首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Translation in vitro of Drosophila heat-shock messages.   总被引:8,自引:0,他引:8  
Polysomal RNA from heat-shocked Drosophila tissue culture cells directs the in vitro synthesis of proteins which appear to be the same as heat-shock proteins made in vivo. Each message is about 1.5 times larger than the minimum size needed to code for the protein it specifies. In situ hybridization indicates a correspondence between messages for some of the proteins and particular chromosomal sites.  相似文献   

2.
N6-threonylcarbamoyladenosine (t6A) is a modified nucleotide found in all transfer RNAs (tRNAs) decoding codons starting with adenosine. Its role is to facilitate codon–anticodon pairing and to prevent frameshifting during protein synthesis. Genetic studies demonstrated that two universal proteins, Kae1/YgjD and Sua5/YrdC, are necessary for t6A synthesis in Saccharomyces cerevisiae and Escherichia coli. In Archaea and Eukarya, Kae1 is part of a conserved protein complex named kinase, endopeptidase and other proteins of small size (KEOPS), together with three proteins that have no bacterial homologues. Here, we reconstituted for the first time an in vitro system for t6A modification in Archaea and Eukarya, using purified KEOPS and Sua5. We demonstrated binding of tRNAs to archaeal KEOPS and detected two distinct adenosine triphosphate (ATP)-dependent steps occurring in the course of the synthesis. Our data, together with recent reconstitution of an in vitro bacterial system, indicated that t6A cannot be catalysed by Sua5/YrdC and Kae1/YgjD alone but requires accessory proteins that are not universal. Remarkably, we observed interdomain complementation when bacterial, archaeal and eukaryotic proteins were combined in vitro, suggesting a conserved catalytic mechanism for the biosynthesis of t6A in nature. These findings shed light on the reaction mechanism of t6A synthesis and evolution of molecular systems that promote translation fidelity in present-day cells.  相似文献   

3.
Protochlorophyllide-binding proteins were investigated and possible changes in the pigment-protein association during light-induced chlorophyll synthesis were analyzed. Three major results were obtained. (1) Four protochlorophyllide-binding polypeptides were separated electrophoretically on polyacrylamide gels and visualized by their fluorescence. The number and size of these protochlorophyllide-binding proteins isolated from darkgrown and illuminated plants were not affected by light. (2) The association of pigment with these proteins was studied using exogenous [3H]protochlorophyllide as substrate in an NADPH-dependent in vitro chlorophyll synthesis assay. It was found that a constant exchange of protein-bound and free pigment occurs and that freshly synthesized chlorophyllide does not accumulate on any of the four pigment-binding proteins in vitro. (3) NADPH does not affect the amount of pigment bound to protein in vitro, even during chlorophyll synthesis which occurred only in the presence of NADPH.  相似文献   

4.
We have examined the messenger RNA which codes for the ribosomal proteins in Ehrlich ascites tumor cells. Poly(A)-containing mRNA was isolated from polysomes and fractionated into 11 size classes whose average molecular weights were between 1.8 × 105 and 24 × 105. These mRNAs were used to direct protein synthesis in a fractionated translational system that was derived completely from Ehrlich ascites tumor cells. More than 90% of the ribosomal proteins which we could identify were coded for by mRNAs averaging in size between Mr = 180 × 103 and 320 × 103. The small size of these mRNAs indicates that the cytoplasmic mRNAs which specify the ribosomal proteins are monocistronic. We could detect the synthesis of 36 of 48 ribosomal reference proteins as well as 20 additional polypeptides which had characteristics similar to ribosomal protein. The ribosomal proteins were identified on the basis of their positive charge, small size, electrophoretic properties on two-dimensional polyacrylamide gels and chromatographic characteristics on carboxymethyl-cellulose.  相似文献   

5.
DNA from adenovirus-2 and mouse myeloma tumors stimulate RNA synthesis and amino acid incorporation into protein in a cell-free extract from Escherichia coli. The RNA synthesis is dependent on exogenous DNA, and the RNA can be hybridized to respective template DNA. A major part of this RNA is also found attached to E. coli polysomes suggesting that RNA with messenger-like activity has been synthesized. However, the in vitro-synthesized polypeptides using adenovirus DNA or myeloma DNA do not correspond in size or antigenic activity to either the virion proteins or immunoglobulins, respectively.  相似文献   

