首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To explore the role of homeobox genes in the intestine, the human colon adenocarcinoma cell line Caco2-TC7 has been stably transfected with plasmids synthesizing Cdx1 and Cdx2 sense and antisense RNAs. Cdx1 overexpression or inhibition by antisense RNA does not markedly modify the cell differentiation markers analyzed in this study. In contrast, Cdx2 overexpression stimulates two typical markers of enterocytic differentiation: sucrase-isomaltase and lactase. Cells in which the endogenous expression of Cdx2 is reduced by antisense RNA attach poorly to the substratum. Conversely, Cdx2 overexpression modifies the expression of molecules involved in cell–cell and cell–substratum interactions and in transduction process: indeed, E-cadherin, integrin-β4 subunit, laminin-γ2 chain, hemidesmosomal protein, APC, and α-actinin are upregulated. Interestingly, most of these molecules are preferentially expressed in vivo in the differentiated villi enterocytes rather than in crypt cells. Cdx2 overexpression also results in the stimulation of HoxA-9 mRNA expression, an homeobox gene selectively expressed in the colon. In contrast, Cdx2-overexpressing cells display a decline of Cdx1 mRNA, which is mostly found in vivo in crypt cells. When implanted in nude mice, Cdx2-overexpressing cells produce larger tumors than control cells, and form glandular and villus-like structures.

Laminin-1 is known to stimulate intestinal cell differentiation in vitro. In the present study, we demonstrate that the differentiating effect of laminin-1 coatings on Caco2-TC7 cells is accompanied by an upregulation of Cdx2. To further document this observation, we analyzed a series of Caco2 clones in which the production of laminin-α1 chain is differentially inhibited by antisense RNA. We found a positive correlation between the level of Cdx2 expression, that of endogenous laminin-α1 chain mRNA and that of sucrase-isomaltase expression in these cell lines.

Taken together, these results suggest (a) that Cdx1 and Cdx2 homeobox genes play distinct roles in the intestinal epithelium, (b) that Cdx2 provokes pleiotropic effects triggering cells towards the phenotype of differentiated villus enterocytes, and (c) that Cdx2 expression is modulated by basement membrane components. Hence, we conclude that Cdx2 plays a key role in the extracellular matrix–mediated intestinal cell differentiation.

  相似文献   

2.
In this study, we explored the effects of mesenchymal stem cells (MSCs) from bone marrow overexpressing heme oxygenase‐1 (HO‐1) on the damaged human intestinal epithelial barrier in vitro. Rat MSCs were isolated from bone marrow and transduced with rat HO‐1 recombinant adenovirus (HO‐MSCs) for stable expression of HO‐1. Colorectal adenocarinoma 2 (Caco2) cells were treated with tumor necrosis factor‐α (TNF‐α) to establish a damaged colon epithelial model. Damaged Caco2 were cocultured with MSCs, Ad‐MSCs, Ad‐HO + MSCs or HO‐MSCs. mRNA and protein expression of Zona occludens‐1 (ZO‐1) and human HO‐1 and the release of cytokines were measured. ZO‐1 and human HO‐1 in Caco2 were significantly decreased after treatment with TNF‐α; and this effect was reduced when coculture with MSCs from bone marrow. Expression of ZO‐1 was not significantly affected by Caco2 treatment with TNF‐α, Ad‐HO, and MSCs. In contrast, ZO‐1 and human HO‐1 increased significantly when the damaged Caco2 was treated with HO‐MSCs. HO‐MSCs showed the strongest effect on the expression of ZO‐1 in colon epithelial cells. Coculture with HO‐MSCs showed the most significant effects on reducing the expression of IL‐2, IL‐6, IFN‐γ and increasing the expression of IL‐10. HO‐MSCs protected the intestinal epithelial barrier, in which endogenous HO‐1 was involved. HO‐MSCs play an important role in the repair process by reducing the release of inflammatory cytokines and increasing the release of anti‐inflammatory factors. These results suggested that HO‐MSCs from bone marrow were more effective in repairing the damaged intestinal epithelial barrier, and the effectiveness of MSCs was improved by HO‐1 gene transduction, which provides favorable support for the application of stem cell therapy in the intestinal diseases.  相似文献   

