首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The question of how much time a foraging herbivore should spend in a patch of food poses a central challenge in classical foraging theory. However, there remains uncertainty about the relevance of the patch paradigm to foraging decisions by large herbivores. This paper examines evidence for successfully predicting and quantifying patch departure decisions for large mammalian herbivores foraging across several spatial and temporal scales. Departure decisions at fine scales are influenced by tradeoffs between maximizing intake rate and food quality. Classical models for departure decisions at larger spatial scales, particularly the marginal value theorem, appear inadequate. We advocate exploring alternative models for predictions of residence time at the patch scale.  相似文献   

2.
Wild and domestic ungulates modify their behaviour in the presence of olfactory and visual cues of predators but investigations have not exposed a domestic species to a series of cues representing various predators and other ungulate herbivores. We used wolf (Canis lupus), mountain lion (Puma concolor), and mule deer (Odocoileus hemionus) stimuli (olfactory and visual), and a control (no stimuli) to experimentally test for differences in behaviour of cattle (Bos taurus) raised in Arizona. We measured (1) vigilance, (2) foraging rates, (3) giving up density (GUD) of high quality foods and (4) time spent in high quality forage locations in response to location of stimuli treatments. In general, we found a consistent pattern in that wolf and deer treatments caused disparate results in all 4 response variables. Wolf stimuli significantly increased cattle vigilance and decreased cattle foraging rates; conversely, deer stimuli significantly increased cattle foraging rate and increased cattle use of high quality forage areas containing stimuli. Mountain lion stimuli did not significantly impact any of the 4 response variables. Our findings suggest that domestic herbivores react to predatory stimuli, can differentiate between stimuli representing two predatory species, and suggest that cattle may reduce antipredatory behaviour when near heterospecifics.  相似文献   

3.
Abstract: We present the first rigorous estimate of grizzly bear (Ursus arctos) population density and distribution in and around Glacier National Park (GNP), Montana, USA. We used genetic analysis to identify individual bears from hair samples collected via 2 concurrent sampling methods: 1) systematically distributed, baited, barbed-wire hair traps and 2) unbaited bear rub trees found along trails. We used Huggins closed mixture models in Program MARK to estimate total population size and developed a method to account for heterogeneity caused by unequal access to rub trees. We corrected our estimate for lack of geographic closure using a new method that utilizes information from radiocollared bears and the distribution of bears captured with DNA sampling. Adjusted for closure, the average number of grizzly bears in our study area was 240.7 (95% CI = 202–303) in 1998 and 240.6 (95% CI = 205–304) in 2000. Average grizzly bear density was 30 bears/1,000 km2, with 2.4 times more bears detected per hair trap inside than outside GNP. We provide baseline information important for managing one of the few remaining populations of grizzlies in the contiguous United States.  相似文献   

4.
We examined the functional response and foraging behavior of young moose (Alces alces) and white-tailed deer (Odocoileus virginianus) relative to animal size and the size and distribution of browse patches. The animals were offered one, three, or nine stems of dormant red maple (Acer rubrum) in hand-assembled patches spaced 2.33, 7, 14, or 21 m apart along a runway. Moose took larger twig diameters and bites and had greater dry matter and digestible energy intake rates than did deer, but had lower cropping rates. Moose and deer travelled at similar velocities between patches and took similar numbers of bites per stem. We found that a model of intake rate, based on the mechanics of cropping, chewing, and encountering bites, effectively described the intake rate of moose and deer feeding in heterogeneous distributions of browses. As patch size and density declined, the animals walked faster between patches, cropped larger bites, and cropped more bites per stem, and hence, dry matter intake rates remained relatively constant. As is characteristic of many hardwood browse stems, however, potential digestible energy concentration of the red maple stems declined as the size and number of bites removed (i.e., stem diameter at point of clipping) by the animals increased. Therefore, the digestible energy content of the diet declined with decreasing patch size and density. Time spent foraging within a patch increased as patch size increased and as distance between patches increased, which qualitatively supported the marginal-value theorem. However, actual patch residence times for deer and moose exceeded those predicted by the marginal-value theorem (MVT) by approximately 250%. The difference between actual and predicted residence time may have been a result of (1) an unknown or complex gain function, (2) the artificial conditions of the experiments, or (3) assumptions of MVT that do not apply to herbivores.  相似文献   