6.
The size distribution of the proteins synthesized by isolated HeLa cell mitochondria has been analyzed by polyacrylamide gel electrophoresis and compared to that of the in vivo products of mitochondrial protein synthesis.The electrophoretic pattern of the mitochondrial proteins labeled in vitro with [3H]leucine has a group of partially resolved components migrating in the region corresponding to 12,000 to 25,000 molecular weight, and another group, more abundant, in the range from 40,000 to 55,000 molecular weight. This pattern is very similar, after a two-hour incubation of mitochondria, to that of the proteins labeled in vivo in a 30-minute [3H]leucine pulse.  相似文献   

7.
Many important cellular processes are performed by molecular machines, composed of multiple proteins that physically interact to execute biological functions. An example is the bacterial peptidoglycan (PG) synthesis machine, responsible for the synthesis of the main component of the cell wall and the target of many contemporary antibiotics. One approach for the identification of essential components of a cellular machine involves the determination of its minimal protein composition. Staphylococcus aureus is a Gram-positive pathogen, renowned for its resistance to many commonly used antibiotics and prevalence in hospitals. Its genome encodes a low number of proteins with PG synthesis activity (9 proteins), when compared to other model organisms, and is therefore a good model for the study of a minimal PG synthesis machine. We deleted seven of the nine genes encoding PG synthesis enzymes from the S. aureus genome without affecting normal growth or cell morphology, generating a strain capable of PG biosynthesis catalyzed only by two penicillin-binding proteins, PBP1 and the bi-functional PBP2. However, multiple PBPs are important in clinically relevant environments, as bacteria with a minimal PG synthesis machinery became highly susceptible to cell wall-targeting antibiotics, host lytic enzymes and displayed impaired virulence in a Drosophila infection model which is dependent on the presence of specific peptidoglycan receptor proteins, namely PGRP-SA. The fact that S. aureus can grow and divide with only two active PG synthesizing enzymes shows that most of these enzymes are redundant in vitro and identifies the minimal PG synthesis machinery of S. aureus. However a complex molecular machine is important in environments other than in vitro growth as the expendable PG synthesis enzymes play an important role in the pathogenicity and antibiotic resistance of S. aureus.  相似文献   

8.
Protein accumulation and protein synthesis were investigated during anaerobic stress and heat shock in maize seedlings (Zea mays L.). Antibodies against alcohol dehydrogenase (ADH) and cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) were used to investigate the expression of the genes encoding these proteins during stress treatment. ADH1 protein accumulation is shown to increase about 10-fold in the root after 24 hours of anaerobic treatment. The Gpc gene products are separable into two size classes: the slow mobility GAPC1 and GAPC2 (GAPC1/2), and the faster GAPC3 and GAPC4 (GAPC3/4). The GAPC1/2 antigen did not increase at all, whereas the GAPC3/4 antigen increased less than fourfold. The proteins synthesized in the root during aerobic and anaerobic conditions were compared, and GAPC3/4 was identified as an anaerobic polypeptide. In vitro translations were used to estimate the levels of different mRNAs in roots following anaerobiosis, recovery from anaerobiosis, and heat shock. This was compared with the in vivo protein synthesis rates in roots labeled under identical conditions. In vivo labeling indicates that GAPC and ADH are not heat shock proteins. Although both GAPC3/4- and ADH1-translatable mRNA levels increase about 10-fold during anaerobiosis, in vivo labeling of these proteins (relative to total protein synthesis) is further enhanced, leading to a selective translation effect for ADH1 of threefold, and for GAPC3/4 of sixfold. In contrast, anoxia causes no change in GAPC1/2-translatable mRNA levels or in vivo labeling. As an additional comparison, β-glucosidase mRNA levels are found to be constant during anoxia, but in vivo synthesis decreases.  相似文献   

9.
10.
When ciliogenesis first occurs in sea urchin embryos, the major building block proteins, tubulin and dynein, exist in substantial pools, but most 9+2 architectural proteins must be synthesized de novo. Pulse-chase labeling with [3H]leucine demonstrates that these proteins are coordinately up-regulated in response to deciliation so that regeneration ensues and the tubulin and dynein pools are replenished. Protein labeling and incorporation into already-assembled cilia is high, indicating constitutive ciliary gene expression and steady-state turnover. To determine whether either the synthesis of tubulin or the size of its available pool is coupled to the synthesis or turnover of the other 9+2 proteins in some feedback manner, fully-ciliated mid- or late-gastrula stage Strongylocentrotus droebachiensis embryos were pulse labeled in the presence of colchicine or taxol at concentrations that block ciliary growth. As a consequence of tubulin autoregulation mediated by increased free tubulin, no labeling of ciliary tubulin occurred in colchicine-treated embryos. However, most other proteins were labeled and incorporated into steady-state cilia at near-control levels in the presence of colchicine or taxol. With taxol, tubulin was labeled as well. An axoneme-associated 78 kDa cognate of the molecular chaperone HSP70 correlated with length during regeneration; neither colchicine nor taxol influenced the association of this protein in steady-state cilia. These data indicate that 1) ciliary protein synthesis and turnover is independent of tubulin synthesis or tubulin pool size; 2) steady-state incorporation of labeled proteins cannot be due to formation or elongation of cilia; 3) substantial tubulin exchange takes place in fully-motile cilia; and 4) chaperone presence and association in steady-state cilia is independent of background ciliogenesis, tubulin synthesis, and tubulin assembly state.  相似文献   

