首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work aims to investigate the surface activity of the biosurfactant produced by Acinetobacter baylyi ZJ2 isolated from crude oil-contaminated soil sample in China and evaluate its potential application in microbial enhanced oil recovery. The biosurfactant produced by A. baylyi ZJ2 was identified as lipopeptide based on thin-layer chromatography, Fourier transform infrared spectroscopy and nuclear magnetic resonance techniques. This biosurfactant could reduce the surface tension of water from 65 mN/m to 35 mN/m, and interfacial tension against oil from 45 mN/m to 15 mN/m. Moreover, surface activity stability results showed that this biosurfactant was effective when the salinity was lower than 8% and the pH value was 4–9, and it was especially stable when the salinity was lower than 4% and pH was 6–7. Based on the result of gas chromatography, there was a decrease in heavy components and an increase in light components, which indicated that A. baylyi ZJ2 exhibited the biodegradability on the heavy components of crude oil. Furthermore, the ability of recovering oil from oil-saturated core showed that nearly 28% additional residual oil was displaced after water flooding. The lipopeptide biosurfactant produced by A. baylyi ZJ2 presented a great potential application in microbial enhanced oil recovery process, owing its good surface activity and satisfying degradation ability to crude oil.  相似文献   

2.
An efficient biosurfactant-producing bacterium was isolated and cultured from petroleum reservoir in northeast China. Isolate was screened for biosurfactant production using haemolytic assay, Cetyl Trimethyl Ammonium Bromide agar plate assay (CTAB) and the qualitative oil-displacement test. Based on partial sequenced 16S rDNA analysis of isolate, USTBa, identified as Bacillus methylotrophicus with 100% identity. This bacterium was able to produce a type of biosurfactant with excessive foam-forming properties. The maximum biosurfactant production was obtained when the cells were grown on minimal salt medium containing 2% (v/v) crude-oil as the sole source of carbon at 35 °C and 180 rpm after 192 h. This strain had a high emulsification activity and biosurfactant production of 78% and 1.8 g/L respectively. The cell free broth containing biosurfactant could reduce the surface tension to 28 mN/m. Fourier transform infrared (FT-IR) spectrum of extracted biosurfactant indicates the presence of carboxyl, hydroxyl and methoxyl functional groups. Elemental analysis of the biosurfactant by Energy dispersive X-ray spectroscopy (EDS) reveals that the biosurfactant was anionic in nature. The strain USTBa represented as a potent biosurfactant-producer and could be useful in variety of biotechnological and industrial processes, particularly oil industry.  相似文献   

3.
We studied formation and structural features of biosurfactants produced by five oil-degrading Pseudomonas and Rhodococcus strains. These bacteria were found to be capable of intense formation of extracellular glycolipid biosurfactants when grown on mineral salts medium with 2% hexadecane. Under these conditions, the surface tension of the cultures decreased from 77 mN/m to 31–34 mN/m. The strain Rhodococcus sp. S26 forming up to 780 mg glycolipids/l of culture medium proved the most efficient biosurfactant producer. Extracellular glycolipids were purified from the crude extracts by column chromatography. Their structural features were determined by thin layer chromatography and electrospray ionization mass spectrometry. Strains Pseudomonas putida BS3701 and Pseudomonas fluorescens 142NF synthesized a number of glycolipids identified as rhamnolipid B and its homologues. Glycolipids produced by Rhodococcus sp. X5 and Rhodococcus sp. S26 were assigned to trehalose tetraesters.  相似文献   

4.
《Process Biochemistry》2010,45(9):1511-1516
The properties and applications of rhamnolipid surfactants produced by Pseudomonas aeruginosa L2-1 from cassava wastewater added with waste cooking oil (CWO) as low-cost substrate, were investigated and compared with the commercial rhamnolipid mixture JBR599 (Jeneil Biosurfactant Co., Saukville, USA). The rhamnolipids produced by strain L2-1 were characterized by high performance liquid chromatography–mass spectrometry. Sixteen different rhamnolipid congeners were detected, with Rha-C10-C10 and Rha-Rha-C10-C10 being the most abundant. The L2-1 rhamnolipids from CWO showed similar or better tensioactive properties than those from JBR599, with a minimal surface tension of 30 mN/m and a critical micelle concentration (CMC) of 30 mg/l. The L2-1 biosurfactants formed stable emulsions with several hydrocarbons and showed excellent emulsification of soybean oil (100%). These rhamnolipids removed 69% of crude oil present in contaminated sand samples at the CMC and presented antimicrobial activity against Bacillus cereus (32 μg/ml), Micrococcus luteus (32 μg/ml) and Staphylococcus aureus (128 μg/ml). These results demonstrate that the rhamnolipids produced in CWO can be useful for industrial applications, such as the bioremediation of oil spills.  相似文献   

