首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gH glycoprotein of varicella-zoster virus (VZV) is a major fusogen. The realigned short cytoplasmic tail of gH (18 amino acids) harbors a functional endocytosis motif (YNKI) that mediates internalization in both VZV-infected and transfected cells (T. J. Pasieka, L. Maresova, and C. Grose, J. Virol. 77: 4194-4202, 2003). During subsequent confocal microscopy studies of endocytosis-deficient gH mutants, we observed that cells transfected with the gH tail mutants exhibited marked fusion. Therefore, we postulated that VZV gH endocytosis served to regulate cell-to-cell fusion. Subsequent analyses of gH+gL transfection fusion assays by the Kolmogorov-Smirnov statistical test demonstrated that expression of the endocytosis-deficient gH mutants resulted in a statistically significant enhancement of cell-to-cell fusion (P < 0.0001) compared to wild-type gH. On the other hand, coexpression of VZV gE, another endocytosis-competent VZV glycoprotein, was able to temper the fusogenicity of the gH endocytosis mutants by facilitating internalization of the mutant gH protein from the cell surface. When the latter results were similarly analyzed, there was no longer any enhanced fusion by the endocytosis-deficient gH mutant protein. In summary, these studies support a role for gH endocytosis in regulating the cell surface expression of gH and thereby regulating gH-mediated fusion. The data also confirm and extend prior observations of a gE-gH interaction during viral glycoprotein trafficking in a VZV transfection system.  相似文献   

2.
Varicella-zoster virus (VZV) is a ubiquitous, highly cell-associated, and exclusively human neurotropic alphaherpesvirus. VZV infection is initiated by membrane fusion, an event dependent in part on VZV glycoproteins gH and gL. Consistent with its location on the virus envelope, the gH/gL complex is a target of neutralizing antibodies produced after virus infection. One week after immunizing a 59-year-old VZV-seropositive man with Zostavax, we sorted his circulating blood plasma blasts and amplified expressed immunoglobulin variable domain sequences by single-cell PCR. Sequence analysis identified two plasma blast clones, one of which was used to construct a recombinant monoclonal antibody (rec-RC IgG). The rec-RC IgG colocalized with VZV gE on the membranes of VZV-infected cells and neutralized VZV infection in tissue culture. Mass spectrometric analysis of proteins immunoprecipitated by rec-RC IgG identified both VZV gH and gL. Transfection experiments showed that rec-RC IgG recognized a VZV gH/gL protein complex but not individual gH or gL proteins. Overall, our recombinant monoclonal anti-VZV antibody effectively neutralizes VZV and recognizes a conformational epitope within the VZV gH/L protein complex. An unlimited supply of this antibody provides the opportunity to analyze membrane fusion events that follow virus attachment and to identify multiple epitopes on VZV-specific proteins.  相似文献   

3.
Herpesviruses encode the complex-forming, essential glycoproteins gH and gL. Maturation and transport of gH are dependent on coexpression of its chaperone, gL. The gL proteins of alpha herpesviruses and gamma herpesviruses do not have a significant percentage of amino acid sequence homology. Yet, as we report herein, the diverse gL glycoproteins of Epstein-Barr virus (EBV) and varicella-zoster virus (VZV) were functionally interchangeable, although membrane expression and maturation of gH were separate functions for these viruses. In VZV both functions were performed by a single protein. EBV required two separate glycoproteins, one of which can be replaced by its homologous protein from VZV, a distant relative of EBV. Collectively, these results suggested that VZV gL is a simpler form of the gL chaperone protein than EBV gL.  相似文献   

