首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 684 毫秒
1.
The effects on leaf age on K (86Rb) efflux, influx and net fluxinto lamina slices from leaf 7 on a tomato plant (Lycopersiconesculentum Mill.) were determined. The ontogenetic trend inK efflux was dependent on the external K concentration. At externalKCI concentrations between 0.5 and 10.0 mM, K efflux rates increasedduring leaf elongation. Only a small increase in efflux occurredin mature leaves with increasing age. It is suggested that thetonoplast retains its structural integrity through the initialstages of leaf senescence. In fully expanded leaves, a zeronet K flux (a balance between influx and efflux) was achievedat external KCI concentrations between 1.0 and 3.5 mM. The Kcontent of lamina slices from leaves 5 and 13 remained constantwhen bathed in a solution containing 2 to 3 mM K. It is suggestedthat the decline in K concentration in mature tomato leaf tissueis due to a decline in leaf free space K concentrations below1 to 3 mM which would result in a net efflux out of leaf cells. Lycopersicon esculentum Mill., tor ato, free space, ion fluxes, leaf age, leaf ontogeny, potassium  相似文献   

2.
HO  L. C. 《Annals of botany》1976,40(6):1153-1162
The rate of carbon transport from an old tomato leaf (54 days),grown at 80 W m–2, was measured under light flux densitiesbetween 7 and 90 W m–2. Under low light, the rate of carbontransport over a 6 h period was about 1 mg C dm–2 h–1,well in excess of the concurrent photosynthetic rate. The lossfrom these leaves of 14C-leaf assimilate which was fixed beforethe experimental period amounted to 62 per cent of the totalinitial uptake and was higher than that from leaves with higherconcurrent photosynthetic rates. The higher loss of 14C fromleaves with low photosynthetic rates was due to a greater contributionof 14C from the starch and residue fractions. The rate of transportappeared to be determined by the concentration of the labilesucrose, not the total sucrose concentration. In comparisonwith young fully-expanded tomato leaves (Ho, 1976) the sizeof the labile sucrose pool appeared to decrease with age. Thephotosynthesistranslocation coefficient was low (k1k2=0•21)for an old tomato leaf. Based on these results a scheme of carbonpartitioning in relation to translocation is proposed. Criteriafor assessing the efficiency of translocation in leaves arediscussed.  相似文献   

3.
Nitrate Accumulation and its Relation to Leaf Elongation in Spinach Leaves   总被引:6,自引:0,他引:6  
The leaf elongation rate (LER) of spinach leaves during theday was twice that during the night when grown at a photon fluxdensity of 145 µmol m–2 s–1. All leaves showedthe same LER-pattern over 24 h. Due to low turgor, LER was lowin the afternoon and in the first hours of the night until wateruptake restored full turgor. Osmotic potential remained constantdue to increased nitrate uptake and starch degradation in thisperiod. LER increased to high rates in the second part of thenight and in the morning. The lower rate in the dark comparedto the light was not caused by the lower night temperatures,as increased photon flux density during growth resulted in equalrates in the light and the dark. Increased relative humiditydecreased LER and afternoon rates were most sensitive to waterstress. A ‘low light’ night period did not changeLER-pattern during the night or on the following day. We concludethat nitrate is not an obligatory osmoticum during the nightand can be exchanged for organic osmotica without decreasingLER. During the night the turgor is first restored by increasingwater uptake, nitrate uptake and starch degradation. This resultedin increased leaf fresh weight in this period. Thereafter, elongationincreased by simultaneous uptake of nitrate and water. Nitrateconcentration was, therefore, constant in the older leaves.In the younger leaves nitrate concentration increased to replacesoluble carbohydrates. The vacuoles of the old leaves were filledwith nitrate before those of the young leaves. Key words: Spinacia oleracea L., nitrate accumulation, osmotic potential, organic acids  相似文献   