5.
A biosurfactant-producing strain S6 was isolated from oil-containing wastewater and identified as Pseudomonas aeruginosa based on physiological and biochemical tests together with 16S rDNA sequence analysis. Thin layer chromatography (TLC) and high-performance liquid chromatography electrospray ionization mass spectra (HPLC-ESI-MS) worked together to reveal that the strain S6 produced rhamnolipid biosurfactant. Mass spectrometry confirmed the presence of some major components in the rhamnolipid surfactant showing m/z of 675.8, 529.6, 503.3 and 475.4, which corresponded to RhaRhaC10C12:1, RhaC12:1C10, RhaC10C10 and RhaC8C10, respectively. The biosurfactant produced by strain S6 had the ability to decrease the surface tension of water from 72 to 33.9 mN m?1, with the critical micelle concentration (CMC) of 50 mg L?1. Emulsification experiment indicated that this biosurfactant effectively emulsified the crude petroleum and the measurements of surface tension demonstrated that the biosurfactant possessed stable surface activity at variable ranges of pH and salinity. The biosurfactant also exhibited good performance of phenanthrene solubilization with about 23 times higher solubility of phenanthrene in water than the control. Thus, this biosurfactant may have a potential for application in bioremediation of crude oil contamination.  相似文献   

6.
《Process Biochemistry》2007,42(4):518-526
An alkaline lipase from Burkholderia multivorans was produced within 15 h of growth in a 14 L bioreactor. An overall 12-fold enhanced production (58 U mL−1 and 36 U mg−1 protein) was achieved after medium optimization following the “one-variable-at-a-time” and the statistical approaches. The optimal composition of the lipase production medium was determined to be (% w/v or v/v): KH2PO4 0.1; K2HPO4 0.3; NH4Cl 0.5; MgSO4·7H2O 0.01; yeast extract 0.36; glucose 0.1; olive oil 3.0; CaCl2 0.4 mM; pH 7.0; inoculum density 3% (v/v) and incubation time 36 h in shake flasks. Lipase production was maximally influenced by olive oil/oleic acid as the inducer and yeast extract as the additive nitrogen. Plackett–Burman screening suggested catabolite repression by glucose. Amongst the divalent cations, Ca2+ was a positive signal while Mg2+ was a negative signal for lipase production. RSM predicted that incubation time, inoculum density and oil were required at their higher levels (36 h, 3% (v/v) and 3% (v/v), respectively) while glucose and yeast extract were required at their minimal levels for maximum lipase production in shake flasks. The production conditions were validated in a 14 L bioreactor where the incubation time was reduced to 15 h.  相似文献   

7.
Twenty three morphologically distinct microbial colonies were isolated from soil and sea water samples, which were collected from Jeddah region, Saudi Arabia for screening of the most potent biosurfactant strains. The isolated bacteria were selected by using different methods as drop collapse test, oil displacement test, blue agar test, blood hemolysis test, emulsification activity and surface tension. The results showed that the ability of Virgibacillus salarius to grow and reduce surface tension under a wide range of pH, salinities and temperatures gives bacteria isolate an advantage in many applications such as pharmaceutical, cosmetics, food industries and bioremediation in marine environment. The biosurfactant production by V. salarius decreased surface tension and emulsifying activity (30 mN/m and 80%, respectively). In addition to reducing the production cost of biosurfactants by tested several plant-derived oils such as jatropha oil, castor oils, jojoba oil, canola oil and cottonseed oil. In this respect the feasibility to reusing old frying oil of sunflower for production rhamnolipids and sophorolipids, their use that lead to solve many ecological and industrial problems.  相似文献   