4.
The trafficking of varicella-zoster virus (VZV) gH was investigated under both infection and transfection conditions. In initial endocytosis assays performed in infected cells, the three glycoproteins gE, gI, and gB served as positive controls for internalization from the plasma membrane. Subsequently, we discovered that gH in VZV-infected cells was also internalized and followed a similar trafficking pattern. This observation was unexpected because all herpesvirus gH homologues have short endodomains not known to contain trafficking motifs. Further investigation demonstrated that VZV gH, when expressed alone with its chaperone gL, was capable of endocytosis in a clathrin-dependent manner, independent of gE, gI, or gB. Upon inspection of the short gH cytoplasmic tail, we discovered a putative tyrosine-based endocytosis motif (YNKI). When the tyrosine was replaced with an alanine, endocytosis of gH was blocked. Utilizing an endocytosis assay dependent on biotin labeling, we further documented that endocytosis of VZV gH was antibody independent. In control experiments, we showed that gE, gI, and gB also internalized in an antibody-independent manner. Alignment analysis of the VZV gH cytoplasmic tail to other herpesvirus gH homologues revealed two important findings: (i) herpes simplex virus type 1 and 2 homologues lacked an endocytosis motif, while all other alphaherpesvirus gH homologues contained a potential motif, and (ii) the VZV gH and simian varicella virus gH cytoplasmic tails were likely longer in length (18 amino acids) than predicted in the original sequence analyses (12 and 16 amino acids, respectively). The longer tails provided the proper context for a functional endocytosis motif.  相似文献   

5.
Epstein-Barr virus (EBV) infects B lymphocytes and epithelial cells. While the glycoproteins required for entry into these two cell types differ, the gH/gL glycoprotein complex is essential for entry into both epithelial and B cells. Analysis of gH protein sequences from three gammaherpesviruses (EBV, marmoset, and rhesus) revealed a potential coiled-coil domain in the N terminus. Four leucines located in this region in EBV gH were replaced by alanines by site-directed mutagenesis and analyzed for cell-cell membrane fusion with B cells and epithelial cells. Reduction in fusion activity was observed for mutants containing L65A and/or L69A mutations, while substitutions in L55 and L74 enhanced the fusion activity of the mutant gH/gL complexes with both cell types. All of the mutants displayed levels of cell surface expression similar to those of wild-type gH and interacted with gL and gp42. The observation that a conservative mutation of leucine to alanine in the N terminus of EBV gH results in fusion-defective mutant gH/gL complexes is striking and points to an important role for this region in EBV-mediated membrane fusion with B lymphocytes and epithelial cells.  相似文献   

6.
The entry of human cytomegalovirus (HCMV) into biologically relevant epithelial and endothelial cells involves endocytosis followed by low-pH-dependent fusion. This entry pathway is facilitated by the HCMV UL128, UL130, and UL131 proteins, which form one or more complexes with the virion envelope glycoprotein gH/gL. gH/gL/UL128-131 complexes appear to be distinct from the gH/gL/gO complex, which likely facilitates entry into fibroblasts. In order to better understand the assembly and protein-protein interactions of gH/gL/UL128-131 complexes, we generated HCMV mutants lacking UL128-131 proteins and nonreplicating adenovirus vectors expressing gH, gL, UL128, UL130, and UL131. Our results demonstrate that UL128, UL130, and UL131 can each independently assemble onto gH/gL scaffolds. However, the binding of individual UL128-131 proteins onto gH/gL can significantly affect the binding of other proteins; for example, UL128 increased the binding of both UL130 and UL131 to gH/gL. Direct interactions between gH/UL130, UL130/UL131, gL/UL128, and UL128/UL130 were also observed. The export of gH/gL complexes from the endoplasmic reticulum (ER) to the Golgi apparatus and cell surface was dramatically increased when all of UL128, UL130, and UL131 were coexpressed with gH/gL (with or without gO expression). Incorporation of gH/gL complexes into the virion envelope requires transport beyond the ER. Thus, we concluded that UL128, UL130, and UL131 must all bind simultaneously onto gH/gL for the production of complexes that can function in entry into epithelial and endothelial cells.  相似文献   

7.
Harman A  Browne H  Minson T 《Journal of virology》2002,76(21):10708-10716
Herpes simplex virus glycoprotein H (gH) is one of the four virion envelope proteins which are required for virus entry and for cell-cell fusion in a transient system. In this report, the role of the transmembrane and cytoplasmic tail domains of gH in membrane fusion was investigated by generating chimeric constructs in which these regions were replaced with analogous domains from other molecules and by introducing amino acid substitutions within the membrane-spanning sequence. gH molecules which lack the authentic transmembrane domain or cytoplasmic tail were unable to mediate cell-cell fusion when coexpressed with gB, gD, and gL and were unable to rescue the infectivity of a gH-null virus as efficiently as a wild-type gH molecule. Many amino acid substitutions of specific amino acid residues within the transmembrane domain also affected cell-cell fusion, in particular, those introduced at a conserved glycine residue. Some gH mutants that were impaired in cell-cell fusion were nevertheless able to rescue the infectivity of a gH-negative virus, but these pseudotyped virions entered cells more slowly than wild-type virions. These results indicate that the fusion event mediated by the coexpression of gHL, gB, and gD in cells shares common features with the fusion of the virus envelope with the plasma membrane, they point to a likely role for the membrane-spanning and cytoplasmic tail domains of gH in both processes, and they suggest that a conserved glycine residue in the membrane-spanning sequence is crucial for efficient fusion.  相似文献   

