首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cation Transport in Escherichia coli : VI. K exchange   总被引:14,自引:2,他引:12  
K influx and net K flux have been measured in suspensions of chloramphenicol-arrested Escherichia coli. The rate of K exchange in the steady state was independent of the K concentration of the medium over a 200-fold range. Under a number of experimental conditions the rate of exchange may be considerably increased or decreased without changing the cellular K content. These results show that under these conditions changes in K influx are associated with equal changes in K efflux, and suggest that the latter process is, at least in part, both carrier-mediated and tightly coupled to the influx process.  相似文献   

2.
Methods have been developed to study the intracellular Na and K concentrations in E. coli, strain K-12. These intracellular cation concentrations have been shown to be functions of the extracellular cation concentrations and the age of the bacterial culture. During the early logarithmic phase of growth, the intracellular K concentration greatly exceeds that of the external medium, whereas the intracellular Na concentration is lower than that of the growth medium. As the age of the culture increases, the intracellular K concentration falls and the intracellular Na concentration rises, changes which are related to the fall in the pH of the medium and to the accumulation of the products of bacterial metabolism. When stationary phase cells, which are rich in Na and poor in K, are resuspended in fresh growth medium, there is a rapid reaccumulation of K and extrusion of Na. These processes represent oppositely directed net ion movements against concentration gradients, and have been shown to be dependent upon the presence of an intact metabolic energy supply.  相似文献   

3.
When Escherichia coli K-12 is grown in media containing limiting amounts of K, growth continues normally until all the extracellular K has been consumed. Thereafter the rates of growth, glucose consumption, and oxygen consumption decrease progressively, and the cell contents of K and P fall. These changes, referred to as K limitation, are all reversed by the addition of K. By specifically altering the ionic composition of the cells it was shown that these metabolic disturbances are not due to changes in the cell content of K or Na, but are directly related to the absence of K from the extracellular medium. The cell pool of inorganic P and the uptake of PO4 from the medium are low in K-limited cells and are immediately stimulated by the addition of K, suggesting that the primary effect of K limitation is to inhibit PO4 uptake. All the metabolic effects of K limitation can be attributed to inhibition of PO4 uptake. The requirement of extracellular K for PO4 uptake may be due to a coupling between the uptake of K and PO4.  相似文献   

4.
The intracellular Cl concentration in E. coli has been studied as a function of the Cl concentration in the growth medium and the age of the bacterial culture. The ratio of extracellular to intracellular Cl concentration is shown to be 3.0 in the logarithmic phase and 1.13 in the stationary phase, both ratios being independent of the extracellular Cl concentration. If it may be assumed that Cl is passively distributed in this organism, these results are consistent with a transmembrane P.D. of 29 mv, interior negative, during the logarithmic phase, and 3 mv, interior negative, in the stationary phase.  相似文献   

5.
Cation Transport in Escherichia coli : V. Regulation of cation content   总被引:1,自引:0,他引:1  
Measurement of cellular K and Na concentrations in growing Escherichia coli indicates that the osmololity of the medium is a major determinant of the cell K concentration. In contrast, the cell Na concentration is independent of the medium osmolality and is largely dependent on the Na concentration of the medium. Sudden changes in the osmolality of the medium lead to rapid changes in K content. Washing the cells with solutions of lower osmolality results in a very rapid loss of K, which is greater in more dilute and in cold solutions. A sudden increase in the osmolality of the growth medium produces a rapid uptake of K by a mechanism whose rate is a saturable function of the K concentration of the medium and which appears to involve an exchange of K for cellular H.  相似文献   

6.
The present study is concerned with the measurement of the unidirectional K flux in E. coli. Methods are described by means of which a fairly dense suspension of cells may be maintained in a well defined steady-state with respect to the intracellular K concentration and the pH of the medium. The kinetics of K42 exchange under these conditions are consistent with the presence of a single intracellular K compartment with a unidirectional K flux of 1 pmol/(cm2 sec.). This rate is independent of the extracellular K concentration over the range studied. The simultaneous rate of H secretion averages 16 pmols/(cm2 sec.) indicating that in the steady-state the efflux of metabolically produced H is not linked mole for mole to K movement.  相似文献   