4.
Hordeum vulgare cv. California Mariout was established in sandculture at two different NaCl concentrations (0.5 mol m–3‘control’ and 100 mol m–3) in the presenceof 6.5 mol m–3 K +. Between 16 and 31 d after germination,before stem elongation started, xylem sap was collected by useof a pressure chamber. Collections were made at three differentsites on leaves 1 and 3: at the base of the sheath, at the baseof the blade, i.e. above the ligule, and at the tip of the blade.Phloem sap was collected from leaf 3 at similar sites throughaphid stylets. The concentrations of K +, Na+, Mg2+ and Ca2+were measured. Ion concentrations in xylem sap collected at the base of leaves1 and 3 were identical, indicating there was no preferentialdelivery of specific ions to older leaves. All ion concentrationsin the xylem decreased from the base of the leaf towards thetip; these gradients were remarkably steep for young leaves,indicating high rates of ion uptake from the xylem. The gradientsdecreased with leaf age, but did not disappear completely. In phloem sap, concentrations of K+ and total osmolality declinedslightly from the tip to the base of leaves of both controland salt-treated plants. By contrast, Na+ concentrations inphloem sap collected from salt-treated plants decreased drasticallyfrom 21 mol m–3 at the tip to 7.5 mol m–3 at thebase. Data of K/Na ratios in xylem and phloem sap were used to constructan empirical model of Na+ and K+ flows within xylem and phloemduring the life cycle of a leaf, indicating recirculation ofNa+ within the leaf. Key words: Hordeum vulgare, xylem transport, phloem transport, NaCl-stress  相似文献   

5.
STEER  B. T. 《Annals of botany》1971,35(5):1003-1015
In Capsicum frutescens L. cv. California Wonder the specificleaf weight (dry weight per unit laminar area) at leaf unfoldingis three times higher in the eighth leaf than in the first leafproduced. Intermediate leaves exhibit a trend between the twoThe change in specific leaf weight during laminar expansionis greatest in leaf 1 and least (sometimes zero) in leaf 8.Large changes in specific leaf weight during laminar expansionare associated with a large degree of palisade cell expansion,while leaves showing smaller rates of change have less palisadecell expansion but cell division is more evident. At leaf unfoldingthe fraction I protein content per unit laminar area is higherin upper than in lower leaves. Ribulose diphosphate carboxylaseactivity per unit laminar area and 14CO2 fixation per unit laminararea have a similar pattern of development in all leaves andshow no correlation with the changes in specific leaf weight.The peak of activity in all leaves occurs when the laminar areais 10 cm2. These results are compared with previous data onlaminar expansion and are seen as in accord with current ideason leaf growth.  相似文献   

6.
Relationships between Photosynthesis and Light Intensity in the Tomato   总被引:1,自引:0,他引:1  
PEAT  W. E. 《Annals of botany》1970,34(2):319-328
Curves were fitted to the rates of CO2 uptake (P) of singleleaves of tomato against light intensity (I). It was shown thatan asymptotic curve of the form P = abpI gave a consistentlybetter fit to the observed data than the rectangular hyperbola.Saturating rates of photosynthesis, estimated as the asymptoteof the curve, showed marked changes with leaf age, being maximalat or shortly after the start of the experiment, in small rapidlyexpanding leaves, and falling continuously thereafter. Photochemicalefficiency, measured as the slope of the curve at zero lightintensity, gave no discernable trends with time except in visiblysenescent leaves, when the value decreased appreciably.  相似文献   

7.
Microswards of white clover (Trifolium repens L.) were grownin controlled environments at 10/7, 18/13 and 26/21 °C day/nighttemperatures. The vertical distribution of leaves of differentages and their rates of 14CO2-uptake in situ were studied. Extending petioles carried the laminae of young leaves throughthe existing foliage. A final position was reached within 1/4to 1/3 of the time between unfolding and death. Newly unfoldedleaves had higher rates of 14CO2-uptake per leaf area than olderones at the same height in the canopy. At higher temperatures,the decrease with age was faster. However, the light-photosynthesisresponse of leaves which were removed from different heightsin the canopy varied much less with leaf age than did the ratesof 14CO2-uptake in situ. The comparison of the rates of 14CO2-uptake in situ with thelight-photosynthesis response curves suggests that young leavesreceive more light than older ones at the same height in thecanopy. This would imply that young white clover leaves havethe ability to reach canopy positions having a favourable lightenvironment. This ability may improve the chances of survivalof white clover in competition with other species. Trifolium repens L., white clover, photosynthesis, canopy, leaf age, 14CO2-uptake, ecotypes, temperature  相似文献   

