首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a recent publication we showed that addition of mouse epidermal growth factor (mEGF) to MA-10 Leydig tumor cells rapidly leads to an increase in the incorporation of [3H]inositol-derived radioactivity into an unusual lipid that was identified as phosphatidylinositol-3,4-bisphosphate (PI-3,4-P2). Other ligands that are known to bind to MA-10 cells, such as hCG and arginine vasopressin, however, did not elicit this effect. Inasmuch as mEGF modulates the differentiated functions of MA-10 cells in a number of ways, our findings raised the possibility that PI-3,4-P2 may be an intracellular mediator of these actions of mEGF. In an attempt to answer this question, we set out to determine if other ligands increase the labeling of PI-3,4-P2 in MA-10 cells prelabeled with [3H]inositol, and if such ligands mimic the diverse biological actions of mEGF on these cells. The experiments presented herein show that insulin, insulin-like growth factor-I, and transforming growth factor-alpha increase the labeling of PI-3,4-P2 in MA-10 cells, but only transforming growth factor-alpha mimics the actions of mEGF on the differentiated functions of MA-10 cells. We conclude that an increase in the labeling of PI-3,4-P2 is not sufficient to elicit these actions of mEGF.  相似文献   

2.
A phosphatidylinositol (PI) kinase activity associated with certain protein tyrosine kinases important in cell proliferation phosphorylates the 3' hydroxyl position of PI to produce phosphatidylinositol-3-phosphate (PI-3-P). Here we report that, in addition to PI-3' kinase activity, anti-phosphotyrosine (alpha-P-tyr) immunoprecipitates from platelet-derived growth factor (PDGF)-stimulated smooth muscle cells (SMC) contain lipid kinase activities that utilize the substrates phosphatidylinositol-4-phosphate (PI-4-P) and phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2). These activities are absent in alpha-P-tyr immunoprecipitates from quiescent SMC. The product of PI-4-P phosphorylation appears to be phosphatidylinositol-3,4-bisphosphate (PI-3,4-P2), a lipid not previously reported. The product of PI-4,5-P2 phosphorylation is phosphatidylinositol-trisphosphate (PIP3). PI-3-P was detected in quiescent SMC and increased only slightly in response to PDGF. PIP3 and the putative PI-3,4-P2 appeared only after the addition of mitogen. Both the temporal production of these novel phospholipids after PDGF stimulation and the observation of the enzymatic activities that produce them in alpha-P-tyr immunoprecipitates suggest that these phospholipids are excellent candidates for mediators of the PDGF mitogenic response.  相似文献   

3.
Previous studies from this laboratory have shown that mouse epidermal growth factor (mEGF) modulates the hormonal responsiveness of MA-10 Leydig tumor cells without affecting cell multiplication. In an attempt to characterize the intracellular signaling systems activated by mEGF in this cell type, we examined its effects on the labeling of phosphatidylinositols in cells that had been preincubated with different radioactive precursors. Here we report that exposure of MA-10 cells to mEGF, but not other ligands that affect their differentiated function, results in an increase in the labeling of an unusual phosphatidylinositol that does not appear to be present in unstimulated cells. This phosphatidylinositol has been identified as phosphatidylinositol 3,4-bisphosphate.  相似文献   

4.
The Actinobacillus actinomycetemcomitans cytolethal distending toxin (Cdt) is a potent immunotoxin that induces G(2) arrest in human lymphocytes. We now show that the CdtB subunit exhibits phosphatidylinositol (PI)-3,4,5-triphosphate phosphatase activity. Breakdown product analysis indicates that CdtB hydrolyzes PI-3,4,5-P(3) to PI-3,4-P(2) and therefore functions in a manner similar to phosphatidylinositol 5-phosphatases. Conserved amino acids critical to catalysis in this family of enzymes were mutated in the cdtB gene. The mutant proteins exhibit reduced phosphatase activity along with decreased ability to induce G(2) arrest. Consistent with this activity, Cdt induces time-dependent reduction of PI-3,4,5-P(3) in Jurkat cells. Lymphoid cells with defects in SHIP1 and/or ptase and tensin homolog deleted on chromosome 10 (PTEN) (such as Jurkat, CEM, Molt) and, concomitantly, elevated PI-3,4,5-P(3) levels were more sensitive to the toxin than HUT78 cells which contain functional levels of both enzymes and low levels of PI-3,4,5-P(3). Finally, reduction of Jurkat cell PI-3,4,5-P(3) synthesis using the PI3K inhibitors, wortmannin and LY290004, protects cells from toxin-induced cell cycle arrest. Collectively, these studies show that the CdtB not only exhibits PI-3,4,5-P(3) phosphatase activity, but also that toxicity in lymphocytes is related to this activity.  相似文献   