8.
A stirred tank bioreactor (STB) integrated with an expanded bed adsorption (EBA) system containing anion-exchange resin (Diaion WA30) was developed for in situ removal of acetate to increase the production of α-interferon-2b (α-PrIFN-2b) by Escherichia coli (E. coli). Although the total acetate (9.79 g/L) secreted by E. coli in the integrated STB/EBA system was higher than that in a bioreactor with dispersed resin or a conventional batch bioreactor, cell growth (14.97 g/L) and α-PrIFN-2b production (867.4 μg/L) were significantly improved owing to the high efficiency of acetate removal from the culture. The production of α-PrIFN-2b in the integrated STB/EBA system was improved by 3-fold and 1.4-fold over that obtained in a conventional batch bioreactor and a bioreactor containing dispersed resins, respectively.  相似文献   

9.
We investigated the production of chitosan oligosaccharides by continuous hydrolysis of chitosan in an enzyme membrane bioreactor, with the goal of improving the yield of physiologically active oligosaccharides (pentamers and hexamers) and achieving operational stability. The bioreactor was a continuous-flow stirred-tank reactor equipped with an ultrafiltration membrane with a molecular weight cut-off of 2000 Da, and the hydrolysis was accomplished with chitosanase from Bacillus pumilus. After optimization of the reaction parameters, such as the amount of enzyme, the yield of the target oligosaccharides produced in the membrane bioreactor with free chitosanase reached 52% on the basis of the fed concentration of chitosan. An immobilized chitosanase prepared by the multipoint attachment method was used to improve the operational stability of the membrane bioreactor. Under the optimized conditions, pentameric and hexameric chitosan oligosaccharides were steadily produced at 2.3 g/L (46% yield) for a month. The half-life of the productivity of the reactor was estimated to be 50 d under the conditions examined.  相似文献   

10.
《Process Biochemistry》2007,42(6):1010-1020
Acid hydrolysis of distilled grape marc, an useless agricultural residue from wineries, was carried out using dilute sulfuric acid (1–5%) at several reaction times and 130 °C, in order to obtain monomeric sugars which after supplementation with corn steep liquor (10 g/L) and yeast extract (10 g/L) were used to carry out the fermentation into lactic acid by Lactobacillus pentosus without detoxification stage. Xylose was the main sugar generated followed by glucose and arabinose. Possible inhibitor compounds such as acetic acid liberated from acetyl groups, and furfural and hydroxymethylfurfural generated by sugars dehydration, were produced as degradation byproducts. The hydrolysis stage was optimized by using an incomplete factorial design where the independent variables were the percentage of catalyzer, the reaction time and the temperature. The optima conditions in terms of xylose concentration were 3.3% H2SO4, 125 min and 130 °C, but due to the high furfural concentration, two other conditions using lower reaction times (30 and 77.5 min) were also selected to assay the fermentation. Although any condition was feasible to fully utilize the relatively broad spectra of sugars released by the acid hydrolysis, under the shorter reaction time the best results were achieved (QP = 0.476 g/L h; YP/S = 0.71 g/g) which represents a theoretical yield of 97%. Furthermore, L. pentosus produced 4.8 mg/L of intracellular biosurfactants, measured as biosurfactin, representing a yield of 0.60 mg of intracellular biosurfactant per g of sugars consumed.  相似文献   

11.
Burkholderia sp. C20 strain isolated from food wastes produces a lipase with hydrolytic activities towards olive oil. Fermentation strategies for efficient production of this Burkholderia lipase were developed using a 5-L bench top bioreactor. Critical factors affecting the fermentative lipase production were examined, including pH, aeration rate, agitation rate, and incubation time. Adjusting the aeration rate from 0.5 to 2 vvm gave an increase in the overall lipase productivity from 0.057 to 0.076 U/(ml h), which was further improved to 0.09 U/(ml h) by adjusting the agitation speed to 100 rpm. The production of Burkholderia lipase followed mixed growth-associated kinetics with a yield coefficient of 524 U/g-dry-cell-weight. The pH optimum for cell growth and lipase production was different at 7.0 and 6.0, respectively. Furthermore, stepwise addition of carbon substrate (i.e., olive oil) enhanced lipase production in both flask and bioreactor experiments.  相似文献   