3.
The roles of tumor necrosis factor alpha (TNF‐alpha) and its mediators in cellular processes related to intestinal diseases remain elusive. In this study, we aimed to determine the biological role of activated Cdc42‐associated kinase 1 (ACK1) in TNF‐alpha‐mediated apoptosis and proliferation in Caco‐2 cells. ACK1 expression was knocked down using ACK1‐specific siRNAs, and ACK1 activity was disrupted using a small molecule ACK1 inhibitor. The Terminal deoxynucleotidyl transferase biotin‐dUTP Nick End Labeling (TUNEL) and the BrdU incorporation assays were used to measure apoptosis and cell proliferation, respectively. ACK1‐specific siRNA and the pharmacological ACK1 inhibitor significantly abrogated the TNF‐alpha‐mediated anti‐apoptotic effects and proliferation of Caco‐2 cells. Interestingly, TNF‐alpha activated ACK1 at tyrosine 284 (Tyr284), and the ErbB family of proteins was implicated in ACK1 activation in Caco‐2 cells. ACK1‐Tyr284 was required for protein kinase B (AKT) activation, and ACK1 signaling was mediated through recruiting and phosphorylating the down‐stream adaptor protein AKT, which likely promoted cell proliferation in response to TNF‐alpha. Moreover, ACK1 activated AKT and Src enhanced nuclear factor‐кB (NF‐кB) activity, suggesting a correlation between NF‐кB signaling and TNF‐alpha‐mediated apoptosis in Caco‐2 cells. Our results demonstrate that ACK1 plays an important role in modulating TNF‐alpha‐induced aberrant cell proliferation and apoptosis, mediated in part by ACK1 activation. ACK1 and its down‐stream effectors may hold promise as therapeutic targets in the prevention and treatment of gastrointestinal cancers, in particular, those induced by chronic intestinal inflammation.  相似文献   

4.
To study the role of a nuclear proto-oncogene in the regulation of cell growth and differentiation, we inhibited HL-60 c-myc expression with a complementary antisense oligomer. This oligomer was stable in culture and entered cells, forming an intracellular duplex. Incubation of cells with the anti-myc oligomer decreased the steady-state levels of c-myc protein by 50 to 80%, whereas a control oligomer did not significantly affect the c-myc protein concentration. Direct inhibition of c-myc expression with the anti-myc oligomer was associated with a decreased cell growth rate and an induction of myeloid differentiation. Related antisense oligomers with 2- to 12-base-pair mismatches with c-myc mRNA did not influence HL-60 cells. Thus, the effects of the antisense oligomer exhibited sequence specificity, and furthermore, these effects could be reversed by hybridization competition with another complementary oligomer. Antisense inhibition of a nuclear proto-oncogene apparently bypasses cell surface events in affecting cell proliferation and differentiation.  相似文献   

5.
Aims: The evaluation of the effects of Enterococcus hirae, an intestinal bacterium in the adjacent mucosa (mucosal bacterium), on tumour necrosis factor‐alpha (TNF‐α)‐induced barrier impairment in human epithelial Caco‐2 cells. Methods and Results: The filter‐grown Caco‐2 monolayers were used as an intestinal epithelial model system. In Caco‐2 cells, heat‐killed E. hirae ATCC 9790T suppressed the TNF‐α‐induced barrier impairment and increase in interleukin‐8 (IL‐8) secretion, but lipase‐ and mutanolysin‐treated E. hirae ATCC 9790T did not have these effects. It was demonstrated that lipoteichoic acid (LTA) from E. hirae ATCC 9790T is responsible for Caco‐2 cells’ recovery from TNF‐α‐induced impairments. In addition, Caco‐2 cells had the same response to Toll‐like receptor 2 (TLR2) ligand, Pam3Cys‐Ser‐(Lys)4 as they did to LTA. Increased expression of zonula occludens‐1 was observed by the addition of E. hirae ATCC 9790T to TNF‐α‐treated Caco‐2 cells, and decreased expression of myosin light chain kinase was observed by the addition of LTA and Pam3Cys‐Ser‐(Lys)4; this, in turn, led to barrier enforcement. Conclusions: Enterococcus hirae ATCC 9790T cell wall fractions, such as LTA, protect against intestinal impairment by regulation of epithelial tight junction via TLR2 signalling. Significance and Impact of the Study: Enterococcus hirae could be useful in the treatment of inflammatory bowel disease, as well as other intestinal disorders.  相似文献   

