首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD4 positive T helper cells control many aspects of specific immunity. These cells are specific for peptides derived from protein antigens and presented by molecules of the extremely polymorphic major histocompatibility complex (MHC) class II system. The identification of peptides that bind to MHC class II molecules is therefore of pivotal importance for rational discovery of immune epitopes. HLA-DR is a prominent example of a human MHC class II. Here, we present a method, NetMHCIIpan, that allows for pan-specific predictions of peptide binding to any HLA-DR molecule of known sequence. The method is derived from a large compilation of quantitative HLA-DR binding events covering 14 of the more than 500 known HLA-DR alleles. Taking both peptide and HLA sequence information into account, the method can generalize and predict peptide binding also for HLA-DR molecules where experimental data is absent. Validation of the method includes identification of endogenously derived HLA class II ligands, cross-validation, leave-one-molecule-out, and binding motif identification for hitherto uncharacterized HLA-DR molecules. The validation shows that the method can successfully predict binding for HLA-DR molecules-even in the absence of specific data for the particular molecule in question. Moreover, when compared to TEPITOPE, currently the only other publicly available prediction method aiming at providing broad HLA-DR allelic coverage, NetMHCIIpan performs equivalently for alleles included in the training of TEPITOPE while outperforming TEPITOPE on novel alleles. We propose that the method can be used to identify those hitherto uncharacterized alleles, which should be addressed experimentally in future updates of the method to cover the polymorphism of HLA-DR most efficiently. We thus conclude that the presented method meets the challenge of keeping up with the MHC polymorphism discovery rate and that it can be used to sample the MHC "space," enabling a highly efficient iterative process for improving MHC class II binding predictions.  相似文献   

2.
Susceptibility to multiple sclerosis (MS) is associated with certain MHC class II haplotypes, in particular HLA-DR2. Two DR beta chains, DRB1*1501 and DRB5*0101, are co-expressed in the HLA-DR2 haplotype, resulting in the formation of two functional cell surface heterodimers, HLA-DR2a (DRA*0101, DRB5*0101) and HLA-DR2b (DRA*0101, DRB1*1501). Both isotypes can present an immunodominant peptide of myelin basic protein (MBP 84-102) to MBP-specific T cells from MS patients. We have determined the crystal structure of HLA-DR2a complexed with MBP 86-105 to 1.9 A resolution. A comparison of this structure with that of HLA-DR2b complexed with MBP 85-99, reported previously, reveals that the peptide register is shifted by three residues, such that the MBP peptide is bound in strikingly different conformations by the two MHC molecules. This shift in binding register is attributable to a large P1 pocket in DR2a, which accommodates Phe92, in conjunction with a relatively shallow P4 pocket, which is occupied by Ile95. In DR2b, by contrast, the small P1 pocket accommodates Val89, while the deep P4 pocket is filled by Phe92. In both complexes, however, the C-terminal half of the peptide is positioned higher in the binding groove than in other MHC class II/peptide structures. As a result of the register shift, different side-chains of the MBP peptide are displayed for interaction with T cell receptors in the DR2a and DR2b complexes. These results demonstrate that MHC molecules can impose different alignments and conformations on the same bound peptide as a consequence of topological differences in their peptide-binding sites, thereby creating distinct T cell epitopes.  相似文献   

3.
Major histocompatibility complex (MHC) molecules are a key element of the cellular immune response. Encoded by the MHC they are a family of highly polymorphic peptide receptors presenting peptide antigens for the surveillance by T cells. We have shown that certain organic compounds can amplify immune responses by catalyzing the peptide loading of human class II MHC molecules HLA-DR. Here we show now that they achieve this by interacting with a defined binding site of the HLA-DR peptide receptor. Screening of a compound library revealed a set of adamantane derivatives that strongly accelerated the peptide loading rate. The effect was evident only for an allelic subset and strictly correlated with the presence of glycine at the dimorphic position beta86 of the HLA-DR molecule. The residue forms the floor of the conserved pocket P1, located in the peptide binding site of MHC molecule. Apparently, transient occupation of this pocket by the organic compound stabilizes the peptide-receptive conformation permitting rapid antigen loading. This interaction appeared restricted to the larger Gly(beta86) pocket and allowed striking enhancements of T cell responses for antigens presented by these "adamantyl-susceptible" MHC molecules. As catalysts of antigen loading, compounds targeting P1 may be useful molecular tools to amplify the immune response. The observation, however, that the ligand repertoire can be affected through polymorphic sites form the outside may also imply that environmental factors could induce allergic or autoimmune reactions in an allele-selective manner.  相似文献   