12.
The aim of this study was to investigate the productive traits and fatty acid profiles of eight sweet varieties of Lupinus albus, Lupinus angustifolius and Lupinus luteus cultivated in a Mediterranean environment (Sicily, southern Italy). This is being done to identify the most suitable species, from an agronomical and nutritional point of view, for supporting animal husbandry in this area. Seed yield, oil quantity and oil quality were considerably different depending on the genotype. L. albus showed the highest yield (2.0–2.4 t/ha), 100 seed weight (27.0 g, on average), oil content (70.4–75.5 g/kg), and n?3/n?6 polyunsaturated fatty acid ratio (0.39–0.51), L. angustifolius showed the highest content of saturated fatty acids (21.03–26.66 g/100 g) and L. luteus showed the highest levels of n?6 polyunsaturated fatty acids (47.56–50.85 g/100 g), unsaturated/saturated (4.93–5.62) and polyunsaturated/saturated (3.33–3.99) fatty acid ratios and the best atherogenic (0.06) and thrombogenic (0.09–0.11) indices. The data obtained suggests L. albus as the most interesting lupin species for aiding the crop-livestock food chain and L. luteus as a promising crop due to its high nutritive traits for the Mediterranean environment.  相似文献   

13.
The possibility of using in situ addition of anion-exchange resin for the removal of acetate in the culture aimed at improving growth of E. coli and expression of periplasmic human interferon-α2b (PrIFN-α2b) was studied in shake flask culture and stirred tank bioreactor. Different types of anion-exchange resin were evaluated and the concentration of anion-exchange resin was optimized using response surface methodology. The addition of anion-exchange resins reduced acetate accumulation in the culture, which in turn, improved growth of E. coli and enhanced PrIFN-α2b expression. The presence of anion-exchange resins did not influence the physiology of the cells. The weak base anion-exchange resins, which have higher affinity towards acetate, yielded higher PrIFN-α2b expression as compared to strong anion-exchange resins. High concentrations of anion-exchange resin showed inhibitory effect towards growth of E. coli as well as the expression of PrIFN-α2b. The maximum yield of PrIFN-α2b in shake flask culture (501.8 μg/L) and stirred tank bioreactor (578.8 μg/L) was obtained at ion exchange resin (WA 30) concentration of 12.2 g/L. The production of PrIFN-α2b in stirred tank bioreactor with the addition of ion exchange resin was about 1.8-fold higher than that obtained in fermentation without ion exchange resin (318.4 μg/L).  相似文献   

14.
《Small Ruminant Research》2009,82(2-3):119-125
This study was conducted to test the hypothesis that the supplementation of a high-concentrate diet with lipids, reportedly a good strategy for improving the nutritional value of ruminant-derived products, may not necessarily be associated with detrimental effects on ruminal fermentation in sheep. Four ruminally cannulated adult ewes were fed a high-concentrate diet, with no oil (Control diet), for a 14-day adaptation period. Afterwards, they were fed the same basal diet but supplemented with sunflower oil [20 g/kg fresh matter (FM)] and fish oil (10 g/kg FM) (SOFO diet) for a further 11 days, to investigate the impact of the addition of oils on the ruminal fermentation of the diet. On days 0 (Control), 3 and 10 of the experimental period rumen fluid was sampled at 0, 1.5, 3, 6 and 9 h after the morning feeding, for analysis of pH, and ammonia, lactate and total volatile fatty acid (VFA) concentrations. Alfalfa hay was incubated in situ, using the nylon bag technique, for 12 and 24 h to examine the effect of oil supplementation on ruminal disappearance of dry matter (DM), crude protein (CP) and neutral-detergent fibre (NDF). On days 0 and 11, rumen fluid was collected just before the morning feeding and used to incubate alfalfa hay and the Control and SOFO diets by means of the in vitro gas production technique. The mean concentrations of acetate (87.8 mmol/L vs. 73.7 mmol/L) and butyrate (21.2 mmol/L vs. 17.7 mmol/L) were reduced by oil supplementation (P < 0.05) and the total VFA showed a tendency (P = 0.098) to be lower with the SOFO diet (139.0 mmol/L vs. 122.1 mmol/L). However, none of the other in vivo ruminal fermentation parameters were affected by the treatment (P > 0.10). The oil supplementation affected neither in situ rumen disappearance of DM, CP and NDF of alfalfa hay, nor rates of gas production (P > 0.10). On the other hand, a little, but significant reduction in cumulative gas production was observed when the experimental diets were incubated with rumen fluid derived from animals fed the oil-rich diet (P < 0.05).Overall, the results suggest that the supplementation of high-concentrate diets with sunflower oil (20 g/kg FM) plus fish oil (10 g/kg FM) had little effect on ruminal fermentation and therefore its use to improve the nutritional value of ruminant-derived products cannot be precluded.  相似文献   