8.
A complex of five human cytomegalovirus virus (HCMV) proteins, gH, gL, UL128, UL130, and UL131 (gH/gL/UL128-131), is essential for virus entry into epithelial cells. We previously showed that gH/gL/UL128-131 expressed in epithelial cells interferes with subsequent HCMV entry into cells. There was no interference with only gH/gL or gB. We concluded that the expression of gH/gL/UL128-131 causes a mislocalization or downregulation of epithelial cell proteins that HCMV requires for entry. In contrast, gH/gL/UL128-131 expression in fibroblasts did not produce interference, suggesting a different mechanism for entry. Here, we show that the coexpression of another HCMV glycoprotein, gO, with gH/gL in human fibroblasts interferes with HCMV entry into fibroblasts but not epithelial cells. However, the coexpression of gO with gH/gL did not increase the cell surface expression level of gH/gL and did not enhance cell-cell fusion, a process that depends upon cell surface gH/gL. Instead, gO promoted the export of gH/gL from the endoplasmic reticulum (ER) and the accumulation of gH/gL in the trans-Golgi network. Thus, interference with gH/gL or gH/gL/gO, i.e., the mislocalization or blocking of entry mediators, occurs in cytoplasmic membranes and not in cell surface membranes of fibroblasts. Together, the results provide additional support for our hypotheses that epithelial cells express putative gH/gL/UL128-1331 receptors important for HCMV entry and that fibroblasts express distinct gH/gL receptors.  相似文献   

9.
Herpesviruses require membrane-associated glycoproteins gB, gH, and gL for entry into host cells. Epstein-Barr virus (EBV) gp42 is a unique protein also required for viral entry into B cells. Key interactions between EBV gp42 and the EBV gH/gL complex were investigated to further elucidate their roles in membrane fusion. Deletion and point mutants within the N-terminal region of gp42 revealed residues important for gH/gL binding and membrane fusion. Many five-residue deletion mutants in the N-terminal region of gp42 that exhibit reduced membrane fusion activity retain binding with gH/gL but map out two functional stretches between residues 36 and 96. Synthetic peptides derived from the gp42 N-terminal region were studied in in vitro binding experiments with purified gH/gL and in cell-cell fusion assays. A peptide spanning gp42 residues 36 to 81 (peptide 36-81) binds gH/gL with nanomolar affinity, comparable to full-length gp42. Peptide 36-81 efficiently inhibits epithelial cell membrane fusion and competes with soluble gp42 to inhibit B-cell fusion. Additionally, this peptide at low nanomolar concentrations inhibits epithelial cell infection by intact virus. Shorter gp42 peptides spanning the two functional regions identified by deletion mutagenesis had little or no binding to soluble gH/gL and were also unable to inhibit epithelial cell fusion, nor could they complement gp42 deletion mutants in B-cell fusion. These studies identify key residues of gp42 that are essential for gH/gL binding and membrane fusion activation, providing a nanomolar inhibitor of EBV-mediated membrane fusion.  相似文献   

10.
The attachment, entry, and fusion of Kaposi's sarcoma-associated herpesvirus (KSHV) with target cells are mediated by complex machinery containing, among others, viral glycoprotein H (gH) and its alleged chaperone, gL. We observed that KSHV gH, in contrast to its homologues in several other herpesviruses, is transported to the cytoplasm membrane independently from gL, but not vice versa. Mutational analysis revealed that the N terminus of gH is sufficient for gL interaction. However, the entire extracellular part of gH is required for efficient gL secretion. The soluble ectodomain of gH was sufficient to interact with the surfaces of potential target cells in a heparin-dependent manner, and binding was further enhanced by coexpression of gL. Surface plasmon resonance revealed a remarkably high affinity of gH for glycosaminoglycans. Heparan sulfate (HS) proteoglycans of the syndecan family act as cellular receptors for the gH/gL complex. They promoted KSHV infection, and expression of gH/gL on target cells inhibited subsequent KSHV infection. Whereas gH alone was able to bind to HS, we observed that only the gH/gL complex adhered to heparan sulfate-negative cells at lamellipodium-like structures.  相似文献   