8.
Patterns of distribution of 14C were determined in 47-day-oldtomato plants (Lycopersicon esculentum Mill.) 24 h after theapplication of [14C]sucrose to individual source leaves fromleaves 1–10 (leaf 1 being the first leaf produced abovethe cotyledons). The first inflorescence of these plants wasbetween the ‘buds visible’ and the ‘firstanthesis’ stages of development. The predominant sink organs in these plants were the root system,the stem, the developing first inflorescence and the shoot ‘apex’(all tissues above node 10). The contribution made by individualsource leaves to the assimilate reaching these organs dependedupon the vertical position of the leaf on the main-stem axisand upon its position with respect to the phyllotactic arrangementof the leaves about this axis. The root system received assimilateprincipally from leaf 5 and higher leaves, and the stem apexfrom the four lowest leaves. The developing first inflorescencereceived assimilates mainly from leaves in the two orthostichiesadjacent to the radial position of the inflorescence on thevertical axis of the plant; these included leaves which weremajor contributors of 14C to the root system (leaves 6 and 8)and to the shoot apex (leaves 1 and 3). This pattern of distributionof assimilate may explain why root-restriction treatments andremoval of young leaves at the shoot apex can reduce the extentof flower bud abortion in the first inflorescence under conditionsof reduced photoassimilate availability. Lycopersicon esculentum Mill, tomato, assimilate distribution, source-sink relationships  相似文献   

9.
Wolterbeek, H. Th. and De Bruin, M. 1986. Xylem and phloem importof Na+, K+ , Rb+, Cs+ and in tomato fruits: differential contributions from stem and leaf.—J.exp. Bot. 37: 928–939. The transport of Na+, K+, Rb+, Cs+ and into developing fruits of tomato (an inbred lineof Lycopersicon esculentum Mill. cv. Tiny Tim) was measured.Element solutions were introduced into the transpiration streamthrough the cut stem bases of plant parts consisting of a stempart with single green fruit, both with and without attachedfully expanded leaf. Measurements were carried out of the accumulationin the fruit of the gamma-ray emitting radiotracers 24Na+, 42K+,86Rb+, 134Cs+ and The transport into the fruit was expressed by a single parameter taking intoaccount volume flows varying with time and experiments. Xylemto phloem transfer in the stem as a source of fruit elementsupply was shown to be inversely related with the velocity offlow of the stem xylem. The results also indicated that thetransfer system in the stem was more rapidly equilibrated thanit was in the leaf. Stem loading of the phloem is suggested as a possible mechanismregulating the solute influx in fruits under varying flow velocitiesof the stem xylem, while fruit influx of phloem solutes, whichwere loaded in the leaf, may play a major role in influx regulationunder conditions of varying solute concentrations. Key words: Alkali ions, tomato fruits, stem and leaf phloem loading  相似文献   

10.
The main objective of this study was to determine the relationshipbetween the relative rate of growth of emerging wheat leavesand the hexose sugar concentration of the extension zone. Shortperiods of intense shading (to 20 or 5% of full sun for up to14 d) were used to decrease hexose concentrations. Shading decreased hexose concentrations to a fraction of thatof controls and also resulted in thin and narrow leaves thatwere less in dry weight than control leaves of the same length.Shading did however increase the length of the zone of extendingtissue at the leaf base by 30%. The effect of hexose concentrations on the relative rate ofleaf growth was evaluated by determining the ratio between growthrates of shaded and control leaves. This ratio declined as hexoseconcentrations declined and the relationship was described bya rectangular hyperbola (r > 0.95, P < 0.01). Combineddata from many leaves on the main shoot and its tillers fromtwo irrigated wheat crops all conformed to the same relationship.The hexose concentrations where the ratio of growth rates washalf the maximum rate were 0.42 mg g–1 fr. wt. for extensiongrowth and 1.74 mg g–1 fr. wt. for dry weight growth.These values were significantly (P < 0.01) different. These results were compared with data from emerging leaves offield crops and it was concluded that hexose concentrationshad not limited leaf growth rates, the lowest values recordedbeing 2.5–3.0 mg g–1 fr. wt. It was further suggestedas unlikely that leaf growth rates of wheat crops in the fieldwould be limited by hexose concentrations.  相似文献   