15.
Bio-leaching studies were carried out in a 2 L bioreactor- BIOSTAT-B® equipped with a PLC based controller at 20–40% (w/v) pulp density using enriched culture of A.ferrooxidans for Turamdih uranium ore (Jharkhand, India). With the enriched culture of A.ferrooxidans adapted on Fe(II) at pH 2.0, 35 °C and 20% (w/v) pulp density, a 98.3% uranium recovery was recorded in 14 days. The leaching of uranium in the bioreactor improved the dissolution rate by reducing the time from 40 days in shake flask as per our earlier studies to 14 days. While investigating the importance of biogenic Fe(III) in the bio-leaching process a maximum recovery of 84.7% U3O8 was observed at pH 2.0 and 20% (w/v) pulp density in 10 h as compared to the uranium leaching of 38.3% in the control experiments. On raising the pulp density to 30%, uranium bio-recovery increased to 87.6% in 10 h at pH 2.0 with <76 μm size material. This showed a distinct advantage because of better mixing of slurry in the bioreactor with auto-controlled conditions that improved the kinetics.  相似文献   

16.
Succinic acid (SA) was produced from Actinobacillus succinogenes with high cell density by continuous fermentation using fibrous bed bioreactor (FBB). The effects of feeding glucose concentration, dilution rate, and pH on continuous production of SA were examined to achieve an efficient and economical bioprocess. The optimum feeding glucose concentration, dilution rate, and pH were 80 g/L, 0.05 1/h, and 6.0–6.5, respectively. A SA concentration of 55.3 ± 0.8 g/L, productivity of 2.77 ± 0.04 g/L/h, and yield of 0.8 ± 0.02 g/g were obtained, and the continuous fermentation exhibited long-term stability for as long as 18 days (440 h) with no obvious fluctuations in both SA and biomass levels. The Jerusalimsky equation for the specific rate of SA production presented the inhibition phenomenon of the product, demonstrating that 60 g/L SA might be a critical concentration in this continuous FBB system. The results obtained could be beneficial for future fermentor designs and improvements in SA production.  相似文献   

17.
《Harmful algae》2010,9(6):857-863
Biosurfactants have been suggested as a method to control harmful algal blooms (HABs), but warrant further and more in-depth investigation. Here we have investigated the algicidal effect of a biosurfactant produced by the bacterium Pseudomonas aeruginosa on five diverse marine and freshwater HAB species that have not been tested previously. These include Alexandrium minutum (Dinophycaee), Karenia brevis (Dinophyceae), Pseudonitzschia sp. (Bacillariophyceae), in marine ecosystems, and Gonyostomum semen (Raphidophyceae) and Microcystis aeruginosa (Cyanophyecae) in freshwater. We examined not only lethal but also sub-lethal effects of the biosurfactant. In addition, the effect of the biosurfactant on Daphnia was tested. Our conclusions were that very low biosurfactant concentrations (5 μg mL−1) decreased both the photosynthesis efficiency and the cell viability and that higher concentrations (50 μg mL−1) had lethal effects in four of the five HAB species tested. The low concentrations employed in this study and the diversity of HAB genera tested suggest that biosurfactants may be used to either control initial algal blooms without causing negative side effect to the ecosystem, or to provoke lethal effects when necessary.  相似文献   