4.
A few cases have been described of antigenic determinants that are broadly presented by multiple class II MHC molecules, especially murine I-E or human DR, in which polymorphism is limited to the beta chain, and the alpha chain is conserved. However, no similar cases have been studied for presentation by class I MHC molecules. Because both domains of the MHC peptide binding site are polymorphic in class I molecules, exploring permissiveness in class I presentation would be of interest, and also such broadly presented antigenic determinants would clearly be useful for vaccine development. We had defined an immunodominant determinant, P18, of the HIV-1 gp160 envelope protein recognized by human and murine CTL. To determine the range of class I MHC molecules that could present this peptide and to determine whether two HIV-1 gp160 Th cell determinants, T1 and HP53, could also be presented by class I MHC molecules, we attempted to generate CTL specific for these three peptides in 10 strains of B10 congenic mice, representing 10 MHC types, and BALB/c mice. P18 was presented by at least four different class I MHC molecules from independent haplotypes (H-2d, p, u, and q to CD8+ CTL. In H-2d and H-2q the presentation was mapped to the D-end class I molecule, and for Dd, a requirement for both the alpha 1 and alpha 2 domains of Dd, not Ld, was found. HP53 was also presented by the same four different class I MHC molecules to CD8+ CTL although at higher concentrations. T1 was presented by class I molecules in three different strains of distinct MHC types (B10.M, H-2f; B10.A, H-2a; and B10, H-2b) to CTL. The CTL specific for P18 and HP53 were shown to be CD8+ and CD4- and to kill targets expressing endogenously synthesized whole gp160 as well as targets pulsed with the corresponding peptide. To compare the site within each peptide presented by the different class I molecules, we used overlapping and substituted peptides and found that the critical regions of each peptide are the similar for all four MHC molecules. Thus, antigenic sites are broadly or permissively presented by class I MHC molecules even without a nonpolymorphic domain as found in DR and I-E, and these sequences may be of broad usefulness in a synthetic vaccine.  相似文献   

5.
Class I and class II MHC glycoproteins are highly polymorphic molecules that bind antigenic peptides and present them on cell surfaces for recognition by T lymphocytes. Even though MHC polymorphism has long been known to affect both peptide binding and recognition by the TCR, the role of individual amino acids of MHC proteins in these interactions is poorly understood. To examine the effect of a small number of amino acid residues on T cell stimulation, B lymphoblastoid cell lines homozygous for the closely related DR1 subtypes, Dw1 and Dw20, and the DR4 subtypes, Dw4 and Dw14, were compared for their ability to present an immunogenic influenza hemagglutinin peptide (HA307-319) to an Ag-specific, DR1,4-restricted T cell clone. B cell lines expressing DR1 Dw20 and DR4 Dw14 presented HA307-319 much less efficiently than DR1 Dw1 and DR4 Dw4 and bound a biotinylated analogue of the same peptide less well. Analysis of DRB1 gene sequences suggested that polymorphism at residue 86 had a major effect on peptide binding. Differences in binding of a set of HA307-319 analogues biotinylated at each residue to cells expressing DR1 Dw1 and DR1 Dw20 suggested that the polymorphism affected the interactions of many peptide residues with the class II molecule. In inhibition assays, DR1 Dw1 and DR4 Dw4 were shown to differ from DR1 Dw20 and DR4 Dw14 in their length requirements for peptide binding. Using a larger panel of homozygous B cell lines expressing many class II haplotypes, a Ser-309 substituted HA307-319 analogue was shown to bind to most B cell lines expressing Val-86 containing alleles (including DR1 Dw20 and DR4 Dw14) but failed to bind most B cell lines expressing Gly-86 alleles (including DR1 Dw1 and DR4 Dw4). The results indicated that polymorphism at residue 86 influenced the specificity and affinity of peptide binding and affected the conformation of peptide-DR protein complexes without completely eliminating T cell recognition.  相似文献   