11.
VOS  J; BIEMOND  H 《Annals of botany》1992,70(1):27-35
Potatoes (Solanum tuberosum L) were planted in pots in a temperature-controlledglasshouse to collect data on the rate of leaf apearance, leafexpansion, apical lateral branching and active life spans ofleaves The treatments consisted of three rates of nitrogen supply,i e the NI treatment with 2 5 g N per pot and the N2 and N3treatments with 8 and 16 g N per pot, respectively The rate of leaf appearance was 0·53 leaves d–1(one leaf per 28 °C d) and was negligibly affected by nitrogensupply The rate of leaf expansion was related to leaf numberand nitrogen supply The areas of mature leaves increased withleaf number on the main stem to reach a maximum for leaf numbers12–14, and declined for higher leaf numbers Leaves onapical lateral branches declined in mature area with increasein leaf number The expansion rate of leaves was the dominantfactor that determined the mature leaf area, irrespective ofleaf number and nitrogen treatment The smallest leaves wereobserved at the lowest rate of nitrogen supply Nitrogen promotedapical branching and hence the total number of leaves that appearedon a plant The proportion of total leaf area contributed byleaves on apical branches increased with time and nitrogen supply Active life span, i e the period of time between leaf appearanceand yellowing of the leaf, showed a similar relation to leafnumber as mature leaf area, at least in qualitative terms Leavesof the N3 treatment showed systematically longer life spansthan leaves of the NI and N2 treatment in the order of 3 weeksThe number of main stem leaves was not affected by nitrogensupply Potato, Solanum tuberosum L, leaf development, leaf extension, plant structure, nitrogen nutrition  相似文献   

12.
Much of the work on the distribution of 14C-labelled assimilatesin tomato has been done in winter under low light intensities,and consequently the reported distribution patterns of 14C maynot be representative of plants growing in high light. Further,there are several somewhat conflicting reports on patterns ofdistribution of 14C-assimilates in young tomato plants. We soughtto clarify the situation by studying the distribution of 14C-assimilatesin tomato plants of various ages grown in summer when the lightintensity was high. In addition, the role of the stem as a storageorgan for carbon was assessed by (a) identifying the chemicalfractions in the stem internode below a fed leaf and monitoring14 C activity in these fractions over a period of 49 d, and(b) measuring concentrations of unlabelled carbohydrates inthe stem over the life of the plant. The patterns of distribution of 14C-assimilates we found fortomato grown under high light intensity confirmed some of thosedescribed for plants grown under low light, but export of 14Cby fed leaves was generally higher than reported for much ofthe earlier work. Lower leaves of young plants exported over50% of the 14C they fixed, although export fell sharply as theplants aged. Initially, the roots and apical tuft were strongsinks for assimilates, but they had declined in importance bythe time plants reached the nine-leaf stage. On the other hand,the stem became progressively more important as a sink for 14C-assimilates.Older, lower leaves exported more of their 14C-assimilates tothe upper part of the plant than to the roots, whereas youngleaves near the top of the plant exported more of their assimilatesto the roots. The stem internode immediately below a fed leafhad about twice the 14C activity of the internode above theleaf. Mature leaves above and below a fed leaf rarely importedmuch 14C, even when in the correct phyllotactic relationshipto the fed leaf. In the first 3 d after feeding leaf 5 of nine-leaf plants, theorganic and amino acid pools and the neutral fraction of theinternode below the fed leaf had most of the 14C activity, butby 49 d after feeding, the ethanolic-insoluble, starch and lipidfractions had most of the 14C activity. Glucose, fructose andsucrose were the main sugars in the stem. Although concentrationsof these sugars and starch declined in the stem as the plantsmatured, there was little evidence to indicate their use infruit production. Stems of plants defoliated at the 44-leafstage had lower concentrations of sugars and starch at maturity,and produced less fruit than the controls. It was concludedthat tomato is sink rather than source limited with respectto carbon assimilates, and that the storage of carbon in thestem for a long period is possibly a residual perennial traitin tomato.Copyright 1994, 1999 Academic Press Lycopersicon esculentum, tomato, assimilate distribution, 14C, internode storage, sink-source relationships, starch, stem reserves, sugars  相似文献   