11.
The herpesvirus glycoprotein H (gH) and gL associate to form a heterodimer that plays a central role in virus-driven membrane fusion. When archetypal alpha- or betaherpesviruses lack gL, gH misfolds and progeny virions are noninfectious. In order to define the role that gL plays in gamma-2 herpesvirus infections, we disrupted its coding sequence in murine gammaherpesvirus-68 (MHV-68). MHV-68 lacking gL folded gH into a conformation antigenically distinct from the form that normally predominates on infected cells. gL-deficient virions bound less well than the wild type to epithelial cells and fibroblasts. However, they still incorporated gH and remained infectious. The cell-to-cell spread of gL-deficient viruses was remarkably normal, as was infection, dissemination, and latency establishment in vivo. Viral membrane fusion was therefore gL independent. The major function of gL appeared to be allowing gH to participate in cell binding prior to membrane fusion. This function was most important for the entry of MHV-68 virions into fibroblasts and epithelial cells.  相似文献   

12.
The glycoprotein H (gH)/gL heterodimer is crucial for herpesvirus membrane fusion. Yet how it functions is not well understood. The Murid Herpesvirus-4 gH, like that of other herpesviruses, adopts its normal virion conformation by associating with gL. However, gH switched back to a gL-independent conformation after virion endocytosis. This switch coincided with a conformation switch in gB and with capsid release. Virions lacking gL constitutively expressed the down-stream form of gH, prematurely switched gB to its down-stream form, and showed premature capsid release with poor infectivity. These data argue that gL plays a key role in regulating a gH and gB functional switch from cell binding to membrane fusion.  相似文献   

13.
Entry of herpes simplex virus 1 (HSV-1) into cells occurs by fusion with cell membranes; it requires gD as the receptor binding glycoprotein and the trigger of fusion, and the trio of the conserved glycoproteins gB, gH, and gL to execute fusion. Recently, we reported that the ectodomain of HSV-1 gH carries a hydrophobic alpha-helix (residues 377 to 397) with attributes of an internal fusion peptide (T. Gianni, P. L. Martelli, R. Casadio, and G. Campadelli-Fiume, J. Virol. 79:2931-2940, 2005). Downstream of this alpha-helix, a heptad repeat (HR) with a high propensity to form a coiled coil was predicted between residues 443 and 471 and was designated HR-1. The simultaneous substitution of two amino acids in HR-1 (E450G and L453A), predicted to abolish the coiled coil, abolished the ability of gH to complement the infectivity of a gH-null HSV mutant. When coexpressed with gB, gD, and gL, the mutant gH was unable to promote cell-cell fusion. These defects were not attributed to a defect in heterodimer formation with gL, the gH chaperone, or in trafficking to the plasma membrane. A 25-amino-acid synthetic peptide with the sequence of HR-1 (pep-gH(wt25)) inhibited HSV replication if present at the time of virus entry into the cell. A scrambled peptide had no effect. The effect was specific, as pep-gH(wt25) did not reduce HSV-2 and pseudorabies virus infection. The presence of a functional HR in the HSV-1 gH ectodomain strengthens the view that gH has attributes typical of a viral fusion glycoprotein.  相似文献   

14.
Varicella-zoster virus (VZV) is distinguished from herpes simplex virus type 1 (HSV-1) by the fact that cell-to-cell fusion and syncytium formation require only gH and gL within a transient-expression system. In the HSV system, four glycoproteins, namely, gH, gL, gB, and gD, are required to induce a similar fusogenic event. VZV lacks a gD homologous protein. In this report, the role of VZV gB as a fusogen was investigated and compared to the gH-gL complex. First of all, the VZV gH-gL experiment was repeated under a different set of conditions; namely, gH and gL were cloned into the same vaccinia virus (VV) genome. Surprisingly, the new expression system demonstrated that a recombinant VV-gH+gL construct was even more fusogenic than seen in the prior experiment with two individual expression plasmids containing gH and gL (K. M. Duus and C. Grose, J. Virol. 70:8961-8971, 1996). Recombinant VV expressing VZV gB by itself, however, effected the formation of only small syncytia. When VZV gE and gB genes were cloned into one recombinant VV genome and another fusion assay was performed, extensive syncytium formation was observed. The degree of fusion with VZV gE-gB coexpression was comparable to that observed with VZV gH-gL: in both cases, >80% of the cells in a monolayer were fused. Thus, these studies established that VZV gE-gB coexpression greatly enhanced the fusogenic properties of gB. Control experiments documented that the fusion assay required a balance between the fusogenic potential of the VZV glycoproteins and the fusion-inhibitory effect of the VV infection itself.  相似文献   