5.
Conservation and management efforts have resulted in population increases and range expansions for some apex predators, potentially changing trophic cascades and foraging behavior. Changes in sympatric carnivore and dominant scavenger populations provide opportunities to assess how carnivores affect one another. Cougars (Puma concolor) were the apex predator in the Great Basin of Nevada, USA, for over 80 years. Black bears (Ursus americanus) have recently recolonized the area and are known to heavily scavenge on cougar kills. To evaluate the impacts of sympatric, recolonizing bears on cougar foraging behavior in the Great Basin, we investigated kill sites of 31 cougars between 2009 and 2017 across a range of bear densities. We modeled the variation in feeding bout duration (number of nights spent feeding on a prey item) and the proportion of primary prey, mule deer (Odocoileus hemionus), in cougar diets using mixed‐effects models. We found that feeding bout duration was driven primarily by the size of the prey item being consumed, local bear density, and the presence of dependent kittens. The proportion of mule deer in cougar diet across all study areas declined over time, was lower for male cougars, increased with the presence of dependent kittens, and increased with higher bear densities. In sites with feral horses (Equus ferus), a novel large prey, cougar consumption of feral horses increased over time. Our results suggest that higher bear densities over time may reduce cougar feeding bout durations and influence the prey selection trade‐off for cougars when alternative, but more dangerous, large prey are available. Shifts in foraging behavior in multicarnivore systems can have cascading effects on prey selection. This study highlights the importance of measuring the impacts of sympatric apex predators and dominant scavengers on a shared resource base, providing a foundation for monitoring dynamic multipredator/scavenger systems.  相似文献   

6.
The life cycle of a metastrongyloid nematode, Parelaphostrongylus odocoilei, was successfully completed in three members of the Cervidae: mule deer (Odocoileus h. hemionus), black-tailed deer (O. h. columbianus), and moose (Alces alces andersoni). The terrestrial gastropod, Triodopsis multilineata, was the experimental intermediate host. White-tailed deer (O. virginianus dacotensis) were refractory to infection. The prepatent period of P. odocoilei was significantly shorter in mule deer (X = 53 days) than in the black-tailed deer or moose. There was an inverse relationship between the size of the infective inoculum and the duration of the prepatent period of P. odocoilei in mule deer, but not in black-tailed deer. The duration and intensity of larval production of P. odocoilei were higher in mule deer than in the other hosts. Peak larval production in the feces (approximately 14,000 larvae/g) of mule deer was in excess of previous reports for elaphostrongyline nematodes, regardless of the size of the infective inoculum. Daily larval production, estimated at 3 to 4 × 106 larvae/day, was six times higher than estimates for other elaphostrongylines. The duration of patency was not clearly established, but three mule deer and one black-tailed deer passed larvae for 12, 18, 24, and 18 months, respectively. On the basis of the reduced prepatent period and increased length and intensity of larval production, O. h. hemionus is considered the primary host of P. odocoilei.  相似文献   

7.
Selective herbivory can influence both spatial and temporal vegetation heterogeneity. For example, many northern European populations of free-ranging ungulates have reached unprecedented levels, which can influence plant species turnover, long-term maintenance of biodiversity and the subsequent stability of boreal ecosystems. However, the mechanisms by which large herbivores affect spatial and temporal vegetation heterogeneity remain poorly understood. Here, we combined a 10-year exclusion experiment with a herbivore intensity gradient to investigate how red deer (Cervus elaphus) acts as a driver of temporal and spatial heterogeneity in the understory of a boreal forest. We measured the two dimensions of heterogeneity as temporal and spatial species turnover. We found that temporal heterogeneity was positively related to herbivory intensity, and we found a similar trend for spatial heterogeneity. Removing red deer (exclosure) from our study system caused a distinct shift in species composition, both spatially (slow response) and temporally (quick response). Vegetation from which red deer had been excluded for 10 years showed the highest spatial heterogeneity, suggesting that the most stable forest understory will occur where there are no large herbivores. However, excluding red deer resulted in lower species diversity and greater dominance by a low number of plant species. If both stable but species rich ecosystems are the management goal, these findings suggest that naturally fluctuating, but moderate red deer densities should be sustained.  相似文献   