5.
6.
Insulin stimulates glucose uptake by recruiting glucose transporter 4 (GLUT4) from an intracellular pool to the cell surface through a mechanism that is dependent on phosphatidylinositol (PI) 3-kinase (PI3-K) and cortical actin remodeling. Here we test the hypothesis that insulin-dependent actin filament remodeling determines the location of insulin signaling molecules. It has been shown previously that insulin treatment of L6 myotubes leads to a rapid rearrangement of actin filaments into submembrane structures where the p85 regulatory subunit of PI3-K and organelles containing GLUT4, VAMP2, and the insulin-regulated aminopeptidase (IRAP) colocalize. We now report that insulin receptor substrate-1 and the p110alpha catalytic subunit of PI3-K (but not p110beta) also colocalize with the actin structures. Akt-1 was also found in the remodeled actin structures, unlike another PI3-K effector, atypical protein kinase C lambda. Transiently transfected green fluorescent protein (GFP)-tagged pleckstrin homology (PH) domains of general receptor for phosphoinositides-1 (GRP1) or Akt (ligands of phosphatidylinositol-3,4,5-trisphosphate [PI-3,4,5-P(3)]) migrated to the periphery of the live cells; in fixed cells, they were detected in the insulin-induced actin structures. These results suggest that PI-3,4,5-P(3) is generated on membranes located within the actin mesh. Actin remodeling and GLUT4 externalization were blocked in cells highly expressing GFP-PH-GRP1, suggesting that PI-3,4,5-P(3) is required for both phenomena. We propose that PI-3,4,5-P(3) leads to actin remodeling, which in turn segregates p85alpha and p110alpha, thus localizing PI-3,4,5-P(3) production on membranes trapped by the actin mesh. Insulin-stimulated actin remodeling may spatially coordinate the localized generation of PI-3,4,5-P(3) and recruitment of Akt, ultimately leading to GLUT4 insertion at the plasma membrane.  相似文献   

7.
Phosphatidylinositol 3-kinase associates with the polyomavirus middle T antigen (PyMTAg)-pp60c-src complex in polyomavirus-transformed cells. Here we show that anti-PyMTAg immunoprecipitates from PyMTAg-transformed NIH 3T3 cells have lipid kinase activities that phosphorylate phosphatidylinositol, phosphatidylinositol-4-bisphosphate, and phosphatidylinositol-4,5-bisphosphate at the D-3 position of the inositol ring to produce three new polyphosphoinositides: phosphatidylinositol-3-phosphate (PI-3-P), phosphatidylinositol-3,4-bisphosphate (PI-3,4-P2), and phosphatidylinositol trisphosphate (PIP3), respectively. PI-3-P was detected in intact parental and PyMTAg-transformed NIH 3T3 fibroblasts at both low and high cell densities. However, parental NIH 3T3 fibroblasts produced no detectable PI-3,4-P2 or PIP3 at high density. In contrast, growing, subconfluent cells and wild-type PyMTAg-transformed cells at high density had greatly enhanced incorporation of [3H]-inositol into these highly phosphorylated lipids. Cells transfected with a transformation-defective mutant of PyMTAg had undetectable levels of PI-3,4-P2 and PIP3 at high density. Thus, the synthesis of novel polyphosphoinositides by lipid kinase activity associated with PyMTAg correlates with cell growth and transformation.  相似文献   