6.
The colonic epithelium continuously regenerates with transitions through various cellular phases including proliferation, differentiation and cell death via apoptosis. Human colonic adenocarcinoma (Caco-2) cells in culture undergo spontaneous differentiation into mature enterocytes in association with progressive increases in expression of glutathione S-transferase alpha-1 (GSTA1). We hypothesize that GSTA1 plays a functional role in controlling proliferation, differentiation and apoptosis in Caco-2 cells. We demonstrate increased GSTA1 levels associated with decreased proliferation and increased expression of differentiation markers alkaline phosphatase, villin, dipeptidyl peptidase-4 and E-cadherin in postconfluent Caco-2 cells. Results of MTS assays, BrdU incorporation and flow cytometry indicate that forced expression of GSTA1 significantly reduces cellular proliferation and siRNA-mediated down-regulation of GSTA1 significantly increases cells in S-phase and associated cell proliferation. Sodium butyrate (NaB) at a concentration of 1 mM reduces Caco-2 cell proliferation, increases differentiation and increases GSTA1 activity 4-fold by 72 hours. In contrast, 10 mM NaB causes significant toxicity in preconfluent cells via apoptosis through caspase-3 activation with reduced GSTA1 activity. However, GSTA1 down-regulation by siRNA does not alter NaB-induced differentiation or apoptosis in Caco-2 cells. While 10 mM NaB causes GSTA1-JNK complex dissociation, phosphorylation of JNK is not altered. These findings suggest that GSTA1 levels may play a role in modulating enterocyte proliferation but do not influence differentiation or apoptosis.  相似文献   

7.
8.
Protein-tyrosine phosphatase-alpha (PTPalpha) plays an important role in various cellular signaling events, including proliferation and differentiation. In this study, we established L6 cell lines either underexpressing or overexpressing PTPalpha by stable transfection of cells with antisense PTPalpha or with full-length wild-type human or mouse or double catalytic site Cys --> Ala mutant (DM8) PTPalpha cDNA. Expression of PTPalpha in these cell lines was determined by immunoblotting and immunofluorescence. Cells harboring antisense PTPalpha exhibited a significantly reduced growth rate and thymidine incorporation when compared with the wild-type L6 cells. In contrast, cells overexpressing PTPalpha showed more rapid (2-fold) proliferation. Myoblasts with diminished PTPalpha failed to undergo fusion and did not form myotubes in reduced serum whereas overexpression of PTPalpha promoted myogenesis 2 days earlier than wild-type L6 cells. Overexpression of phosphatase-inactive mutant PTPalpha recapitulated the phenotype of the antisense cells. The different myogenic activities of these cell lines were correlated with the expression of myogenin and creatine kinase activity. Consistent with previous reports, PTPalpha positively regulated the activity of the protein-tyrosine kinase Src. Treatment of L6 cells with PP2 or SU6656, specific inhibitors of Src family kinases, and transient transfection of dominant-inhibitory Src inhibited the formation of myotubes and expression of myogenin. Moreover, enhanced expression of PTPalpha and activation of Src was detected during myogenesis. Together, these data indicate that PTPalpha is involved in the regulation of L6 myoblast growth and skeletal muscle cell differentiation via an Src-mediated signaling pathway.  相似文献   