18.
《Process Biochemistry》2014,49(9):1377-1382
Decalactones are interesting flavouring compounds that can be produced from ricinoleic acid. In this study, the production of lactones in biofilms using Yarrowia lipolytica is investigated. The hydrophobia of cells increased for increased aeration rates resulting in higher adhesion when the reactor wall was hydrophobic (plastic). To increase adhesion, sheets of methyl-polymethacrylate (PMMA) were added in the reactor and the production of lactones increased with the surface of plastic added, reaching 850 mg/L of 3-hydroxy-γ-decalactone for 60 cm2. In an Airlift bioreactor made of PMMA, biofilms were present at the top of the reactor for increased aeration. In the meantime, a metabolic shift occurred resulting in high amounts of 3-hydroxy-γ-decalactone. At 0.493 vvm and 61 h of culture, the dissolved oxygen ratio was of 28.6% and cells grew to only 1.29 × 106 cells/mL in the liquid medium but 3-hydroxy-γ-decalactone accumulated to 1.7 g/L instead of less than 0.3 mg/L for lower aeration. Adhering cells had a particular elongated shape intermediate between the yeast and the pseudofilamentous forms. It is concluded that adhering Y. lipolytica cells are in a specific physiological state changing their structure but also their metabolic properties and these properties make them good candidate for simple immobilisation process.  相似文献   

19.
Hypericum perforatum L. (St. John’s wort, SJW) is a traditional medicinal plant with a long history of pharmaceutical application. Today, besides formulations based on hydro-alcoholic extracts, lipophilic SJW preparations are widely used in phytomedicine e.g. for the symptomatic treatment of minor inflammations of the skin and subcutaneous tissue disorders. In the present study, SJW extracts were obtained with twelve different fatty oils according to a standardized protocol. In order to evaluate and compare the resulting macerates, a set of analytical parameters was chosen: the phytochemical profile of SJW oil extracts comprising acylphloroglucinol derivatives, flavonols, biflavones and naphthodianthrones was assessed using UHPLC-DAD and UV/VIS-spectroscopic methods Furthermore, overall appearance was monitored applying the CIE L*a*b* color system. Depending on the type of oil applied for extraction, a*-values, which are a measure of red color hues, ranged from 50.3 ± 0.2 (almond oil) to −3.8 ± 0.3 (macadamia nut oil). Considering total hypericin contents, extraction with almond oil also brought about highest amounts (5.5 ± 0.21 mg/100 g). In contrast, preparations with macadamia nut oil resulted in highest contents of hyperforin and adhyperforin, whereas a semi-synthetic extractant composed of medium-chain triglycerides (MCT) revealed highest yields of flavonoids, i.e. quercetin, kaempferol and I3, II8-biapigenin. Since the phytochemical composition and the corresponding specific characteristics of SJW oil preparations markedly differed, tailor-made SJW extracts may be prepared by systematic adaption of the manufacturing conditions, including the choice of a specific fatty oil. Additionally, SJW oil extracts were stored under different temperature (5 °C, 20 °C, 50 °C) and light (artificial light, darkness) regimes over a period of six months to evaluate their respective storage stability. For maximizing the retention of the investigated plant secondary metabolites in the corresponding oil extracts, cold storage (5 °C) under the exclusion of light is recommended.  相似文献   

20.
This paper reports development and implementation of superior fermentation strategies for β-galactosidase production by Lactobacillus acidophilus in a stirred-tank bioreactor. Process parameters (aeration and agitation) were optimized for the process by application of Central Composite Design. Aeration rate of 0.5 vvm and agitation speed of 250 rpm were most suitable for β-galactosidase production (2001.2 U/L). Further improvement of the operation in pH controlled environment resulted in 2135 U/L of β-galactosidase with productivity of 142.39 U/L h. Kinetic modeling for biomass and enzyme production and substrate utilization were carried out at the aforementioned pH controlled conditions. The logistic regression model (X0 = 0.01 g/L; Xmax = 2.948 g/L; μmax = 0.59/h; R2 = 0.97) was used for mathematical interpretation of biomass production. Mercier's model proved to be better than Luedeking–Piret model in describing β-galactosidase production (P0 = 0.7942 U/L; Pmax = 2169.3 U/L; Pr = 0.696/h; R2 = 0.99) whereas the latter was more efficient in mathematical illustration of lactose utilization (m = 0.187 g/g h; Yx/s = 0.301 g/L; R2 = 0.98) among the two used in this study. Strategies like fed-batch fermentation (3694.6 U/L) and semi-continuous fermentation (5551.9 U/L) further enhanced β-galactosidase production by 1.8 and 2.8 fold respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号