8.
Abstract: Manipulation of forest habitat via mechanical thinning or prescribed fire has become increasingly common across western North America. Nevertheless, empirical research on effects of those activities on wildlife is limited, although prescribed fire in particular often is assumed to benefit large herbivores. We evaluated effects of season and spatial scale on response of Rocky Mountain elk (Cervus elaphus) and mule deer (Odocoileus hemionus) to experimental habitat manipulation at the Starkey Experimental Forest and Range in northeastern Oregon, USA. From 2001 to 2003, 26 densely stocked stands of true fir (Abies spp.) and Douglas-fir (Pseudotsuga menziesii) were thinned and burned whereas 27 similar stands were left untreated to serve as experimental controls. We used location data for elk and mule deer collected during spring (1 Apr-14 Jun) and summer (15 Jun-31 Aug) of 1999–2006 to compare use of treated and untreated stands and to model effects of environmental covariates on use of treated stands. In spring, elk selected burned stands and avoided control stands within the study area (second-order selection; large scale). Within home ranges (third-order selection; small scale), however, elk did not exhibit selection. In addition, selection of treatment stands by elk in spring was not strongly related to environmental covariates. Conversely, in summer elk selected control stands and either avoided or used burned stands proportional to their availability at the large scale; patterns of space use within home ranges were similar to those observed in spring. Use of treatment stands by elk in summer was related to topography, proximity to roads, stand size and shape, and presence of cattle, and a model of stand use explained 50% of variation in selection ratios. Patterns of stand use by mule deer did not change following habitat manipulation, and mule deer avoided or used all stand types proportional to their availability across seasons and scales. In systems similar to Starkey, manipulating forest habitat with prescribed fire might be of greater benefit to elk than mule deer where these species are sympatric, and thus maintaining a mixture of burned and unburned (late successional) habitat might provide better long-term foraging opportunities for both species than would burning a large proportion of a landscape.  相似文献   

9.
Population effects of competition between large carnivore species may be evident by contrasting actual distributions of putative competitors against predictions of inherent landscape quality for each species. Such comparison can be insightful if covariation with external factors known to influence the occurrence, density, or persistence of each species over space and time can be controlled. We used systematically‐distributed DNA hair‐trap stations to sample the occurrence of black bears (Ursus americanus) and grizzly bears (U. arctos) across 5496 km2 in southeastern British Columbia, Canada. We describe interspecific landscape partitioning according to terrain, vegetation and land‐cover variables at 2 spatial scales. We developed multivariate models to predict the potential distribution of each species. At sampling site‐session combinations that detected either species, we then investigated whether the expected or actual occurrence of each influenced the likelihood of detecting the other while controlling for human influence and inherent landscape quality. Black bears were more likely than grizzly bears to occur in gentle, valley bottom terrain with lower proportions of open habitats. Each species also was detected less frequently with the other species than predicted by their respective models; however, the strength of this relationship decreased as landscapes became more characteristic of black bear habitat. As landscapes showed higher inherent potential to support grizzly bears, black bears occurred more than model prediction in areas with higher human access and proximity to major highways but less in national parks. As potential to support black bears increased, grizzly bears occurred more than model prediction only in national parks and less with increasing human access and proximity to major highways. Results suggest that competition is occurring between the species, and that the differential response of each species to human disturbance or excessive mortality may influence the outcome and hence landscape partitioning. Moreover, black bears are more likely to benefit from human encroachment into landscapes of high inherent value for grizzly bears than vice versa. Conservation implications relate to potential mediating effects of habitat and human influence on competitive interactions between the species.  相似文献   

10.
The area traversed in pursuit of resources defines the size of an animal’s home range. For females, the home range is presumed to be a function of forage availability. However, the presence of offspring may also influence home range size due to reduced mobility, increased nutritional need, and behavioral adaptations of mothers to increase offspring survival. Here, we examine the relationship between resource use and variation in home range size for female barren-ground grizzly bears (Ursus arctos) of the Mackenzie Delta region in Arctic Canada. We develop methods to test hypotheses of home range size that address selection of cover where cover heterogeneity is low, using generalized linear mixed-effects models and an information-theoretic approach. We found that the reproductive status of female grizzlies affected home range size but individually-based spatial availability of highly selected cover in spring and early summer was a stronger correlate. If these preferred covers in spring and early summer, a period of low resource availability for grizzly bears following den-emergence, were patchy and highly dispersed, females travelled farther regardless of the presence or absence of offspring. Increased movement to preferred covers, however, may result in greater risk to the individual or family.  相似文献   