9.
10.
11.
12.
13.
Enhanced cell survival and resistance to apoptosis during thermotolerance correlates with an increased expression of heat shock proteins (Hsps). Here we present additional evidence in support of the hypothesis that the induction of Hsp27 and Hsp72 during acquired thermotolerance in Jurkat T-lymphocytes prevents apoptosis. In thermotolerant cells, Hsp27 was shown to associate with the mitochondrial fraction, and inhibition of Hsp27 induction during thermotolerance in cells transfected with hsp27 antisense potentiated mitochondrial cytochrome c release after exposure to various apoptotic stimuli, despite the presence of elevated levels of Hsp72. Caspase activation and apoptosis were inhibited under these conditions. In vitro studies revealed that recombinant Hsp72 more efficiently blocked cytochrome c-mediated caspase activation than did recombinant Hsp27. A model is presented for the inhibition of apoptosis during thermotolerance in which Hsp27 preferentially blocks mitochondrial cytochrome c release, whereas Hsp72 interferes with apoptosomal caspase activation.  相似文献   

14.
M Jttel  D Wissing  P A Bauer    G C Li 《The EMBO journal》1992,11(10):3507-3512
Heat treatment and various other stresses render tumor cells resistant to cytotoxicity mediated by tumor necrosis factors (TNFs). Here, we elucidate the molecular basis of this phenomenon by demonstrating that the major heat shock protein, hsp70, protects tumor cells from TNF cytotoxicity even in the absence of stress. The human hsp70 gene was stably introduced into highly TNF-sensitive WEHI-S tumor cells both in the sense and antisense orientation. All clones constitutively expressing the exogenous human hsp70 gene were protected from TNF-mediated killing approximately 1000-fold. Remarkably, the growth of one clone was actually stimulated by low concentrations of TNF. Moreover, a clone expressing antisense hsp70 RNA was rendered extremely sensitive to TNFs. Hsp70-mediated protection from TNF cytotoxicity was confirmed in transient expression experiments employing retroviral vectors. Changes in cellular sensitivity to TNF were not associated with alterations in the binding of TNF to its receptors. Neither the transfection procedure itself nor overexpression of the low molecular weight heat shock protein, hsp27, had any effect on cellular susceptibility to TNFs. Our data suggest that hsp70 may increase the oncogenic potential of some tumor cells by providing them with an escape mechanism from immunological defense.  相似文献   

15.
16.
17.
18.
Human acute myelogenous leukemia cells (HL-60 cells) can be induced to differentiate to neutrophils by exposure to dibutyryl-cyclic AMP. The differentiation of HL-60 cells allowed the mitogen-activated protein kinases p38 and p44/p42 to be rapidly and transiently activated upon stimulation with N-formyl-methionyl-leucyl-phenylalanine (fMLP). Western blot analysis using phosphospecific p38 and p44/p42 mitogen-activated protein kinase antibodies showed that increasing concentrations of ethanol or 1-butanol but not 2-butanol (0.05-0.5%) inhibited fMLP-induced p38 activation but did not inhibit p44/p42 activation. These data indicated that activation of phospholipase D (PLD) was required for activation of p38 but not p44/p42. We compared the effect of fMLP with those of tumor necrosis factor alpha (TNF alpha) and granulocyte-macrophage colony-stimulating factor (GM-CSF). We found that ethanol did not inhibit p38 phosphorylation upon stimulation with either GM-CSF or TNF alpha. These results suggested that in cells stimulated with fMLP, PLD was upstream of p38. To further test the involvement of PLD, we used antisense inhibition of human PLD1 expression. Treatment with antisense oligonucleotides inhibited p38 but not p44/p42 phosphorylation. These data supported a role for human PLD1 in fMLP-induced p38 activation in neutrophil-like HL-60 cells. In addition, the results obtained with TNF alpha and GM-CSF demonstrated that p38 activation occurred independently of PLD activation.  相似文献   

