首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
酸水解蚕蛹制备复合氨基酸的研究   总被引:7,自引:0,他引:7  
采用硫酸水解法,以蚕蛹制取复合氨基酸产品,得到氨基酸态氮分别为9.05%和13.45%的食用复合氨基粉和精制复合氨基酸粉。食用复合氨基酸粉含有18种氨基酸,其中必需氨基酸含量为39.2%。食用复合氨基酸粉的制备方法经工厂小批量生产证实,其工艺简单易行,适合于中小企业采用,该产品的质量优良,生产成本低廉,具有市场竞争力。  相似文献   

2.
酸催化半干微波法水解蚕蛹蛋白的研究   总被引:14,自引:0,他引:14  
以酸为催化剂,采用半干微波法水解蚕蛹蛋白制备氨基酸。在适宜条件下,20min内氨基氮生成率达52.4%,产品收率为43.7%,游离氨基酸收率为34.0%。与常规酸水解法相比,反应时间大大缩短,能耗大幅度下降,产品收率和纯度提高。  相似文献   

3.
本文探讨了天然蛋白质水解过程中形成苦味的原因。  相似文献   

4.
猪血蛋白的酶水解及氨基酸含量   总被引:16,自引:1,他引:16  
以AS1.398中性蛋白酶、胰蛋白酶、木瓜蛋白酶和菠萝蛋白酶对猪血蛋白进行水解,AS1.398中性蛋白酶对猪血蛋白的水解能力最强。采用活性炭对酶水解液进行脱色。脱色后的酶水解液中含有18种氨基酸,必需氨基酸占总氨基酸的39.18%。  相似文献   

5.
食源性蛋白质水解度常数htot值的测定   总被引:1,自引:0,他引:1  
利用全自动氨基酸分析仪,对植物性蛋白质、动物性蛋白质和海洋蛋白质这三类蛋白质中的氨基酸含量进行测定,并对这三类蛋白质的htot值进行了计算、分析。结果显示,这三类蛋白质的htot值分别为:猪后肘肉7.62mmol.g-1、猪五花肉7.63mmol.g-1、鸡腿肉7.65mmol.g-1、大米7.44mmol.g-1、玉米7.57mmol.g-1、花生仁7.55mmol.g-1、鳗鱼肉7.64mmol.g-1、扇贝肉7.71mmol.g-1、牡蛎肉7.94mmol.g-1、章鱼肉7.79mmol.g-1。比较可知,这三类蛋白质中每克纯蛋白所含的肽键毫摩尔数为海洋蛋白质>动物性蛋白质>植物性蛋白质,为蛋白质水解度的测定提供了科学依据。  相似文献   

6.
蛋白质的酶水解过程研究   总被引:9,自引:1,他引:9  
进行了蛋白质酶水解过程的研究。结果表明木瓜蛋白酶对混合蛋白质的亲和力最强 ,而 1398蛋白酶的亲和力最弱。也表明作用位点和亲和力之间有一定的对应关系 ,Km值和作用位点氨基酸含量比例的相关系数为 0 .90 9。温度影响结果表明温度较低时温度升高加速水解反应过程处主要地位 ;当温度较高时 ,酶失活过程处主导地位。在一定水解时间内的讨论最适温度条件具有更明确的针对性 ,从本研究的采用胰酶 (胰蛋白酶和胰凝乳蛋白酶 )水解 4h的条件下 ,反应温度控制在45~ 5 0℃之间最适  相似文献   

7.
蚕蛹水解液的氨基酸分组分离法   总被引:3,自引:0,他引:3  
采用732、717树脂对蚕蛹酸水解液进行分离。732树脂先将蚕蛹水解液粗略分成酸性、中性、碱性氨基酸,717树脂再将中性氨基酸分成甘氨酸-丙氨组酸和亮氨酸-异亮氨酸-缬氨酸组。其中亮、异亮、缬氨酸的含量达到75.9%;同时还进行了脯氨酸的分离,经717树脂分离得到的脯氨酸的含量为50.6%。  相似文献   

8.
本研究利用绢纺厂废丝为原料,在6mol/L盐酸110℃条件下进行水解,探讨水解时间与氨基酸含量之间的关系。试验结果经数理统计表明:它们之间的关系符合方程y=a+bx+cx ̄2,大部分单一氨基酸和混合氨基酸在被水解15小时左右时,其含量最高。实验也表明绢纺废丝的氨基酸含量在95%以上。  相似文献   