11.
Ungulates often alter behavior and space use in response to interspecific competition. Despite observable changes in behavior caused by competitive interactions, research describing the effects of competition on survival or growth is lacking. We used spatial modeling to determine if habitat use by female mule deer (Odocoileus hemionus) was affected by other ungulate species prior to, during, and after parturition. We conducted our study in the Book Cliffs region of eastern Utah, USA, during 2019 and 2020. We used resource selection function (RSF) analysis to model space use of 4 ungulate species that potentially competed with mule deer: bison (Bos bison), cattle, elk (Cervus canadensis), and feral horses. We incorporated RSF models for competing species into a random forest analysis to determine if space use by mule deer was influenced by these other ungulate species. We used survival and growth data from neonate mule deer to directly assess potential negative effects of other ungulates. Habitat use by elk was an important variable in predicting use locations of mule deer during birthing and rearing. The relationship was positive, suggesting interference competition was not occurring. Survival of neonate mule deer increased as the probability of use by elk increased (hazard ratio = 0.185 ± 0.497 [SE]). Further, probability of use by elk in rearing habitat had no influence on growth of neonate mule deer from birth to 6 months of age, suggesting that exploitative competition was not occurring.  相似文献   

12.
Abstract: During the past 2 decades, the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem (GYE) has increased in numbers and expanded its range. Early efforts to model grizzly bear mortality were principally focused within the United States Fish and Wildlife Service Grizzly Bear Recovery Zone, which currently represents only about 61% of known bear distribution in the GYE. A more recent analysis that explored one spatial covariate that encompassed the entire GYE suggested that grizzly bear survival was highest in Yellowstone National Park, followed by areas in the grizzly bear Recovery Zone outside the park, and lowest outside the Recovery Zone. Although management differences within these areas partially explained differences in grizzly bear survival, these simple spatial covariates did not capture site-specific reasons why bears die at higher rates outside the Recovery Zone. Here, we model annual survival of grizzly bears in the GYE to 1) identify landscape features (i.e., foods, land management policies, or human disturbances factors) that best describe spatial heterogeneity among bear mortalities, 2) spatially depict the differences in grizzly bear survival across the GYE, and 3) demonstrate how our spatially explicit model of survival can be linked with demographic parameters to identify source and sink habitats. We used recent data from radiomarked bears to estimate survival (1983–2003) using the known-fate data type in Program MARK. Our top models suggested that survival of independent (age ≥ 2 yr) grizzly bears was best explained by the level of human development of the landscape within the home ranges of bears. Survival improved as secure habitat and elevation increased but declined as road density, number of homes, and site developments increased. Bears living in areas open to fall ungulate hunting suffered higher rates of mortality than bears living in areas closed to hunting. Our top model strongly supported previous research that identified roads and developed sites as hazards to grizzly bear survival. We also demonstrated that rural homes and ungulate hunting negatively affected survival, both new findings. We illustrate how our survival model, when linked with estimates of reproduction and survival of dependent young, can be used to identify demographically the source and sink habitats in the GYE. Finally, we discuss how this demographic model constitutes one component of a habitat-based framework for grizzly bear conservation. Such a framework can spatially depict the areas of risk in otherwise good habitat, providing a focus for resource management in the GYE.  相似文献   

13.
Omnivores are generally opportunistic foragers and have a flexible dietary response to resource abundance and availability. Their populations may consist of individuals that differ from each other in terms of their trophic positions, which implies that the dietary response to resource fluctuations differs within a population. We investigated how changes in the abundance of sika deer (Cervus nippon) affected dietary variation and body condition in the Asian black bear (Ursus thibetanus). We used fecal analysis, nitrogen stable isotopes (δ15N), and body measurements to determine whether the variation in dietary meat content of Asian black bears is positively related to variations in the density of the sika deer population, whether male bears have a higher trophic position compared to females, and whether dietary meat content is positively related with body mass or body condition of bears. We found a positive correlation between the occurrence of deer remains in bear feces and deer density, suggesting that bears change their diet in response to temporal changes in deer density. Male bears had higher δ15N values than females, and neither values varied when deer density decreased. Males selectively consumed deer after a reduction in deer density, whereas females consistently consumed more plant-based diet. The δ15N values were positively related with body mass of adult (>4 yr) bears but had no relationship with body condition of bears of either sex or any age class. Deer seem to be an important food source for large adult males, which have an advantage in mating. Thus, increasing herbivore abundance and availability altered the foraging strategy of Asian black bears, but the importance of herbivore on bear diet differs within a population.  相似文献   