8.
The MA-10 line is a clonal strain of Leydig tumor cells that has receptors for human choriogonadotropin (hCG) and mouse epidermal growth factor (mEGF). These cells respond to hCG, cholera toxin, and 8-Br-adenosine 3':5'-monophosphate with increased steroid production. It is reported herein that exposure of the MA-10 cells to mEGF results in a substantial (80 to 90%) reduction in the number of hCG receptors per cell. The loss of hCG receptors is accompanied by a corresponding reduction in the ability of hCG to stimulate steroidogenesis. The steroidogenic responses to cholera toxin and 8-Br-adenosine 3':5'-monophosphate, however, are not affected. Other results presented show that mEGF is not a mitogen for these cells.  相似文献   

9.
The metabolism of polyphosphoinositides has been shown to be an important factor in controlling the proliferation of Saccharomyces cerevisiae. The monophosphate form of phosphatidylinositol has been assumed to be phosphatidylinositol 4-phosphate (PI-4-P). Recent evidence from our laboratory has established that a phosphatidylinositol (PI) kinase, which phosphorylates the D-3 position of the inositol ring (PI 3-kinase), is associated with many activated protein-tyrosine kinases and may play an important role in the signaling of cell proliferation (Auger, K. R., Serunian, L. A., Soltoff, S. P., Libby, P., and Cantley, L. C. (1989) Cell 57, 167-175). To determine the evolutionary conservation of this enzymatic activity, we investigated its presence in yeast. In vitro PI kinase assays of yeast cell homogenates demonstrated that PI 3-kinase activity was present. Preliminary biochemical characterization of the activity suggested that it was quite different from the mammalian enzyme yet catalyzed the same reaction, i.e. phosphorylating the D-3 hydroxyl position of the inositol ring of phosphatidyl-myo-inositol. [3H]Inositol labeling of intact yeast cells with the subsequent extraction, deacylation, and high performance liquid chromatography analysis of the lipids demonstrated that PI-3-P was as abundant as the PI-4-P isomer. The conservation of the enzymatic activity from yeast to man suggests that it has an important functional role in the cell cycle.  相似文献   

10.
Phosphatidylinositol (PI)-3' kinase catalyzes the formation of PI 3,4-diphosphate and PI 3,4,5-triphosphate in response to stimulation of cells by platelet-derived growth factor (PDGF). Here we report that tyrosine-phosphorylated PDGF receptors, the p85 subunit of PI-3' kinase (p85), and activated PI-3' kinase are found in isolated clathrin-coated vesicles within 2 min of exposure of cells to PDGF, indicating that both receptor and activated PI-3' kinase enter the endocytic pathway. Immunofluorescence analysis of p85 in serum-starved cells revealed a punctate/reticular staining pattern, concentrated in the perinuclear region and displaying high focal concentration at the centrosome. In addition, partial coalignment of p85 with microtubules was observed after optical sectioning microscopy and image reconstruction. The association of p85 with the microtubule network was further evidenced by the microtubule-depolymerizing drug nocodazole, which caused a redistribution of p85 from the perinuclear region to the cell periphery. Interestingly, the most significant effect of PDGF on the distribution of p85 was an increase in the staining intensity of this protein in the perinuclear region, and this effect was eliminated by prior treatment of cells with nocodazole. These results suggest that PDGF receptor-p85 complexes internalize and transit in association with the microtubule cytoskeleton. In addition, the high concentration of p85 in intracellular structures in the absence of PDGF stimulation suggests additional roles for this protein independent of its association with receptor tyrosine kinases.  相似文献   