6.
Antigenic peptide loading of classical major histocompatibility complex (MHC) class II molecules requires the exchange of the endogenous invariant chain fragment CLIP (class II associated Ii peptide) for peptides derived from antigenic proteins. This process is facilitated by the non-classical MHC class II molecule HLA-DM (DM) which catalyzes the removal of CLIP. Up to now it has been unclear whether DM releases self-peptides other than CLIP and thereby modifies the peptide repertoire presented to T cells. Here we report that DM can release a variety of peptides from HLA-DR molecules. DR molecules isolated from lymphoblastoid cell lines were found to carry a sizeable fraction of self-peptides that are sensitive to the action of DM. The structural basis for this DM sensitivity was elucidated by high-performance size exclusion chromatography and a novel mass spectrometry binding assay. The results demonstrate that the overall kinetic stability of a peptide bound to DR determines its sensitivity to removal by DM. We show that DM removes preferentially those peptides that contain at least one suboptimal side chain at one of their anchor positions or those that are shorter than 11 residues. These findings provide a rationale for the previously described ligand motifs and the minimal length requirements of naturally processed DR-associated self-peptides. Thus, in endosomal compartments, where peptide loading takes place, DM can function as a versatile peptide editor that selects for high-stability MHC class II-peptide complexes by kinetic proofreading before these complexes are presented to T cells.  相似文献   

7.
Superantigens are bacterial or viral proteins that elicit massive T cell activation through simultaneous binding to major histocompatibility complex (MHC) class II and T cell receptors. This activation results in uncontrolled release of inflammatory cytokines, causing toxic shock. A remarkable property of superantigens, which distinguishes them from T cell receptors, is their ability to interact with multiple MHC class II alleles independently of MHC-bound peptide. Previous crystallographic studies have shown that staphylococcal and streptococcal superantigens belonging to the zinc family bind to a high affinity site on the class II beta-chain. However, the basis for promiscuous MHC recognition by zinc-dependent superantigens is not obvious, because the beta-chain is polymorphic and the MHC-bound peptide forms part of the binding interface. To understand how zinc-dependent superantigens recognize MHC, we determined the crystal structure, at 2.0 A resolution, of staphylococcal enterotoxin I bound to the human class II molecule HLA-DR1 bearing a peptide from influenza hemagglutinin. Interactions between the superantigen and DR1 beta-chain are mediated by a zinc ion, and 22% of the buried surface of peptide.MHC is contributed by the peptide. Comparison of the staphylococcal enterotoxin I.peptide.DR1 structure with ones determined previously revealed that zinc-dependent superantigens achieve promiscuous binding to MHC by targeting conservatively substituted residues of the polymorphic beta-chain. Additionally, these superantigens circumvent peptide specificity by engaging MHC-bound peptides at their conformationally conserved N-terminal regions while minimizing sequence-specific interactions with peptide residues to enhance cross-reactivity.  相似文献   

8.
The acid release of endogenous peptides from immunoaffinity-pure human major histocompatibility complex (MHC) class II proteins HLA-DR1 is accompanied by an 18% decrease in intrinsic tryptophan fluorescence. The effect is totally reversible upon readdition of an autologous endogenous peptide fraction. High-performance size-exclusion chromatographic (HPSEC) binding and release studies with a nonfluorescent HLA-DR1-restricted influenza matrix peptide IM(18-29) prove the fact that Trp residues of the HLA protein change their fluorescence intensities. Since the far-UV circular dichroism spectra of HLA molecules before and after peptide release, DR1[NAT] and DR1[REL], show very small differences, we can rule out the breakdown of secondary structural elements under release conditions, although DR[REL] consists of disassembled alpha- and beta-subunits, as evidenced by HPSEC. Quenching of DR1[NAT] and DR1[REL] using the neutral quencher acrylamide results in a 20% increase in total accessibility of the nine-residue Trp population whereas quenching by iodide yields only a 5% increase. Both results taken together tell us that two Trp residues, preferentially ones located in apolar pockets, become accessible upon the release of peptides. The significantly smaller fluorescence enhancement upon binding IM(18-29) of DR3[REL], exclusively lacking Trp-9(beta 1), and the missing tendency to reassemble under the influence of IM(18-29) compared to DR1[REL] suggest an important role for position 9(beta 1). The region around Trp-43(alpha 1) should be responsible for the binding of IM(18-29) to the alpha-subunits of DR1 and DR3, respectively, as verified by fluorometric HPSEC and SDS-PAGE. Obviously, our findings are in total agreement with the hypothetical MHC class II model, whereafter Trp-9(beta 1) and Trp-43(alpha 1) besides Trp-61(beta 1) are constituents of the binding groove of DR1. Extending the homology to MHC class I products, we postulate the existence of three hydrophobic pockets in the binding site of DR1 with the cited Trp residues being juxtaposed to contacting apolar peptide side chains in HLA-peptide complexes. According to the deduced two-residue-contact model the minimal consensus motif for DR1-restricted peptide antigens consists of two hydrophobic residues lying 14-16 A apart in the bound state of the peptide.  相似文献   