14.
Abstract Widespread mule deer (Odocoilus hemionous) declines coupled with white-tailed deer (O. virginianus) increases prompted us to investigate the role of cougar (Puma concolor) predation in a white-tailed deer, mule deer, and cougar community in northeast Washington, USA. We hypothesized that cougars select for and disproportionately prey on mule deer in such multiple-prey communities. We estimated relative annual and seasonal prey abundance (prey availability) and documented 60 cougar kills (prey usage) from 2002 to 2004. White-tailed deer and mule deer comprised 72% and 28% of the total large prey population and 60% and 40% of the total large prey killed, respectively. Cougars selected for mule deer on an annual basis (αmd = 0.63 vs. αwt = 0.37; P = 0.066). We also detected strong seasonal selection for mule deer with cougars killing more mule deer in summer (αmd = 0.64) but not in winter (αmd = 0.53). Cougars showed no seasonal selection for white-tailed deer despite their higher relative abundance. The mean annual kill interval of 6.68 days between kills varied little by season (winter = 7.0 days/kill, summer = 6.6 days/kill; P = 0.78) or prey species (white-tailed deer = 7.0 days/kill, mule deer = 6.1 days/kill; P = 0.58). Kill locations for both prey species occurred at higher elevations during summer months (summer = 1,090 m, winter = 908 m; P = 0.066). We suspect that cougars are primarily subsisting on abundant white-tailed deer during winter but following these deer to higher elevations as they migrate to their summer ranges, resulting in a greater spatial overlap between cougars and mule deer and disproportionate predation on mule deer.  相似文献   

15.
Chronic wasting disease (CWD) is an infectious prion disease that affects mule deer, along with other Cervids. It is a slow-developing, fatal disease which is rare in the free-ranging deer population of Utah. We present a sex-structured, spatial model for the spread of CWD over heterogeneous landscapes, incorporating both horizontal and environmental transmission pathways. To connect the local movement of deer to the regional spread of CWD, we use ecological diffusion with motility coefficients estimated from mule deer movement data. Ecological diffusion allows for aggregation of populations in desirable habitats and therefore allows for an interaction between density dependent disease transmission and landscape structure. The major innovation presented is use of homogenization to accelerate simulations of disease spread in southeastern Utah, from the La Sal Mountains near Moab to the Abajo Mountains near Monticello. The homogenized model provides accuracy while maintaining fidelity to small-scale habitat effects on deer distribution, including differential aggregation in land cover types with high residence times, with errors comparable to the order parameter measuring separation of small and large scales ( \(\epsilon \approx .01\) in this case). We use the averaged coefficients from the homogenized model to explore asymptotic invasion speed and the impact of current population size on disease spread in southeastern Utah.  相似文献   

16.
Forage availability and predation risk interact to affect habitat use of ungulates across many biomes. Within sky‐island habitats of the Mojave Desert, increased availability of diverse forage and cover may provide ungulates with unique opportunities to extend nutrient uptake and/or to mitigate predation risk. We addressed whether habitat use and foraging patterns of female mule deer (Odocoileus hemionus) responded to normalized difference vegetation index (NDVI), NDVI rate of change (green‐up), or the occurrence of cougars (Puma concolor). Female mule deer used available green‐up primarily in spring, although growing vegetation was available during other seasons. Mule deer and cougar shared similar habitat all year, and our models indicated cougars had a consistent, negative effect on mule deer access to growing vegetation, particularly in summer when cougar occurrence became concentrated at higher elevations. A seemingly late parturition date coincided with diminishing NDVI during the lactation period. Sky‐island populations, rarely studied, provide the opportunity to determine how mule deer respond to growing foliage along steep elevation and vegetation gradients when trapped with their predators and seasonally limited by aridity. Our findings indicate that fear of predation may restrict access to the forage resources found in sky islands.  相似文献   

17.
Animals have been assumed to employ an optimal foraging strategy (e.g., rate-maximizing strategy). In patchy food environments, intake rate within patches is positively correlated with patch quality, and declines as patches are depleted through consumption. This causes patch-leaving and determines patch residence time. In group-foraging situations, patch residence times are also affected by patch sharing. Optimal patch models for groups predict that patch residence times decrease as the number of co-feeding animals increases because of accelerated patch depletion. However, group members often depart patches without patch depletion, and their patch residence time deviates from patch models. It has been pointed out that patch residence time is also influenced by maintaining social proximity with others among group-living animals. In this study, the effects of maintaining social cohesion and that of rate-maximizing strategy on patch residence time were examined in Japanese macaques (Macaca fuscata). I hypothesized that foragers give up patches to remain in the proximity of their troop members. On the other hand, foragers may stay for a relatively long period when they do not have to abandon patches to follow the troop. In this study, intake rate and foraging effort (i.e., movement) did not change during patch residency. Macaques maintained their intake rate with only a little foraging effort. Therefore, the patches were assumed to be undepleted during patch residency. Further, patch residence time was affected by patch-leaving to maintain social proximity, but not by the intake rate. Macaques tended to stay in patches for short periods when they needed to give up patches for social proximity, and remained for long periods when they did not need to leave to keep social proximity. Patch-leaving and patch residence time that prioritize the maintenance of social cohesion may be a behavioral pattern in group-living primates.  相似文献   