11.
Pleckstrin homology (PH) domain binding to D3-phosphorylated phosphatidylinositides (PI) provides a reversible means of recruiting proteins to the plasma membrane, with the resultant change in subcellular localization playing a key role in the activation of multiple intracellular signaling pathways. Previously we found that the T-cell-specific PH domain-containing kinase Itk is constitutively membrane associated in Jurkat T cells. This distribution was unexpected given that the closely related B-cell kinase, Btk, is almost exclusively cytosolic. In addition to constitutive membrane association of Itk, unstimulated JTAg T cells also exhibited constitutive phosphorylation of Akt on Ser-473, an indication of elevated basal levels of the phosphatidylinositol 3-kinase (PI3K) products PI-3,4-P(2) and PI-3,4,5-P(3) in the plasma membrane. Here we describe a defect in expression of the D3 phosphoinositide phosphatase, PTEN, in Jurkat and JTAg T cells that leads to unregulated PH domain interactions with the plasma membrane. Inhibition of D3 phosphorylation by PI3K inhibitors, or by expression of PTEN, blocked constitutive phosphorylation of Akt on Ser-473 and caused Itk to redistribute to the cytosol. The PTEN-deficient cells were also hyperresponsive to T-cell receptor (TCR) stimulation, as measured by Itk kinase activity, tyrosine phosphorylation of phospholipase C-gamma1, and activation of Erk compared to those in PTEN-replete cells. These data support the idea that PH domain-mediated association with the plasma membrane is required for Itk activation, provide evidence for a negative regulatory role of PTEN in TCR stimulation, and suggest that signaling models based on results from Jurkat T-cell lines may underestimate the role of PI3K in TCR signaling.  相似文献   

12.
We have previously shown that mouse epidermal growth factor (mEGF) attenuates the increase in intracellular cAMP provoked by human choriogonadotropin (hCG) in MA-10 Leydig tumor cells (Ascoli, M., Euffa, J., and Segaloff, D. L. (1987) J. Biol. Chem. 262, 9196-9203). The studies presented herein were designed to investigate the mechanism(s) responsible for this phenomenon. We show that mEGF attenuates the increase in cAMP accumulation provoked by hCG primarily, if not entirely, by inhibiting adenylate cyclase activity. This phenomenon has some specificity for the agonist used, but it is not cell-specific. Thus, mEGF inhibited hCG-activated adenylate cyclase in MA-10 cells and in rat luteal cells but had no effect on the forskolin-activated enzyme in MA-10 cells or the isoproterenol-activated enzyme in rat luteal cells.  相似文献   

13.
It is now well established that mouse epidermal growth factor (mEGF) modulates the hormonal responsiveness of MA-10 Leydig tumor cells but does not affect cell multiplication. The studies presented herein are the first in a series of experiments designed to characterize the intracellular signaling systems activated by mEGF and their possible roles in mediating the diverse biological actions of this growth factor in MA-10 cells. We show that (i) MA-10 cells express a hormone-sensitive inositol phosphate/diacylglycerol pathway that can be stimulated with arginine vasopressin (AVP), (ii) mEGF does not activate this pathway, and (iii) activation of this pathway with arginine vasopressin does not mimic the biological actions of mEGF. Other data presented show that lutropin/choriogonadotropin, the principal endocrine regulators of Leydig cell function, also do not stimulate the inositol phosphate/diacylglycerol pathway in MA-10 cells.  相似文献   

14.
PI3K is a promising therapeutic target for cancer. With PI-103 as the lead compound, we designed and synthesized 4-(2-arylpyrido[3',2':3,4]pyrrolo[1,2-f][1,2,4]triazin-4-yl)morpholine derivatives. 9, 10a, 10d, 10e had the IC(50) against PI3Kα comparable with PI-103. All of the compounds showed selectivity over 15 tested protein kinases and anti-proliferative activity at micromolar concentration against several cancer cell lines.  相似文献   

15.
The endocytosis, recycling, and degradation of the insulin receptor were studied in IM-9 cells and U-937 cells by employing two monoclonal antibodies directed at the alpha subunit of the human insulin receptor, antibodies MA-5 and MA-10. Antibody MA-5 is an insulin agonist and MA-10 is an insulin antagonist (Forsayeth, J., Caro, J.F., Sinha, M.K., Maddux, B.A., and Goldfine, I.D. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 3448-3451). Both monoclonal antibodies, like insulin, induced the endocytosis of the insulin receptor within 15 min. Upon removal of extracellular ligand the internalized receptor recycled to the cell surface. At this time there was no degradation of the receptor as measured by a sensitive insulin receptor radioimmunoassay. After 20 h of incubation, insulin and MA-5, but not MA-10, induced significant receptor degradation as measured by both insulin receptor radioimmunoassay and metabolic labeling studies. These studies demonstrated, therefore, that: 1) internalization and recycling of the receptor can be induced by antireceptor monoclonal antibodies that are either insulin agonists or insulin antagonists; 2) enhanced receptor degradation can be induced by monoclonal antibodies that are insulin agonists; and 3) the process of receptor internalization does not necessarily lead to enhanced receptor degradation. Since prior studies have indicated that neither MA-5 nor MA-10 enhance insulin receptor kinase activity, the present studies also suggest that insulin receptor endocytosis and degradation induced by ligands different than insulin can occur without activation of this process.  相似文献   