7.
Cation transport in Escherichia coli. IX. Regulation of K transport   总被引:16,自引:0,他引:16       下载免费PDF全文
Kinetics of K exchange in the steady state and of net K uptake after osmotic upshock are reported for the four K transport systems of Escherichia coli: Kdp, TrkA, TrkD, and TrkF. Energy requirements for K exchange are reported for the Kdp and TrkA systems. For each system, kinetics of these two modes of K transport differ from those for net K uptake by K-depleted cells (Rhoads, D. B. F.B. Walters, and W. Epstein. 1976. J. Gen. Physiol. 67:325-341). The TrkA and TrkD systems are inhibited by high intracellular K, the TrkF system is stimulated by intracellular K, whereas the Kdp system is inhibited by external K when intracellular K is high. All four systems mediate net K uptake in response to osmotic upshock. Exchange by the Kdp and TrkA systems requires ATP but is not dependent on the protonmotive force. Energy requirements for the Kdp system are thus identical whether measured as net K uptake or K exchange, whereas the TrkA system differs in that it is dependent on the protonmotive force only for net K uptake. We suggest that in both the Kpd and TrkA systems formation of a phosphorylated intermediate is necessary for all K transport, although exchange transport may not consume energy. The protonmotive-force dependence of the TrkA system is interpreted as a regulatory influence, limiting this system to exchange except when the protonmotive force is high.  相似文献   

8.
19 independent recombination-deficient mutants were isolated. 7 carried mutations that mapped near or in the recB and recC genes between thyA and argA. 10 mutants carried mutations cotransducible with pheA and exhibited no complementation with recA in temporary zygotic diploids.  相似文献   

9.
Energy coupling to net K+ transport in Escherichia coli K-12.   总被引:24,自引:0,他引:24  
Energy coupling for three K+ transport systems of Escherichia coli K-12 was studied by examining effects of selected energy sources and inhibitors in strains with either a wild type or a defective (Ca2+, Mg2+)-stimulated ATPase. This approach allows discrimination between transport systems coupled to the proton motive force from those coupled to the hydrolysis of a high energy phosphate compound (ATP-driven). The three K+ transport systems here studied are: (a) the Kdp system, a repressible high affinity (Km=2 muM) system probably coded for by four linked Kdp genes; (b) the Trka system, a constitutive system with high rate and modest affinity (Km=1.5 mM) defined by mutations in the single trkA gene; and (c) the TrkF system, a nonsaturable system with a low rate of uptake (Rhoads, D.B., Waters, F.B., and Epstein, W. (1976) J. Gen. Physiol. 67, 325-341). Each of these systems has a different mode of energy coupling: (a) the Kdp system is ATP-driven and has a periplasmic protein component; (b) the TrkF system is proton motive force-driven; and (c) the TrkA system is unique among bacterial transport systems described to date in requiring both the proton motive force and ATP for activity. We suggest that this dual requirement represents energy fueling by ATP and regulation by the proton motive force. Absence of ATP-driven systems in membrane vesicles is usually attributed to the requirement of such systems for a periplasmic protein. This cannot explain the failure to demonstrate the TrkA system in vesicles, since this system does not require a periplasmic protein. Our findings indicate that membrane vesicles cannot couple energy to ATP-driven transport systems. Since vesicles can generate a proton motive force, the inability of vesicles to generate ATP or couple ATP to transport (or both) must be invoked to explain the absence of TrkA in vesicles. The TrkF system should function in vesicles, but its very low rate may make it difficult to identify.  相似文献   

10.
1. The apparent Km values for succinate uptake by whole cells of Escherichia coli K12 depend on pH in the range 6.5-7.4.2. Uptake of succinate in lightly buffered medium is accompanied by proton uptake. 3. The apparent Km values for succinate uptake and for succinate-induced proton uptake are similar. 4. Approximately two protons enter the cell with each succinate molecule. 5. The pattern of inhibition of succinate uptake is similar to that of succinate-induced proton uptake. 6. Uptake of fumarate and malate, which share the succinate-transport system, is also accompanied by the uptake of approximately two protons per molecule of fumarate or malate. 7. Uptake of aspartate by the dicarboxylic acid-transport system is accompanied by the uptake of approximatley two protons per molecule of asparatate. 8. It is concluded that uptake of dicarboxylic acids by the dicarboxylic acid-transport system is obligatorily coupled to proton uptake such that succinate, malate and fumarate are taken up in electroneutral form and asparate is taken up in cationic form. 9. These results are consistent with, though they do not definitely prove, the energization of succinate uptake of the deltapH.  相似文献   