11.
Function of the bacteriophage T4 transfer RNA's   总被引:16,自引:0,他引:16  
Maximum growth of bacteriophage T4 requires the phage complement of transfer RNA. tRNA-deficient T4 grown on laboratory strains of Escherichia coli showed a moderate decrease in burst size that correlated with a decrease in the rate of synthesis of the major structural proteins of the T4 tail fiber. Some tRNA-defieient T4 mutants showed a 20-fold reduction in burst size on one of a number of E. coli strains isolated from hospital patients. We consider it most likely that the T4 tRNA's function to ensure optimum rates of protein synthesis in the maximum number of hosts by supplementing the reading capacity for those codons used more commonly in the virus than in the host.  相似文献   

12.
Experiments are reported which were designed to test for induced synthesis of microtubule proteins associated with the rapid proliferation of basal bodies and associated intracytoplasmic microtubules which occurs during oral replacement in Tetrahymena. None was found. Instead, it is shown that these structures can be formed with de novo synthesis of as little as 6% of their microtubule proteins. It is suggested that basal body proliferation may be controlled by synthesis of morphogenetic regulator proteins.  相似文献   

13.
The intracellular site of synthesis of mitochondrial ribosomal proteins (MRP) in Neurospora crassa has been investigated using three complementary approaches. (a) Mitochondrial protein synthesis in vitro: Tritium-labeled proteins made by isolated mitochondria were compared to 14C-labeled marker MRP by cofractionation in a two-step procedure involving isoelectric focusing and polyacrylamide gel electrophoresis. Examination of the electrophoretic profiles showed that essentially none of the peaks of in vitro product corresponded exactly to any of the MRP marker peaks. (b) Sensitivity of in vivo MRP synthesis to chloramphenicol: Cells were labeled with leucine-3H in the presence of chloramphenicol, mitochondrial ribosomal subunits were subsequently isolated, and their proteins fractionated by isoelectric focusing followed by gel electrophoresis. The labeling of every single MRP was found to be insensitive to chloramphenicol, a selective inhibitor of mitochondrial protein synthesis. (c) Sensitivity of in vivo MRP synthesis to anisomycin: We have found this antibiotic to be a good selective inhibitor of cytoplasmic protein synthesis in Neurospora. In the presence of anisomycin the labeling of virtually all MRP is inhibited to the same extent as the labeling of cytoplasmic ribosomal proteins. On the basis of these three types of studies we conclude that most if not all 53 structural proteins of mitochondrial ribosomal subunits in Neurospora are synthesized by cytoplasmic ribosomes.  相似文献   

14.
We report here that in Escherichia coli, the anti-bacterial agent nalidixic acid induces transient stabilization and increased synthesis of σ32, accompanied by the induction of heat shock proteins (Dnak and GroEL proteins). The induction of heat shock proteins, increased synthesis of σ32, and stabilization of σ32 observed on treatment of wild-type cells with nalidixic acid were not observed in a nalA26 mutant, a strain that is resistant to nalidixic acid as the result of a mutation in the gyrA gene. Not only oxolinic acid, but also novobiocin, whose targets are the A and B subunits of DNA gyrase, respectively, also induced stabilization and increased synthesis of σ32. Thus, inhibition of the activity of DNA gyrase may cause stabilization and increased synthesis of σ32, resulting in turn in induction of heat shock proteins.  相似文献   