16.
Phosphoinositide interconversion in thrombin-stimulated human platelets   总被引:26,自引:0,他引:26  
Stimulation of platelets and other secretory cells by agonists results in the degradation of phosphoinositides by phospholipase C. Kinetic studies suggest that hydrolysis of phosphatidylinositol 4,5-diphosphate (PI-4,5-P2) is an initial event in this process. Platelets contain much larger amounts of phosphatidylinositol (PI) than PI-4,5-P2, and approximately 50% of total phosphoinositides are degraded upon stimulation. We have investigated whether degradation of PI occurs by direct phospholipase C hydrolysis or by phosphorylation to PI-4,5-P2 followed by phospholipase C action on the latter compound. When platelets are incubated for 3 min with 32Pi prior to stimulation, the phosphoinositides are labeled to different specific activities. Under these nonequilibrium conditions, the time course of change in specific activity reflects turnover. The rise in specific activity of phosphatidylinositol 4-phosphate (PI-4-P) is similar in stimulated and unstimulated cells, indicating that there is little increase in the conversion of PI to PI-4-P during thrombin stimulation. In addition, the specific activity of the 4-phosphate in PI-4-P during thrombin stimulation is less than both the 5-phosphate of PI-4,5-P2 and the phosphate group of phosphatidic acid, indicating that the 4-phosphate moiety is not labeled to equilibrium with ATP. This finding is inconsistent with a rapid flux of PI via PI-4-P to PI-4,5-P2 during thrombin stimulation, in which case the 4-phosphate would be at maximum specific activity. We, therefore, conclude that the bulk of PI breakdown that occurs in thrombin-stimulated platelets occurs via direct phospholipase C hydrolysis of PI.  相似文献   

17.
The MA-10 cells are a clonal strain of mouse Leydig tumor cells that have receptors for human choriogonadotropin (hCG) and mouse epidermal growth factor (mEGF). Exposure of the cells to hCG results in a reduction in the number of surface hCG receptors, and little or no change in the number of surface mEGF receptors. On the other hand, exposure of the cells to mEGF results in a reduction in the number of both surface mEGF receptors and surface hCG receptors. In order to study these phenomena, we assumed that the number of surface receptors is determined by the rate at which receptors appear at the surface and by the rate of receptor internalization. When these rates were measured, we found that hCG and mEGF reduce their respective surface receptors by increasing the rate of receptor internalization, and that mEGF reduces the surface hCG receptors by decreasing the rate of appearance of the receptor.  相似文献   

18.
A phosphoinositide kinase specific for the D-3 position of the inositol ring, phosphatidylinositol (PI) 3-kinase, associates with activated receptors for platelet-derived growth factor, insulin, and colony-stimulating factor 1, with products of the oncogenes src, fms, yes, crk, and with polyomavirus middle T antigen. Efficient fibroblast transformation by proteins of the abl and src oncogene families requires activation of their protein-tyrosine kinase activity and membrane association via an amino-terminal myristoylation. We have demonstrated that the PI 3-kinase directly associates with autophosphorylated, activated protein-tyrosine kinase variants of the abl protein. In vivo, this association leads to accumulation of the highly phosphorylated products of PI 3-kinase, PI-3,4-bisphosphate and PI-3,4,5-trisphosphate, only in myristoylated, transforming abl protein variants. Myristoylation thus appears to be required to recruit PI 3-kinase activity to the plasma membrane for in vivo activation and correlates with the mitogenicity of the abl protein variants.  相似文献   