9.
T cell recognition of allopeptides in context of syngeneic MHC.   总被引:10,自引:0,他引:10  
We have analyzed the ability of T cells to recognize peptides corresponding in sequence to an allogeneic HLA-DR molecule, in context of syngeneic MHC. PBMC from a responder with the HLA-DR beta 1*1101/DR beta 1*1201 genotype were stimulated in vitro with a mixture of four synthetic peptides derived from the first domain of the DR beta 1*0101 chain (amino acid residue 1-20, 21-42, 43-62, and 66-90). An alloreactive T cell line, TCL-LS, which proliferates only in response to peptide 21-42 presented by HLA-DR beta 1*1101, was obtained. The blastogenic response of the line was inhibited by anti-HLA-DR and CD4 antibodies but was not affected by antibodies to HLA-DQ, HLA-DP, HLA-ABC, and CD8. In the presence of irradiated, autologous APC, TCL-LS displayed specific proliferative responses to stimulating cells obtained from individuals carrying the DR beta 1*0101 allele. In the absence of autologous APC, TCL-LS recognized HLA-DR1 on allogeneic cells only when expressed together with HLA-DR beta 1*1101, the restrictive element. This indicates that TCL-LS recognizes processed HLA-DR1 molecule presented as nominal Ag. Study of TCR-V beta gene repertoire expressed by TCL-LS showed that only two V beta genes were used (V beta 13.2 and V beta 12). Two T cell clones (TCC) derived from this line, TCC-A5 and B4, exhibited a similar pattern of reactivity and expressed V beta 13.2. These results indicate that T cells recognizing peptides, which are derived from the breakdown of allogeneic MHC class II proteins and are presented by self-HLA-DR molecules, participate in allorecognition.  相似文献   

10.
Binding of the T cell antigen receptor (TCR) to peptides presented on molecules encoded by major histocompatibility complex (MHC) genes is the key event driving T cell development and activation. Selection of the T cell repertoire in the thymus involves two steps. First, positive selection promotes the survival of cells binding thymic self-MHC-peptide complexes with sufficient affinity. The resulting repertoire is self-MHC restricted: it recognizes foreign peptides presented on self, but not foreign MHC. Second, negative selection deletes cells which may be potentially harmful because their receptors interact with self-MHC-peptide complexes with too high an affinity. The mature repertoire is also highly alloreactive: a large fraction of T cells respond to tissues harboring foreign MHC. We derive mathematical expressions giving the frequency of alloreactivity, the level of self-MHC restriction, and the fraction of the repertoire activated by a foreign peptide, as a function of the parameters driving the generation and selection of the repertoire: self-MHC and self-peptide diversity, the stringencies of positive and negative selection, and the number of peptide and MHC polymorphic residues that contribute to T cell receptor binding. Although the model is based on a simplified digit string representation of receptors, all the parameters but one relate directly to experimentally determined quantities. The only parameter without a biological counterpart has no effect on the model's behavior besides a trivial and easily preventable discretization effect. We further analyse the role of the MHC and peptide contribution to TCR binding, and find that their relative, rather than absolute value, is important in shaping the mature repertoire. This result makes it possible to adopt different physical interpretations for the digit string formalism. We also find that the alloreactivity level can be inferred directly from data on the stringency of selection, and that, in agreement with recent experiments, it is not affected by thymic selection.  相似文献   