13.
In three experiments measurements of photosynthesis were madeon single leaves of white clover (Trifolium repens L.) on threecultivars grown in a controlled environment. Plants which had grown under an irradiance of 30 J m–2s–1, or in shade within a simulated mixed sward, producedleaves with photosynthetic capacities some 30 per cent lowerthan did plants grown at 120 J m–2 s–1 without shade.There were no differences between treatments either in photosynthesismeasured at 30 J m–2 s–1, or in respiration ratesper unit leaf dry weight. Respiration per unit leaf area washigher in the plants grown at 120 J m–2 s–1, reflectingthe lower specific leaf area of these leaves. There were nodifferences between the three cultivars examined. Leaves which were removed from the shade of a simulated swardshortly after becoming half expanded achieved photosyntheticcapacities as high as those which were in full light throughouttheir development. It is suggested that it is this characteristicwhich enables clover plants growing in an increasingly densemixed sward to produce a succession of leaves of high photosyntheticcapacity, even though each lamina only reaches the top of thesward at a relatively late stage in its development. Trifolium repens L., white clover, photosynthesis, leaf expansion, shade, specific leaf area, stomatal conductance  相似文献   

14.
Sets of discs were taken from leaves of destarched tobacco plants(Nicotiana tabacum L. cv. xanthii) and floated on solutionsof sucrose or glucose in the dark. Abundant starch was formedin the youngest leaves but there was a marked decline with leafage.By contrast, when replicate sets of discs were floated on waterand illuminated, photosynthetic starch formation was similarin the differently aged leaves. Uptake of sugar, measured bydry weight increases and incorporation of [14C]sucrose, wasnot dependent on leaf age. The possibility that physiologicalchanges, relating to ageing and import/export status of theleaf, regulate the metabolism of sugar to starch was examined.Increasing retention of sugar in the minor veins is likely tobe a major factor. Invertase activities were measured and foundto be similar in the differently aged leaves. Respiration ratesdeclined with increasing leaf age. Speculations concerning changesin selective permeability of the chloroplast membrane are alsodiscussed.  相似文献   

15.
LUDLOW  ANNA E. 《Annals of botany》1991,68(6):527-540
Ochna pulchra Hook. is a deciduous broad-leaved tree in theMixed Bushveld vegetation of the Northern Transvaal. The growthand development of leaves taken from trees in the field werestudied from a stage shortly before bud break, in late spring,until they were fully expanded and at the peak of photosyntheticactivity. Leaf area was measured by photographing the leaf against a transparentmm2 grid. Finally a constant relationship between leaf area(A) and the linear dimension of length (L) and breadth (B) wasestablished: A = b x LB, where coefficient b = 0.72. Transverse sections of the lamina of the youngest leaves showeda five-layered plate meristem with a few functional conductingelements in the midrib. During further leaf development, celldivision was followed by means of autoradiography using [3H]thymidine.It was most active during the week after bud break. Leaf cell increment following on cell division made the majorcontribution to leaf growth resulting in a lamina that was atleast 90% expanded 4 weeks after bud break. The histologicalchanges accompanying cell division were observed using lightand electron microscopy. Even in late stages of leaf development mature and differentiatingstomata occurred together, limited to the abaxial epidermisand the midrib. Scanning electron microscopy showed stomataldistribution, their increasing density and gradual opening.The structure of these sunken stomata could reduce the outwarddiffusion of water vapour and increase the diffusion resistanceto carbon dioxide. Carbon assimilation rates of the developing leaves were measuredusing an IRGA (infra-red gas analyser) and their chlorophyllvalues were calculated. Photosynthesis was first measured amonth after bud break when the leaves were fully expanded, over50 % of the stomata exposed and leaf mesophyll tissue differentiatedwith mature chloroplasts. Net photosynthetic rates and chlorophyllvalues peaked 1 month later. Ochna pulchra Hook., photosynthesis, leaf development, leaf area, stomata, chlorophyll, savanna  相似文献   