9.
毛细管水解及反相高效液相色谱分析蛋白质的氨基酸组成   总被引:1,自引:0,他引:1  
  相似文献   

10.
11.
一种简便的提取蚕蛹蛋白新方法   总被引:14,自引:0,他引:14  
以蚕蛹为原料,采用一种简便的提取工艺提取蚕蛹蛋白质,结果表明:干蛹约占鲜蛹重的32.5%,干蛹中蛋白质含量为54.2%,成品中蚕蛹蛋白质含量为83.31%,其蚕蛹蛋白收率达干蛹的61.32%,是文献报道用减法提取收率的2.27倍,蚕蛹中蛋白质的回收率达94.33%。  相似文献   

12.
蚕蛹的综合利用   总被引:15,自引:1,他引:15  
本文综述了蚕蛹综合利用的生产工艺及其主要产品的应用,并分析了存在的问题,展望了开发前景.  相似文献   

13.
To investigate the function of adaptor protein complex‐1 (AP‐1) in the silkworm, we characterized AP‐1 in the silkworm by RNAi technique and co‐localization methods. As a result, AP‐1 was found to exist as cytosolic form and membrane‐bound form distinguished by phosphate status, showing molecular mass difference. There was relatively more cytosolic form of AP‐1 than its membrane‐bound counterpart in the silkworm. However, AP‐1 distributed predominantly as cytosolic form in BmN cells. Interruption of AP‐1 expression via DsRNA was more efficient in BmN cells than in the insect larval, which led to a tendency to dissociation between subcellular organelles like the Golgi apparatus and the mitochondria. Environmental condition changes like relatively higher temperature and treatment with dimethyl sulfoxide can lead to expression variance of AP‐1 both in mRNA and protein level. In BmN cells, both the heavy chain γ and light chain σ could clearly co‐localize with AP‐1 β, mostly forming pits in cytoplasm. Two isoforms of AP‐1 σ corresponded to distinct subcellular distribution pattern, possibly due to C‐terminal amino acids difference.  相似文献   

14.
The immune deficiency (Imd) signaling pathway is activated by Gram‐negative bacteria for producing antimicrobial peptides (AMPs). In Drosophila melanogaster, the activation of this pathway is initiated by the recognition of Gram‐negative bacteria by peptidoglycan (PGN) recognition proteins (PGRPs), PGRP‐LC and PGRP‐LE. In this study, we found that the Imd pathway is involved in enhancing the promoter activity of AMP gene in response to Gram‐negative bacteria or diaminopimelic (DAP) type PGNs derived from Gram‐negative bacteria in an immune responsive silkworm cell line, Bm‐NIAS‐aff3. Using gene knockdown experiments, we further demonstrated that silkworm PGRP L6 (BmPGRP‐L6) is involved in the activation of E. coli or E. coli‐PGN mediated AMP promoter activation. Domain analysis revealed that BmPGRP‐L6 contained a conserved PGRP domain, transmembrane domain, and RIP homotypic interaction motif like motif but lacked signal peptide sequences. BmPGRP‐L6 overexpression enhances AMP promoter activity through the Imd pathway. BmPGRP‐L6 binds to DAP‐type PGNs, although it also binds to lysine‐type PGNs that activate another immune signal pathway, the Toll pathway in Drosophila. These results indicate that BmPGRP‐L6 is a key PGRP for activating the Imd pathway in immune responsive silkworm cells.  相似文献   

15.
酶法提取银杏黄酮类化合物研究   总被引:29,自引:1,他引:29  
本文研究了纤维素酶酶解法提取银杏总黄酮工艺。与传统的乙醇提取工艺相比,银杏总黄酮得率提高了18.92%。实验确定了最佳提取条件:酶浓度0.40mg/mL,酶作用时间120min,酶解温度50℃,酶解介质pH值为4.5,乙醇浓度70%,提取温度70℃。  相似文献   

16.
This study investigated the changes induced on nylon 6,6 fabric by a mixture of proteolytic and lipolytic enzymes. Technical measurements were studied including those of Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), weight loss (WL), bending lengths (BL), scanning electron microscopy (SEM), moisture absorbency (MA), and reflectance spectroscopy (RS). For this purpose, nylon 6,6 fabrics were treated separately with different concentrations of protease and lipase mixtures in solution. The dyeing process was then carried out on the treated fabrics with two reactive and acid dyes. The intensity of major peaks in the FTIR spectra of the protease-treated samples is in favor of chemical changes the polypeptide functional groups in the fabrics. Thermal studies also show a significant decrease in the thermal degradation temperature of the treated polymer at temperatures higher than 400°C. The protease and lipase mixtures decreased the sample weight, while lipase intensified the weight loss comparing with protease. It was observed that the concentration of lipase enzyme had a direct influence on the darkness of dyed samples.  相似文献   

