamics influence the structure and dynamics of epiphyte communities is scarce.
  2. Mechanistic models can improve our understanding of epiphyte community dynamics. We present such a model that couples dispersal, growth, and mortality of individual epiphytes with substrate dynamics, obtained from a three‐dimensional functional–structural forest model, allowing the study of forest–epiphyte interactions. After validating the epiphyte model with independent field data, we performed several theoretical simulation experiments to assess how (a) differences in natural forest dynamics, (b) selective logging, and (c) forest fragmentation could influence the long‐term dynamics of epiphyte communities.
  3. The proportion of arboreal substrate occupied by epiphytes (i.e., saturation level) was tightly linked with forest dynamics and increased with decreasing forest turnover rates. While species richness was, in general, negatively correlated with forest turnover rates, low species numbers in forests with very‐low‐turnover rates were due to competitive exclusion when epiphyte communities became saturated. Logging had a negative impact on epiphyte communities, potentially leading to a near‐complete extirpation of epiphytes when the simulated target diameters fell below a threshold. Fragment size had no effect on epiphyte abundance and saturation level but correlated positively with species numbers.
  4. Synthesis: The presented model is a first step toward studying the dynamic forest–epiphyte interactions in an agent‐based modeling framework. Our study suggests forest dynamics as key factor in controlling epiphyte communities. Thus, both natural and human‐induced changes in forest dynamics, for example, increased mortality rates or the loss of large trees, pose challenges for epiphyte conservation.
  相似文献   

18.
Nalini M. Nadkarni 《Oecologia》1994,100(1-2):94-97
Some of the proximate factors that would induce aboveground stems to produce adventitious roots were investigated experimentally on Senecio cooperi, a tropical cloud forest tree. Stem segments were air-layered with different treatments to promote root formation, and the number of roots initiated and rates of root growth were monitored for 20 weeks. Treatments were the application of wet epiphytes or dry epiphytes plus associated humus, sponges wetted with either water or nutrient solutions, or dry sponges. Controls (stem segments with nothing applied) were also monitored. Numbers of adventitious roots formed and rates of subsequent root growth differed among treatments. Wet epiphyte/humus and nutrient solutions were most effective in producing roots, which suggests that epiphytes and the nutrients they intercept and retain within the canopy may cue adjacent host tissue to exploit this resource.  相似文献   

19.
Conceptual models predict a unimodal effect of consumer abundance on prey diversity with the highest diversity at intermediate consumer abundance (intermediate disturbance hypothesis). Consumer selectivity and prey productivity are assumed to be further important determinants. Preferential grazing on dominant prey species favoured by high nutrient supply is supposed to increase prey diversity, whereas the effect of consumers on prey diversity may be negative under low nutrient conditions (grazer reversal hypothesis). We tested the effect of four common consumers the isopod Idotea baltica, the amphipod Gammarus oceanicus, and the gastropods Littorina littorea and Rissoa membranacea on diversity and composition of epiphytes growing on eelgrass Zostera marina. Consumer density was manipulated (four levels: grazer free control, low, medium, high) based on abundances observed in eelgrass systems. Additionally, we manipulated nutrient supply (three levels) and the presence of Idotea in a factorial experiment. The impact of consumer abundance on epiphyte diversity varied depending on consumer identity and epiphyte evenness was affected rather than species number in this short‐term experiment. Idotea reduced epiphyte diversity (Shannon‐Wiener index H') and Gammarus increased epiphyte diversity. Littorina had no effect at low and medium abundance, but a negative effect in the high density treatment. Only Rissoa supported the conceptual models as it caused the proposed unimodal pattern in epiphyte diversity. The varying species‐specific selectivity of the studied consumers is likely to explain their diverse impact on epiphyte diversity. Nutrients enhanced epiphyte diversity at medium enrichment, whereas higher nutrient supply reduced epiphyte diversity. The effect of Idotea changed from negative at low nutrient concentration to positive at higher nutrient supply, supporting the grazer reversal hypothesis. This study implies that consumer species identity and nutrient concentrations are important in controlling prey diversity and composition. Different consumer selectivity and changes in selectivity with growing consumer abundance and nutrient concentration are the causal factors for this effect.  相似文献   

20.
1. Metaphyton mats typically originate as benthic algal biofilms that experience higher solar radiation and temperatures, and reduced access to nutrients, once they reach the water surface, but the impacts of these physicochemical changes on metaphyton condition and community composition have received little attention. 2. Using microprobes positioned at 0, 2, 4 and 6 cm depth, we recorded small‐scale differences in water chemistry within metaphyton mats constrained in floating nets during an 8‐week period. Concurrent weekly samples of filamentous algae and their diatom epiphytes were collected from the top, middle and bottom of the mats and were analysed for changes in ash‐free dry mass (AFDM) and chlorophyll‐a, nutrient (N, P, C, Si) content and taxonomic composition. 3. Light intensity, temperature and dissolved oxygen declined both with increasing depth in the mat and over the study period. The autotrophic index (=AFDM/chlorophyll‐a) was greatest at the top of the mats and increased over time; samples also had higher C/P and C/N ratios than samples deeper within the mat. 4. Pithophora was consistently the dominant algal filament throughout the study (representing 85% of all filaments averaged over time and depth); epiphytic diatom cover on Pithophora (calculated as epiphyte area index) declined over time, particularly at the top of the mat. 5. Densities of the diatom epiphytes Gomphonema, Cocconeis and Fragilaria increased with increasing depth within the mat, whereas Cymbella/Encyonema was more common in surface samples. 6. Our results indicate that metaphyton mats are highly dynamic communities, spatially organised in part by small‐scale environmental variation and subject to changes in taxonomic composition following their arrival at the water surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号