19.
The cytotoxic lymphocyte serine proteinase granzyme B induces apoptosis of abnormal cells by cleaving intracellular proteins at sites similar to those cleaved by caspases. Understanding the substrate specificity of granzyme B will help to identify natural targets and develop better inhibitors or substrates. Here we have used the interaction of human granzyme B with a cognate serpin, proteinase inhibitor 9 (PI-9), to examine its substrate sequence requirements. Cleavage and sequencing experiments demonstrated that Glu(340) is the P1 residue in the PI-9 RCL, consistent with the preference of granzyme B for acidic P1 residues. Ala-scanning mutagenesis demonstrated that the P4-P4' region of the PI-9 RCL is important for interaction with granzyme B, and that the P4' residue (Glu(344)) is required for efficient serpin-proteinase binding. Peptide substrates based on the P4-P4' PI-9 RCL sequence and containing either P1 Glu or P1 Asp were cleaved by granzyme B (k(cat)/K(m) 9.5 x 10(3) and 1.2 x 10(5) s(-1) M(-1), respectively) but were not recognized by caspases. A substrate containing P1 Asp but lacking P4' Glu was cleaved less efficiently (k(cat)/K(m) 5.3 x 10(4) s(-1) M(-1)). An idealized substrate comprising the previously described optimal P4-P1 sequence (Ile-Glu-Pro-Asp) fused to the PI-9 P1'-P4' sequence was efficiently cleaved by granzyme B (k(cat)/K(m) 7.5 x 10(5) s(-1) M(-1)) and was also recognized by caspases. This contrasts with the literature value for a tetrapeptide comprising the same P4-P1 sequence (k(cat)/K(m) 6.7 x 10(4) s(-1) M(-1)) and confirms that P' residues promote efficient interaction of granzyme B with substrates. Finally, molecular modeling predicted that PI-9 Glu(344) forms a salt bridge with Lys(27) of granzyme B, and we showed that a K27A mutant of granzyme B binds less efficiently to PI-9 and to substrates containing a P4' Glu. We conclude that granzyme B requires an extended substrate sequence for specific and efficient binding and propose that an acidic P4' substrate residue allows discrimination between early (high affinity) and late (lower affinity) targets during the induction of apoptosis.  相似文献   

20.
Anti-insulin receptor monoclonal antibody MA-10 inhibits insulin receptor autophosphorylation of purified rat liver insulin receptors without affecting insulin binding (Cordera, R., Andraghetti, G., Gherzi, R., Adezati, L., Montemurro, A., Lauro, R., Goldfine, I. D., and De Pirro, R. (1987) Endocrinology 121, 2007-2010). The effect of MA-10 on insulin receptor autophosphorylation and on two insulin actions (thymidine incorporation into DNA and receptor down-regulation) was investigated in rat hepatoma Fao cells. MA-10 inhibits insulin-stimulated receptor autophosphorylation, thymidine incorporation into DNA, and insulin-induced receptor down-regulation without affecting insulin receptor binding. We show that MA-10 binds to a site of rat insulin receptors different from the insulin binding site in intact Fao cells. Insulin does not inhibit MA-10 binding, and MA-10 does not inhibit insulin binding to rat Fao cells. Moreover, MA-10 binding to down-regulated cells is reduced to the same extent as insulin binding. In rat insulin receptors the MA-10 binding site has been tentatively localized in the extracellular part of the insulin receptor beta-subunit based on the following evidence: (i) MA-10 binds to insulin receptor in intact rat cells; (ii) MA-10 immunoprecipitates isolated insulin receptor beta-subunits labeled with both [35S]methionine and 32P; (iii) MA-10 reacts with rat insulin receptor beta-subunits by the method of immunoblotting, similar to an antipeptide antibody directed against the carboxyl terminus of the insulin receptor beta-subunit. Moreover, MA-10 inhibits autophosphorylation and protein-tyrosine kinase activity of reduced and purified insulin receptor beta-subunits. The finding that MA-10 inhibits insulin-stimulated receptor autophosphorylation and reduces insulin-stimulated thymidine incorporation into DNA and receptor down-regulation suggests that the extracellular part of the insulin receptor beta-subunit plays a role in the regulation of insulin receptor protein-tyrosine kinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号