11.
Transplantation of histoincompatible tissues leads to allograft rejection, which involves recognition of allogeneic MHC molecules by Ag-specific receptors expressed on T cells. The interaction of these molecules is highly specific yet poorly understood. We have investigated the relationship between TCR gene utilization and allo-MHC restriction patterns by using a one-way polymerase chain reaction to amplify the alpha- and beta-chain mRNA from a panel of 10 HLA-DR1-alloreactive T lymphocyte clones. Two previously unreported V alpha and five J alpha gene sequences were obtained. Although a few V alpha, V beta, and J alpha genes were utilized more than once, no correlation between TCR gene usage and DR1 alloreactivity was identified. At the sequence level, the presumed TCR alpha- and beta-chain CDR1 and CDR2 regions displayed limited diversity, whereas the CDR3 or junctional sequences were highly variable. Although most TCR probably interact with subtly different surface features of the DR1 alloantigen, we predict that TCR with similar CDR1 and CDR2 sequences would contact essentially identical regions of the DR1 molecule. The lack of sequence conservation in the junctional regions suggests that different endogenous peptides also may be recognized. Thus, alloreactive T cells may recognize not only allogeneic MHC molecules but perhaps also bound endogenous peptides.  相似文献   

12.

Background

The immune system must detect a wide variety of microbial pathogens, such as viruses, bacteria, fungi and parasitic worms, to protect the host against disease. Antigenic peptides displayed by MHC II (class II Major Histocompatibility Complex) molecules is a pivotal process to activate CD4+ TH cells (Helper T cells). The activated TH cells can differentiate into effector cells which assist various cells in activating against pathogen invasion. Each MHC locus encodes a great number of allele variants. Yet this limited number of MHC molecules are required to display enormous number of antigenic peptides. Since the peptide binding measurements of MHC molecules by biochemical experiments are expensive, only a few of the MHC molecules have suffecient measured peptides. To perform accurate binding prediction for those MHC alleles without suffecient measured peptides, a number of computational algorithms were proposed in the last decades.

Results

Here, we propose a new MHC II binding prediction approach, OWA-PSSM, which is a significantly extended version of a well known method called TEPITOPE. The TEPITOPE method is able to perform prediction for only 50 MHC alleles, while OWA-PSSM is able to perform prediction for much more, up to 879 HLA-DR molecules. We evaluate the method on five benchmark datasets. The method is demonstrated to be the best one in identifying binding cores compared with several other popular state-of-the-art approaches. Meanwhile, the method performs comparably to the TEPITOPE and NetMHCIIpan2.0 approaches in identifying HLA-DR epitopes and ligands, and it performs significantly better than TEPITOPEpan in the identification of HLA-DR ligands and MultiRTA in identifying HLA-DR T cell epitopes.

Conclusions

The proposed approach OWA-PSSM is fast and robust in identifying ligands, epitopes and binding cores for up to 879 MHC II molecules.
  相似文献   

13.
Processing of antigens for presentation to helper T cells by MHC class II involves HLA-DM (DM) and HLA-DO (DO) accessory molecules. A mechanistic understanding of DO in this process has been missing. The leading model on its function proposes that DO inhibits the effects of DM. To directly study DO functions, we designed a recombinant soluble DO and expressed it in insect cells. The kinetics of binding and dissociation of several peptides to HLA-DR1 (DR1) molecules in the presence of DM and DO were measured. We found that DO reduced binding of DR1 to some peptides, and enhanced the binding of some other peptides to DR1. Interestingly, these enhancing and reducing effects were observed in the presence, or absence, of DM. We found that peptides that were negatively affected by DO were DM-sensitive, whereas peptides that were enhanced by DO were DM-resistant. The positive and negative effects of DO could only be measured on binding kinetics as peptide dissociation kinetics were not affected by DO. Using Surface Plasmon Resonance, we demonstrate direct binding of DO to a peptide-receptive, but not a closed conformation of DR1. We propose that DO imposes another layer of control on epitope selection during antigen processing.  相似文献   

14.