16.
Rates of net photosynthesis of the flag leaves of 15 genotypesof wheat and related species were measured throughout theirlife, using intact leaves on plants grown in the field. At thestage when rates were maximal, they were in general highestfor the diploid species, intermediate for the tetraploidspeciesand lowest for Triticum aestivum (means of 38, 32 and 28 mgCO2 dm–2 h–1 respectively). Rates were stronglynegatively correlated with leaf area, leaf width and the meanplan area per mesophyll cell and positvely correlated with stomatalfrequency and number of veins per mm of leaf width. The differencesamong species in these attributes were mainly related to ploidylevel. It was not possible to determine the relative importanceof each anatomical feature, though the changes in stomatal frequencyhad only slight effects on stomatal conductance and the observeddifferences in rates of photosynthesis were much greater thanwould be expected from those in stomatal conductance alone. There was genetic variation in rates of light dependent oxygenevolution of isolated protoplasts and intact chloroplasts butno difference attributable to ploidy. The mean rate, 91 µmolO2 mg–1 chlorophyll h–1, equivalent to 3.9 mg CO2mg-1chlorophyll h-1 was considerably less than the rate of photosynthesisin comparable intact leaves, which was 7.2 mg CO2 mg–1chlorophyll h–1. The total above-ground dry matter yields were least for thewild diploids T. urartu and T. thauodar and the wild tetraploidT. dicoccoides, but the other wild diploids produced as muchdry matter as the hexaploids. The prospects of exploiting differences in photosynthetic ratein the breeding of higher yielding varieties are discussed. Triticum aestivum L., wheat, Aegilops spp, photosynthesis, stomatal conductance, stomatal frequency, polyploidy  相似文献   

17.
BERTIN  N.; GARY  C. 《Annals of botany》1998,82(1):71-81
The leaf mass per unit leaf area (LMA) is a key variable inmany growth models, since it is often used to predict leaf areaexpansion from leaf dry weight increase, orvice versa. Influencesof source-sink balance on leaf area, leaf dry weight, LMA, andleaf content in non-structural carbohydrates were investigatedin glasshouse tomato crops. The source-sink balance was manipulatedby artificial shading, CO2enrichment or fruit removal usingdifferent tomato cultivars. Leaf area was hardly affected bycompetition for assimilates except under extreme conditions.In contrast, leaf dry weight, and consequently LMA, underwentlarge and rapid fluctuations in response to any factor thatchanged source and sink activities. A 60% reduction of photosyntheticallyactive radiation involved a 24% decrease in LMA after 10 d.Carbon dioxide enrichment and fruit removal induced about a45% and 15% increase in LMA, respectively, on plants with twofruiting trusses, but hardly affected LMA of producing plants.No significant cultivar effect could be identified. Changesin starch and soluble sugar content in leaves accounted foronly 29% of diurnal variations in LMA, suggesting regular fluctuationsof other components. We propose that structural LMA varies betweena maximum and a minimum value according to the ratio of assimilatesupply and demand during leaf development. Leaf area is independentof the supply of assimilates when the minimum structural LMAis realised. When the maximum structural LMA is attained, astorage pool of assimilates may accumulate in leaves duringperiods of high supply and low demand. We present a model includingthese hypotheses, which predicts structural and non-structuralLMA variations of plants with different source-sink ratios.Copyright1998 Annals of Botany Company Tomato,Lycopersicon esculentumMill., SLA, SLW, leaf growth, vegetative sink strength, assimilate competition, source-sink ratio, non-structural carbohydrate, models.  相似文献   