15.
《Insect Biochemistry》1986,16(2):337-345
The uptake of radiolabeled haemolymph and fat body proteins from fourth instar larvae of Heliothis zea (Boddie) by eggs of Microplitis croceipes (Cresson) was examined by SDS-polyacrylamide gel electrophoresis and by autoradiography. None of the 125I-labeled haemolymph proteins was detected in eggs exposed to the proteins in vivo. Although several of the proteins were observed in eggs incubated with the labeled proteins in vitro, none of these proteins was degraded or resynthesized into new structural proteins during development of the embryo. Similarly, no significant uptake of labeled fat body proteins by the eggs could be detected in vitro. On the other hand, protein synthesis measured by incorporation of [35S]methionine occurred throughout egg development. Proteins were synthesized at least 1 hr after the egg was deposited into the host. The protein patterns of eggs on one-dimensional SDS gels were complex and ranged in size from less than 18,500 to more than 330,000 mol. wt. The protein band patterns of the newly synthesized proteins showed some qualitative differences at 1–8, 16–32 and 40 hr after egg deposition. We conclude that eggs do not absorb or utilize the host apoproteins (or degradation products) but instead synthesize proteins de novo from free amino acids in the host haemolymph.  相似文献   

16.
Serine carboxypeptidase-like (SCPL) proteins have recently emerged as a new group of plant acyltransferases. These enzymes share homology with peptidases but lack protease activity and instead are able to acylate natural products. Several SCPL acyltransferases have been characterized to date from dicots, including an enzyme required for the synthesis of glucose polyesters that may contribute to insect resistance in wild tomato (Solanum pennellii) and enzymes required for the synthesis of sinapate esters associated with UV protection in Arabidopsis thaliana. In our earlier genetic analysis, we identified the Saponin-deficient 7 (Sad7) locus as being required for the synthesis of antimicrobial triterpene glycosides (avenacins) and for broad-spectrum disease resistance in diploid oat (Avena strigosa). Here, we report on the cloning of Sad7 and show that this gene encodes a functional SCPL acyltransferase, SCPL1, that is able to catalyze the synthesis of both N-methyl anthraniloyl- and benzoyl-derivatized forms of avenacin. Sad7 forms part of an operon-like gene cluster for avenacin synthesis. Oat SCPL1 (SAD7) is the founder member of a subfamily of monocot-specific SCPL proteins that includes predicted proteins from rice (Oryza sativa) and other grasses with potential roles in secondary metabolism and plant defense.  相似文献   

17.
Human cell-derived in vitro protein synthesis systems are useful for the production of recombinant proteins. Productivity can be increased by supplementation with GADD34, a protein that is difficult to express in and purify from E. coli. Deletion of the N-terminal 120 or 240 amino acids of GADD34 improves recovery of this protein from E. coli without compromising its ability to boost protein synthesis in an in vitro protein synthesis system. The use of N-terminally truncated GADD34 proteins in place of full-length GADD34 should improve the utility of human cell-based cell-free protein synthesis systems.  相似文献   

18.
19.
《Insect Biochemistry》1990,20(5):493-500
The patterns of protein synthesis by the milk gland and the fat body of female Glossinapallidipes during the pregnancy cycle were studied by incubation with [35S]methionine both in vivo and in vitro. The pattern of protein synthesis by the milk gland changed with the stage of the larva in the uterus. Very little synthesis occurred in the milk gland until the first instar larva hatched. Then four proteins (13, 16, 24 and 72 kDa) were prominently synthesized. As the larva matured, the synthesis of 19, 38, 40 and 72 kDa proteins increased, whereas that of the 13 and 24 kDa proteins decreased. Just before larviposition, only the 16 and 72 kDa proteins were still being synthesized. The milk gland secreted into the medium primarily the 13, 16, 19 and 72 kDa proteins, all of which were found in the larval gut after a 5 hr pulse of labeled methionine in vivo. During most of the pregnancy cycle protein synthesis in the fat body was low compared to that of the milk gland and only small amounts of several low molecular weight proteins (less than or equal to 16 kDa) were released into the medium. But when a large third instar larva was present in the uterus, the fat body synthesized and secreted a 72 kDa and a 15–17 kDa complex of proteins.  相似文献   

20.
Control of bacteriophage T4 DNA polymerase synthesis   总被引:13,自引:0,他引:13  
Analysis of sodium dodecyl sulphate/acrylamide gels of 14C-labelled proteins from phage-infected bacteria suggests the existence of a self-regulatory control mechanism in bacteriophage T4.Infection of Escherichia coli with phage T4 carrying a mutation in gene 43 (which codes for the phage DNA polymerase) results in a greatly increased rate of synthesis of the gene 43 protein. Such overproduction of defective polymerase occurs in restrictive infections with all gene 43 amber and most gene 43 temperature-sensitive mutants tested. Gene 43 protein synthesis in gene 43+ infections or increased synthesis in gene 43? infections appears to require no additional function of other phage proteins essential for DNA synthesis. Functional gene 43 protein is needed continuously to keep its own levels down to normal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号