Background  

Antigen presenting cells (APCs) sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II) molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC) and three mouse H2-IA alleles.  相似文献   

15.
Major histocompatibility complex (MHC) class II molecules are membrane-anchored heterodimers on the surface of antigen-presenting cells that bind the T cell receptor, initiating a cascade of interactions that results in antigen-specific activation of clonal populations of T cells. Susceptibility to multiple sclerosis is associated with certain MHC class II haplotypes, including human leukocyte antigen (HLA) DR2. Two DRB chains, DRB5*0101 and DRB1*1501, are co-expressed in the HLA-DR2 haplotype, resulting in the formation of two functional cell surface heterodimers, HLA-DR2a (DRA*0101, DRB5*0101) and HLA-DR2b (DRA*0101, DRB1*1501). Both isotypes can present an immunodominant peptide of myelin basic protein (MBP-(84-102)) to MBP-specific T cells from multiple sclerosis patients. We have previously demonstrated that the peptide binding/T cell recognition domains of rat MHC class II (alpha1 and beta1 domains) could be expressed as a single exon for structural and functional characterization; Burrows, G. G., Chang, J. W., B?chinger, H.-P., Bourdette, D. N., Wegmann, K. W., Offner, H., and Vandenbark A. A. (1999) Protein Eng. 12, 771-778; Burrows, G. G., Adlard, K. L., Bebo, B. F., Jr., Chang, J. W., Tenditnyy, K., Vandenbark, A. A., and Offner, H. (2000) J. Immunol. 164, 6366-6371). Single-chain human recombinant T cell receptor ligands (RTLs) of approximately 200 amino acid residues derived from HLA-DR2b were designed using the same principles and have been produced in Escherichia coli with and without amino-terminal extensions containing antigenic peptides. Structural characterization using circular dichroism predicted that these molecules retained the antiparallel beta-sheet platform and antiparallel alpha-helices observed in the native HLA-DR2 heterodimer. The proteins exhibited a cooperative two-state thermal unfolding transition, and DR2-derived RTLs with a covalently linked MBP peptide (MBP-(85-99)) showed increased stability to thermal unfolding relative to the empty DR2-derived RTLs. These novel molecules represent a new class of small soluble ligands for modulating the behavior of T cells and provide a platform technology for developing potent and selective human diagnostic and therapeutic agents for treatment of autoimmune disease.  相似文献   

16.
We have in this work mapped epitopes and HLA molecules used in human T cell recognition of the Mycobacterium leprae LSR protein antigen. HLA typed healthy subjects immunized with heat killed M. leprae were used as donors to establish antigen reactive CD4+ T cell lines which were screened for proliferative responses against overlapping synthetic peptides covering the C-terminal part of the antigen sequence. By using this approach we were able to identify two epitope regions represented by peptide 2 (aa 29-40) and peptide 6 (aa 49-60), of which the former was mapped in detail by defining the N- and C-terminal amino acid positions necessary for T cell recognition of the core epitope. MHC restriction analysis showed that peptide 2 was presented to T cells by allogeneic cells coexpressing HLA-DR4 and DRw53 or DR7 and DRw53. In contrast, peptide 6 was presented to T cells only in the context of HLA-DR5 molecules. In conclusion, the M. leprae LSR protein antigen can be recognized by human T cells in the context of multiple HLA-DR molecules, of which none are reported to be associated with the susceptibility to develop leprosy. The results obtained are in support of using the LSR antigen in subunit vaccine design.  相似文献   

17.
T cell reactivity toward self MHC class II molecules has been recognized in syngeneic MLR in a number of studies, where the T cells are believed to recognize the combination of self/nonself peptide and self MHC molecule. We investigated the stimulation of T cell proliferation by synthetic peptides of sequences corresponding to the first polymorphic amino terminal domain of alpha- and beta-chains of self I-A molecules. Both unprimed and primed T cells responded to a number of peptides of alpha 1 and beta 1 domains of self I-Ad molecules. The response was dependent on the presentation of I-Ad peptides by syngeneic APC and was blocked by anti-class II MHC mAb. Upon further investigation it was observed that I-Ad peptides could inhibit the stimulation of Ag-specific MHC class II-restricted T cell hybridoma due to self presentation of peptides rather than to direct binding of free peptides to the TCR, further supporting their affinity/interaction with intact self MHC class II molecules. The peptide I-A beta d 62-78 showed high affinity toward intact self MHC II molecule as determined by the inhibition of Ag-specific T cell stimulation and yet was nonstimulatory for syngeneic T cells, therefore representing an MHC determinant that may have induced self tolerance. Thus we have shown that strong T cell proliferative responses can be generated in normal mice against the peptides derived from self MHC class II molecules and these cells are part of the normal T cell repertoire. Therefore complete tolerance toward potentially powerful immunodominant but cryptic determinants of self Ag may not be necessary to prevent autoimmune diseases.  相似文献   