18.
Nitrate Supply and the Biophysics of Leaf Growth in Salix viminalis   总被引:2,自引:0,他引:2  
The influence of nitrogen on leaf area development and the biophysicsof leaf growth was studied using clonal plants of the shrubwillow, Salix viminalis grown with either optimal (High N) orsub-optimal (Low N) supplies of nitrate. Leaf growth rate andfinal leaf size were reduced in the sub-optimal treatment andthe data suggest that in young rapidly growing leaves, thiswas primarily due to changes in cell wall properties, sincecell wall extensibility (% plasticity) was reduced in the LowN plants. The biophysical regulation of leaf cell expansion also differedwith nitrogen treatment as leaves aged. In the High N leaves,leaf cell turgor pressure (P) increased with age whilst in theLow N leaves P declined with age, again suggesting that foryoung leaves, cell wall plasticity limited expansion in theLow N plants. Measurements of cell wall properties showed thatcell wall elasticity (%E) was not influenced by nitrogen treatmentand remained constant regardless of leaf age. Key words: Salix, cell wall extensibility, nitrogen nutrition, biophysics of leaf growth  相似文献   

19.
Nitrate reduction in leaves of tomato occurred at the same ratein plants grown in 8.0 mol m–3 nitrate as in plants grownin 2.0 mol m–3 nitrate, but at a much slower rate in plantsgrown in 0.1 mol m–3 nitrate. However, the plants grownin 8.0 mol m–3 nitrate had a larger leaf system than theplants grown in 2.0 mol m–3 nitrate, and so the totalcapacity to assimilate nitrate was greater in the plants grownin the higher concentration. It was shown that plants grownin 8.0 mol m–3 nitrate were better buffered against nitratewithdrawal than plants grown in 2.0 mol m–3 nitrate asthe rate of nitrate reduction declined more slowly when plantswere transferred to 0.1 mol m–3 nitrate from the higherconcentration than from the lower concentration. Furthermore,leaf expansion continued in the plants transferred from thehigher concentration, whereas it ceased abruptly in the plantstransferred from the lower concentration. It was concluded thatboth continuing expansion and continuing nitrate reduction wereaccompanied, and possibly caused by, a release of nitrate fromstorage pools in the lower part of the stem or the roots. Duringwithdrawal of nitrate the leaves were shown to maintain potentialactivity of the enzyme nitrate reductase although there wasno nitrate to be reduced. When nitrate was resupplied it couldbe reduced very quickly and reduction in the leaves was seento increase within 5 h of resupply. By 3 d after resupply furtherenzyme activity had been induced. Key words: Lycopersicon esculentum Mill, nitrate assimilation, nitrate reductase activity, nitrate withdrawal  相似文献   

20.
When young tomato plants grown in high light (400 µmolquanta m–2s–1 PAR) were transferred to low light(100 µmol quanta m–2s–1 PAR), non-cyclic electrontransport capacity was decreased and the rate of dark re-oxidationof Q, the first quinone electron acceptor of photosystemII, was decreased within 1–2 d. In contrast, the amountof coupling factor CF1, assayed by its ATPase activity, decreasedmore gradually over several days. The total chlorophyll contentper unit leaf area remained relatively constant, although thechlorophyll a/chlorophyll b ratio declined. When young tomato plants grown in low light were transferredto high light, the ATPase activity of isolated thylakoids increasedmarkedly within 1 d of transfer. This increase occurred morerapidly than changes in chlorophyll content per leaf area. Inaddition, in vivo chlorophyll fluorescence induction curvesindicate that forward electron transfer from Q occurredmore readily. The functional implications of these changes arediscussed. Key words: Tomato, leaves, light intensity, thylakoid membrane  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号