11.
The rate at which the peptidoglycan precursor meso-diaminopimelic acid (DAP) is incorporated into the cell wall of Escherichia coli cells was determined by pulse-label experiments. For different E. coli strains, the incorporation rate was compared with the rate of uptake of DAP into the cell. With E. coli W7, a dap lys mutant generally used in this kind of studies, steady-state incorporation was reached only after about 0.75 of the doubling time. This lag period can be ascribed to the presence of a large internal DAP pool in the cells. An E. coli K-12 lysA strain was constructed which could be grown without DAP in its medium. Consequently, due to the higher specific activity of the added [3H]DAP, faster incorporation and higher levels of radioactivity in the peptidoglycan layer were observed in the K-12 lysA strain than in the W7 strain. In addition, uptake and incorporation were faster in steady state (within about 0.2 of the doubling time), indicating a smaller DAP pool. The lag period could be further diminished and the incorporation rate could be increased by feedback inhibition of the biosynthetic pathway to DAP with threonine and methionine. These results make MC4100 lysA a suitable strain for studies on peptidoglycan synthesis. To explain our observations, we suggest the existence of an expandable pool of DAP in E. coli which varies with the DAP concentration in the growth medium. With 2 microgram of DAP per ml, the size of the pool is severalfold the amount of DAP contained in the cell wall. This pool can be partly washed out of the cells. Grown without DAP, MC4100 lysA still has a small pool caused by endogenous synthesis, which accounts for the fact that steady-state [3H]DAP incorporation in the lysA strain still shows a lag period.  相似文献   

12.
The uptake of L-asparagine by Escherichia coli K-12 is characterized by two kinetic components with apparent Km values of 3.5 muM and 80 muM. The 3.5 muM Km system displays a maximum velocity of 1.1 nmol/min per mg of protein, which is a low value when compared with derepressed levels of other amino acid transport systems but is relatively specific for L-asparagine. Compounds providing effective competition for L-asparagine uptake were 4-carbon analogues of the L-isomer with alterations at the beta-amide position, i.e., 5-diazo-4-oxo-L-norvaline (Ki = 4.6 muM), beta-hydroxyamyl-L-aspartic acid (Ki = 10 muM), and L-aspartic acid (Ki = 50 muM). Asparagine uptake is energy dependent and is inhibited by a number of metabolic inhibitors. In a derived strain of E. coli deficient in cytoplasmic asparaginase activity asparagine can be accumulated several-fold above the apparent biosynthetic pool of the amino acid and 100-fold above the external medium. The high affinity system is repressed by culture of cells with L-asparagine supplements in excess of 1 mM and is suggested to be necessary for growth of E. coli asparagine auxotrophs with lower supplement concentrations.  相似文献   

13.
Previous reports have suggested that Escherichia coli K12 mutants defective in the expression of oligogopeptide permease protein A (OppA) exhibit reduced sensitivity to aminoglycosides due to altered permeability of the cell envelope. In this work, the role of the OppA protein, and the oligogopeptide permease (Opp) transport system has been evaluated, in the resistance to aminoglycosides using derivatives of the E. coli K12 SS320 strain selected for triornithine resistance or with a deletion of the complete opp operon. All tested mutants were defective in the uptake of tri- and tetra-peptides but did not expressed resistance to aminoglycosides. Additionally, complementation tests carried out with a plasmid encoding the OppA protein did not affect the sensitivity of the strains to these antibiotics. Taken together, these evidences indicate that the Opp uptake system, as well as the OppA protein, does not play a direct role in the sensitivity to aminoglycosides in E. coli K12.  相似文献   

14.
Cation/proton antiport systems in Escherichia coli.   总被引:7,自引:0,他引:7  
Three distinct systems which function as proton/cation antiports have been identified in E.coli by the ability of the ions to dissipate the ΔpH component of the protonmotive force in everted vesicles. System I exchanges H+ for K+, Rb+ or Na+; System II has Na+ and Li+ as substrates; and System III catalyzes proton exchange for Ca2+, Mn2+ or Sr2+.  相似文献   

15.
16.
Biotin uptake: influx, efflux and countertransport in Escherichia coli K12   总被引:1,自引:0,他引:1  
Biotin uptake by Escherichia coli K12 has been reinvestigated. The vitamin uptake is an active process depending on energy and inhibited by uncouplers. The kinetic parameters (Km = 0.27 microM, Vmax = 6.8 pmol/min per mg dry cells) are close to those previously determined for a biotin-dependent strain E. coli C162 (Piffeteau, A., Zamboni, M. and Gaudry, M. (1982) Biochim. Biophys. Acta 688, 29-36). By use of biotin p-nitrophenyl ester, an affinity label of the biotin transport system, it was shown, under conditions of steady state, that the efflux of biotin is not energy dependent and is mainly mediated by a diffusion mechanism. Reexamination of the regulation of the biotin transport by biotin, revealed that only 50% of the biotin uptake system is under control by the vitamin.  相似文献   