18.
To increase resource gain, many herbivores pace their migration with the flush of nutritious plant green‐up that progresses across the landscape (termed “green‐wave surfing”). Despite concerns about the effects of climate change on migratory species and the critical role of plant phenology in mediating the ability of ungulates to surf, little is known about how drought shapes the green wave and influences the foraging benefits of migration. With a 19 year dataset on drought and plant phenology across 99 unique migratory routes of mule deer (Odocoileus hemionus) in western Wyoming, United States, we show that drought shortened the duration of spring green‐up by approximately twofold (2.5 weeks) and resulted in less sequential green‐up along migratory routes. We investigated the possibility that some routes were buffered from the effects of drought (i.e., routes that maintained long green‐up duration irrespective of drought intensity). We found no evidence of drought‐buffered routes. Instead, routes with the longest green‐up in non‐drought years also were the most affected by drought. Despite phenological changes along the migratory route, mule deer closely followed drought‐altered green waves during migration. Migrating deer did not experience a trophic mismatch with the green wave during drought. Instead, the shorter window of green‐up caused by drought reduced the opportunity to accumulate forage resources during rapid spring migrations. Our work highlights the synchronization of phenological events as an important mechanism by which climate change can negatively affect migratory species by reducing the temporal availability of key food resources. For migratory herbivores, climate change poses a new and growing threat by altering resource phenology and diminishing the foraging benefit of migration.  相似文献   

19.
陶双伦  张伟华  李俊年  何岚  杨锡福 《生态学报》2010,30(18):4839-4847
能量收益函数描述了植食性哺乳动物在植物斑块的食物摄入量与在斑块停留时间的函数关系,为觅食生态学理论的重要组成部分。在新鲜白三叶叶片构成的各类叶片斑块上,测定东方田鼠的觅食行为,建立其能量收益函数模型,分析植食性哺乳动物能量收益增长减速的机制。研究结果表明,东方田鼠觅食大叶片时,叶片干物质收益与停留时间呈非线性渐进函数关系,能量收益函数为渐进函数;觅食中、小型叶片时,叶片干物质收益与停留时间呈线性函数关系,能量收益函数为线性函数;没有检测到东方田鼠的能量收益动态呈分段线性函数或S型函数增长。东方田鼠在大、中型叶片斑块觅食时,随停留时间的增大,口量呈线性或指数递减,而处理时间则呈线性或指数递增,采食时间、间隔时间及咀嚼频次保持相对稳定,瞬时摄入率呈减小趋势;东方田鼠在小叶片斑块觅食时,觅食行为参数口量、摄入率、采食时间、间隔时间、处理时间及咀嚼频次均保持相对稳定。研究结果充分验证了,植食性哺乳动物在消费植被过程中,大型可利用性植物减少,受植物大小调控的动物口量减小,处理时间增加,引起瞬时摄入率降低,导致其能量收益增长减速的假说。  相似文献   

20.
From fine‐scale foraging to broad‐scale migration, animal movement is shaped by the distribution of resources. There is mounting evidence, however, that learning and memory also guide movement. Although migratory mammals commonly track resource waves, how resource tracking and memory guide long‐distance migration has not been reconciled. We examined these hypotheses using movement data from four populations of migratory mule deer (n = 91). Spatial memory had an extraordinary influence on migration, affecting movement 2–28 times more strongly than tracking spring green‐up or autumn snow depth. Importantly, with only an ability to track resources, simulated deer were unable to recreate empirical migratory routes. In contrast, simulated deer with memory of empirical routes used those routes and obtained higher foraging benefits. For migratory terrestrial mammals, spatial memory provides knowledge of where seasonal ranges and migratory routes exist, whereas resource tracking determines when to beneficially move within those areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号