共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Analysis of the mechanisms underlying cardiac excitability can be faciliated greatly by mutations that disrupt ion channels and receptors involved in this excitability. With an extensive repertoire of such mutations, Drosophila provides the best available genetic model for these studies. However, the use of Drosophila for this purpose has been severely handicapped by lack of a suitable preparation of heart and a complete lack of knowledge about the ionic currents that underlie its excitability. We describe a simple preparation to measure heartbeat in Drosophila. This preparation was used to ask if heartbeat in Drosophila is myogenic in origin, and to determine the types of ion channels involved in influencing the heart rate. Tetrodotoxin, even at a high concentration of 40 μM, did not affect heart rate, indicating that heartbeat may be myogenic in origin and that it may not be determined by Na+ channels. Heart rate was affected by PN200–110, verapamil, and diltiazem, which block vertebrate L-type Ca2+ channels. Thus, L-type channels, which contribute to the prolonged plateau of action potentials in vertebrate heart, may play a role in Drosophila cardiac excitability. It also suggests that Drosophila heart is subject to a similar intervention by organic Ca2+ channel blockers as the vertebrate heart. A role for K+ currents in the function of Drosophila heart was suggested by an effect of tetraethylammonium, which blocks all the four identified K+ currents in the larval body wall muscles, and quinidine, which blocks the delayed rectifier K+ current in these muscles. The preparation described here also provides an extremely simple method for identifying mutations that affect heart rate. Such mutations and pharmacological agents will be very useful for analyzing molecular components of cardiac excitability in Drosophila. © 1995 John Wiley & Sons, Inc. 相似文献
5.
6.
7.
8.
9.
10.
11.
12.
研究基因网络的非线性行为特征是研制基因网络技术的基础。Tup1基因是酵母中作用最为广泛的转录抑制因子之一,利用酵母生物信息学数据库中蛋白相互作用关系,构建一个以Tup1为中心,4个层次741个基因的局部基因网络。统计分析六张Tup1不同突变的基因表达芯片数据,将局部基因网络中的全部基因按照3个网络特征进行统计分析:必需、非必需基因、网络层次和网络节点,并研究这些特征与基因表达之间的关系。初步发现基因表达变化的强度与节点数目成一定的反比关系,必需基因的平均变化程度较非必需基因为低,且由Tup1突变引发的其他基因的表达变化在以Tup1为中心的局部基因网络中近层次网络变化程度较大,远层次网络变化程度较低。 相似文献
13.
14.
15.
16.
The embryonic dorsal vessel in Drosophila possesses anteroposterior polarity and is subdivided into two chamber-like portions, the aorta in the anterior and the heart in the posterior. The heart portion features a wider bore as compared with the aorta and develops inflow valves (ostia) that allow the pumping of hemolymph from posterior toward the anterior. Here, we demonstrate that homeotic selector genes provide positional information that determines the anteroposterior subdivision of the dorsal vessel. Antennapedia (Antp), Ultrabithorax (Ubx), abdominal-A (abd-A), and Abdominal-B (Abd-B) are expressed in distinct domains along the anteroposterior axis within the dorsal vessel, and, in particular, the domain of abd-A expression in cardioblasts and pericardial cells coincides with the heart portion. We provide evidence that loss of abd-A function causes a transformation of the heart into aorta, whereas ectopic expression of abd-A in more anterior cardioblasts causes the aorta to assume heart-like features. These observations suggest that the spatially restricted expression and activity of abd-A determine heart identities in cells of the posterior portion of the dorsal vessel. We also show that Abd-B, which at earlier stages is expressed posteriorly to the cardiogenic mesoderm, represses cardiogenesis. In light of the developmental and morphological similarities between the Drosophila dorsal vessel and the primitive heart tube in early vertebrate embryos, these data suggest that Hox genes may also provide important anteroposterior cues during chamber specification in the developing vertebrate heart. 相似文献
17.
18.
19.
20.
The transcriptional regulator network of human inflammatory macrophages is defined by open chromatin
Susanne V Schmidt Wolfgang Krebs Thomas Ulas Jia Xue Kevin Ba?ler Patrick Günther Anna-Lena Hardt Hartmut Schultze Jil Sander Kathrin Klee Heidi Theis Michael Kraut Marc Beyer Joachim L Schultze 《Cell research》2016,26(2):151-170