17.
Analysis of K transport mutants indicates the existence of four separate K uptake systems in Escherichia coli K-12. A high affinity system called Kdp has a Km of 2 muM, and Vmax at 37 degrees C of 150 mumol/g min. This system is repressed by growth in high concentrations of K. Two constitutive systems, TrkA and TrkD, have Km's of 1.5 and 0.5 mM and Vmax's of 550 and 40 at 37 and 30 degrees C, respectively. Mutants lacking all three of these saturable systems take up K slowly by a process, called TrkF, whose rate of transport is linearly dependent on K concentration up to 105 mM. On the whole, each of these systems appears to function as an independent path for K uptake since the kinetics of uptake when two are present is the sum of each operating alone. This is not true for strains having both the TrkD and Kdp systems, where presence of the latter results in K uptake which saturates at a K concentration well below 0.1 mM. This result indicates some interaction between these systems so that uptake now has the affinity characteristic of the Kdp system. All transport systems are able to extrude Na during K uptake. The measurements of cell Na suggest that growing cells of E. coli have very low concentrations of Na, considerably lower than indicated by earlier studies.  相似文献   

18.
Regulation of Glutamine Transport in Escherichia coli.   总被引:1,自引:9,他引:1       下载免费PDF全文
The formation of the high-affinity (Km equal to 0.2 muM) L-glutamine transport system of Escherichia coli strain 7 (Lin) appears to be subject to the same major control as the glutamine synthetase (EC 6.3.1.2) of this gram-negative organism. Culture of cells under nitrogen-limited conditions provides maximum derepression of both the glutamine synthetase and the glutamine transport system. Nutritional conditions providing a rich supply of ammonium salts or available sources of nitrogen, i.e., conditions which repress the formation of glutamine synthetase, provide three- and 20-fold repression, respectively, of the glutamine transport system. Culture of cells with glutamine supplements of 2 mM does not increase the repression of high-affinity glutamine transport system beyond the level observed in the absence of glutamine. A second kinetically distinct low-affinity component of glutamine. A second kinetically distinct low-affinity component of glutamine uptake is observed in cells cultured with a glutamine-depleted nutrient broth. This second component is associated with the appearance of glutaminase A (EC 3.5.1.2) and asparaginase I (EC 3.5.1.1), a periplasmic enzyme. Parallel changes were observed in the levels of the high-affinity glutamine transport system and the glutamine synthetase when cells were cultured with the carbon sources: glucose, glycerol, or succinate.  相似文献   

19.
Cadmium uptake in Escherichia coli K-12.   总被引:2,自引:3,他引:2       下载免费PDF全文
109Cd2+ uptake by Escherichia coli occurred by means of an active transport system which has a Km of 2.1 microM Cd2+ and a Vmax of 0.83 mumol/min X g (dry weight) in uptake buffer. 109Cd2+ accumulation was both energy dependent and temperature sensitive. The addition of 20 microM Cd2+ or Zn2+ (but not Mn2+) to the cell suspensions preloaded with 109Cd2+ caused the exchange of Cd2+. 109Cd2+ (0.1 microM) uptake by cells was inhibited by the addition of 20 microM Zn2+ but not Mn2+. Zn2+ was a competitive inhibitor of 109Cd2+ uptake with an apparent Ki of 4.6 microM Zn2+. Although Mn2+ did not inhibit 109Cd2+ uptake, the addition of either 20 microM Cd2+ or Zn2+ prevented the uptake of 0.1 microM 54Mn2+, which apparently occurs by a separate transport system. The inhibition of 54Mn2+ accumulation by Cd2+ or Zn2+ did not follow Michaelis-Menten kinetics and had no defined Ki values. Co2+ was a competitive inhibitor of Mn2+ uptake with an apparent Ki of 34 microM Co2+. We were unable to demonstrate an active transport system for 65Zn2+ in E. coli.  相似文献   

20.
Anaerobic iron uptake by Escherichia coli.   总被引:2,自引:1,他引:2       下载免费PDF全文
Assimilation and uptake of iron in anaerobic cultures of Escherichia coli were supported by iron supplied as ferrienterobactin, ferrichrome, and ferrous ascorbate; however, as in the aerobic cultures, ferrichrome A was a poor iron source. Albomycin inhibited both aerobically and anaerobically grown cells. The siderophore outer membrane receptor proteins FepA and FhuA were produced under anaerobic iron-deficient conditions. Anaerobic transport of ferrienterobactin and ferrichrome was inhibited by KCN and dinitrophenol. The Km for ferrienterobactin uptake in anaerobically grown cells was 0.8 microM, and the Vmax was 38 pmol/min per mg, compared with 0.1 microM and 80 pmol/min per mg, respectively, in aerobically grown cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号