18.
Anergy induction by dimeric TCR ligands   总被引:4,自引:0,他引:4  
T cells that recognize particular self Ags are thought to be important in the pathogenesis of autoimmune diseases. In multiple sclerosis, susceptibility is associated with HLA-DR2, which can present myelin-derived peptides to CD4(+) T cells. To generate molecules that target such T cells based on the specificity of their TCR, we expressed a soluble dimeric DR2-IgG fusion protein with a bound peptide from myelin basic protein (MBP). Soluble, dimeric DR2/MBP peptide complexes activated MBP-specific T cells in the absence of signals from costimulatory or adhesion molecules. This initial signaling through the TCR rendered the T cells unresponsive (anergic) to subsequent activation by peptide-pulsed APCs. Fluorescent labeling demonstrated that anergic T cells were initially viable, but became susceptible to late apoptosis due to insufficient production of cytokines. Dimerization of the TCR with bivalent MHC class II/peptide complexes therefore allows the induction of anergy in human CD4(+) T cells with a defined MHC/peptide specificity.  相似文献   

19.
HLA-DM (DM) plays a critical role in Ag presentation to CD4 T cells by catalyzing the exchange of peptides bound to MHC class II molecules. Large lateral surfaces involved in the DM:HLA-DR (DR) interaction have been defined, but the mechanism of catalysis is not understood. In this study, we describe four small molecules that accelerate DM-catalyzed peptide exchange. Mechanistic studies demonstrate that these small molecules substantially enhance the catalytic efficiency of DM, indicating that they make the transition state of the DM:DR/peptide complex energetically more favorable. These compounds fall into two functional classes: two compounds are active only in the presence of DM, and binding data for one show a direct interaction with DM. The remaining two compounds have partial activity in the absence of DM, suggesting that they may act at the interface between DM and DR/peptide. A hydrophobic ridge in the DMbeta1 domain was implicated in the catalysis of peptide exchange because the activity of three of these enhancers was substantially reduced by point mutations in this area.  相似文献   

20.
Affinity-purified major histocompatability complex (MHC) class II molecules are known to bind antigenic peptide in vitro. This peptide-bound MHC class II is known to undergo a change in structure upon stable binding of antigenic peptide. Previous results from our, and other laboratories, have suggested a relationship between MHC class II structure and peptide association that enables class II to enter into a stable conformation upon peptide binding. In this report we describe that stable binding of high-affinity antigenic peptide to MHC class II molecule results in transition of aggregated purified MHC class II proteins to a stable heterodimeric state. Such transition was demonstrated by using purified human HLA-DR2 class II molecule and high-affinity myelin basic protein (MBP) 83-102)Y83 peptide. Highly aggregated purified DR2 (high molecular weight; HMW) was first separated from heterodimer (low molecular weight: LMW) in the presence of 50-fold molar excess of MBP(83-102)Y83 peptide. We then show that the aggregated HMW preparation can be successfully converted into a stable dimer by further incubation with MBP(83-102)Y83 and changing various binding parameters such as pH, temperature, reducing agent, and peptide concentrations. Under optimized conditions, the highly aggregated inactive DR2 molecules can be completely loaded with the antigenic peptide. The transformed heterodimers with bound peptide prepared by this method are biologically active, as shown by their ability to induce the production of gamma-interferon by SS8T-transformed human T cells. These results suggest that in solution, MHC class II molecules may be aggregated in the absence of bound peptide. Such aggregated MHC class II molecules can be converted to stable and biologically active heterodimers in the presence of high-affinity antigenic peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号