19.
In recent years, the use of anthraquinone laxatives, in particular senna, has been associated with damage to the intestinal epithelial layer and an increased risk of developing colorectal cancer. In this study, we evaluated the cytotoxicity of rhein, the active metabolite of senna, on human colon adenocarcinoma cells (Caco‐2) and its effect on cell proliferation. Cytotoxicity studies were performed using 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT), neutral red (NR) and trans‐epithelial electrical resistance (TEER) assays whereas 3H‐thymidine incorporation and Western blot analysis were used to evaluate the effect of rhein on cell proliferation. Moreover, for genoprotection studies Comet assay and oxidative biomarkers measurement (malondialdehyde and reactive oxygen species) were used. Rhein (0.1–10 μg/ml) had no significant cytotoxic effect on proliferating and differentiated Caco‐2 cells. Rhein (0.1 and 1 μg/ml) significantly reduced cell proliferation as well as mitogen‐activated protein (MAP) kinase activation; by contrast, at high concentration (10 μg/ml) rhein significantly increased cell proliferation and extracellular‐signal‐related kinase (ERK) phosphorylation. Moreover, rhein (0.1–10 μg/ml): (i) did not adversely affect the integrity of tight junctions and hence epithelial barrier function; (ii) did not induce DNA damage, rather it was able to reduce H2O2‐induced DNA damage and (iii) significantly inhibited the increase in malondialdehyde and reactive oxygen species (ROS) levels induced by H2O2/Fe2+. Rhein was devoid of cytotoxic and genotoxic effects in colon adenocarcinoma cells. Moreover, at concentrations present in the colon after a human therapeutic dosage of senna, rhein inhibited cell proliferation via a mechanism that seems to involve directly the MAP kinase pathway. Finally, rhein prevents the DNA damage probably via an anti‐oxidant mechanism.  相似文献   

20.
Galpha(i)‐coupled receptors comprise a diverse family of receptors that induce transformation by largely unknown mechanisms. We previously found that the Galpha(i)‐coupled dopamine‐D2short (D2S) receptor transforms Balb‐D2S cells via Gαi3. To identify new Gαi effectors, a yeast two‐hybrid screen was done using constitutively active Gαi3‐Q204L as bait, and tumor necrosis factor‐alpha (TNFα)‐induced protein 8 (TNFAIP8, SCC‐S2/NDED/GG2‐1) was identified. In contrast, TNFAIP8‐related TIPE1 and TIPE2 showed a very weak interaction with Gαi3. In yeast mating, in vitro pull‐down, co‐immunoprecipitation and bioluminescence resonance energy transfer (BRET) assays, TNFAIP8 preferentially interacted with activated Gαi proteins, consistent with direct Gαi‐TNFAIP8 coupling. Over‐expression or depletion of TNFAIP8 using antisense constructs in Balb‐D2S cells did not affect D2S‐induced signaling to Gαi‐dependent inhibition of cAMP. In contrast, antisense depletion of TNFAIP8 completely inhibited spontaneous and D2S‐induced foci formation, consistent with a role for TNFAIP8 in Gαi‐dependent transformation. To address possible mechanisms, the effect of D2S signaling via TNFAIP8 on TNFα action was examined. D2S receptor activation inhibited TNFα‐induced cell death in Balb‐D2S cells, but not in cells depleted of TNFAIP8. However, depletion of TNFAIP8 did not prevent D2S‐induced inhibition of TNFα‐mediated caspase activation, suggesting that D2S/TNFAIP8‐induced protection from TNFα‐induced cell death is caspase‐independent. The data suggest that Gαi‐TNFAIP8‐mediated rescue of pre‐oncogenic cells enhances progression to oncogenic transformation, providing a selective target to inhibit cellular transformation. J. Cell. Physiol. 225: 865–874, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号