17.
褐变蚕蛹分离蛋白脱色与改性研究   总被引:10,自引:0,他引:10  
研究了褐变蚕蛹分离蛋白脱色方法及其酸酐、硫酸锆改性。用酸性乙酸酐法处理蚕蛹分离蛋白质 ,可获得白色脱色物 ,其最佳条件是 ,蚕蛹分离蛋白∶乙酸酐∶H2 O2 =1∶1.2 5∶1.5、温度≥ 80℃、时间≥ 30min。过氧乙酸的作用可能是使参与褐变的赖氨酸ε 氨基重新游离并断开胱氨酸之间的二硫键。乙酸酐或顺丁烯二酸酐修饰赖氨酸ε 氨基的最适条件是 :脱色蛋白∶乙酸酐 (或顺丁烯二酸酐 ) =1∶0 .3(或 0 4 )、pH 9.0~ 9.5、温度≤ 4 5℃、时间 6 0min。硫酸锆修饰氨基和羧基的最适条件是 :脱色蛋白∶硫酸锆 =1∶0 .0 4、pH≤ 3.0、温度≥ 80℃、时间 10min。脱色蛋白经过乙酸酐或顺丁烯二酸酐、硫酸锆修饰 ,其白色可稳定 ,在pH 2~ 12及 80℃条件下均不变色。在碱性条件下 ,H2 O2 可部分氧化蚕蛹分离蛋白褐色 ,获得乳黄色脱色物 ,其最适条件是 ,蚕蛹蛋白∶H2 O2 =1∶1.5、pH 9.0~ 9.5、温度≥ 80℃、时间≥30min。蚕蛹蛋白褐变的原因可能主要是其赖氨酸ε 氨基与氨基葡萄糖在碱性加热条件下发生Marl laid反应所致。此外 ,蛋白质中游离α 氨基、谷氨酸γ 羧基及天门冬氨酸β 羧基可能也参与了褐变反应  相似文献   

18.
酶促水解大豆分离蛋白动力学模型的研究   总被引:3,自引:0,他引:3  
本文对AS1.398中性蛋白酶在pH6.9和温度49℃条件下水解大豆分离蛋白的动力学机制进行了研究.结果表明:酶水解速率随水解反呈指数递减.为了解释实验结果,我们提出了如下假设:对底物而言水解反应终为零级反应,水解过程中由于游离酶攻击酶-底物中间络合物而造成的不可逆酶变性是一个二级动力学过程.在此基础上,由实验数据推导得到了描述AS1.398中性蛋白酶催化水解大豆分离蛋白的动力学方程,该方程可用于指导和优化酶解反应实验.  相似文献   

19.
This study investigates the mechanism through which increased 30K protein inhibits ecdysone‐induced apoptosis in the Bm5 silkworm ovarian cell line. Treatment of Bm5 cells with 20‐hydroxyecdysone (20E) after transfection with the pIZT/V5‐His control vector triggered apoptosis, but 20E treatment did not trigger apoptosis in Bm5 cells transfected with the pIZT/30K/V5‐His vector. To confirm its inhibitory effect on apoptosis, 30K protein was first purified from Escherichia coli transformed with a 30K expression vector and used to generate specific antibodies in mice. Anti‐30K antiserum was used to confirm synthesis of the 30K protein in pIZT/30K/V5‐His‐transfected Bm5 cells and to detect 30K protein binding to the ecdysone receptor‐B1 (EcR‐B1). Anti‐30K antiserum was used to immunoprecipitate protein complexes containing 30K from Bm5 cells transfected with pIZT/30K/V5‐His vector and treated with 20E. We observed that 30K proteins bound primarily to the EcR‐B1 and not to ultraspiracle (USP). Reciprocal immunoprecipitation of EcR‐B1‐containing complexes from Bm5 cells transfected with control pIZT/V5‐His vector and treated with 20E showed that EcR‐B1 bound to USP in the absence of 30K but did not bind to USP in pIZT/30K/V5‐His‐transfected Bm5 cells. These results demonstrate that 30K proteins block USP binding to EcR‐B1 through formation of a 30K/EcR‐B1 complex, resulting in inhibition of 20E‐induced Bm5 cell apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号