15.
The core entry machinery of mammalian herpesviruses comprises glycoprotein B (gB), gH, and gL. gH and gL form a heterodimer with a central role in viral membrane fusion. When archetypal alpha- or betaherpesviruses lack gL, gH misfolds and progeny virions are noninfectious. However, the gL of the rhadinovirus murid herpesvirus 4 (MuHV-4) is nonessential for infection. In order to define more generally what role gL plays in rhadinovirus infections, we disrupted its coding sequence in bovine herpesvirus 4 (BoHV-4). BoHV-4 lacking gL showed altered gH glycosylation and incorporated somewhat less gH into virions but remained infectious. However, gL(-) virions showed poor growth associated with an entry deficit. Moreover, a major part of their entry defect appeared to reflect impaired endocytosis, which occurs upstream of membrane fusion itself. Thus, the rhadinovirus gL may be more important for driving virion endocytosis than for incorporating gH into virions, and it is nonessential for membrane fusion.  相似文献   

16.
Glycoprotein H (gH) is conserved among all herpesviruses and is essential for virus entry and cell fusion along with gL, gB, and, in most alphaherpesviruses, gD. Within the gH/gL heterodimer, it is thought that gH accounts for the fusion function and gL acts as a chaperone for the folding and transport of gH. Here, we found that the N terminus of gH2 contains important elements involved in both its folding and its transport. Our conclusions are based on the phenotypes of a series of gH deletion mutants in which the signal sequence (residues 1 to 18) was retained and N-terminal residues were removed up to the number indicated. The first mutant, gH2Delta29 (deletion of residues 19 to 28), like wild-type (WT) gH, required gL for both transport and function. To our surprise, two other mutants (gH2Delta64 and gH2Delta72) were transported to the cell surface independent of gL but were nonfunctional, even when complexed with gL. Importantly, a fourth mutant (gH2Delta48) was transported independent of gL but was functional only when complexed with gL. Using a panel of monoclonal antibodies against gH2, we found that when gH2Delta48 was expressed alone, its antigenic structure differed from that of gH2Delta48/gL or gH2-WT/gL. Mutation of gH2 residue R39, Y41, W42, or D44 allowed gL-independent transport of gH. Our results also show that gL is not merely required for gH transport but is also necessary for the folding and function of the complex. Since gH2Delta64/gL and gH2Delta72/gL were nonfunctional, we hypothesized that residues critical for gH/gL function lie within this deleted region. Additional mutagenesis identified L66 and L72 as important for function. Together, our results highlight several key gH residues: R39, Y41, W42, and D44 for gH transport and L66 and L72 for gH/gL structure and function.  相似文献   

17.
Epstein-Barr virus (EBV) is a herpesvirus that infects cells by fusing its lipid envelope with the target cell membrane. The fusion process requires the actions of viral glycoproteins gH, gL, and gB for entry into epithelial cells and additionally requires gp42 for entry into B cells. To further study the roles of these membrane-associated glycoproteins, purified soluble forms of gp42, gH, and gL were expressed that lack the membrane-spanning regions. The soluble gH/gL protein complex binds to soluble gp42 with high affinity, forming a stable heterotrimer with 1:1:1 stoichiometry, and this complex is not formed by an N-terminally truncated variant of gp42. The effects of adding soluble gp42, gH/gL, and gH/gL/gp42 were examined with a virus-free cell-cell fusion assay. The results demonstrate that, in contrast to gp42, membrane fusion does not proceed with secreted gH/gL. The addition of soluble gH/gL does not inhibit or enhance B-cell or epithelial cell fusion when membrane-bound gH/gL, gB, and gp42 are present. However, the soluble gH/gL/gp42 complex does activate membrane fusion with B cells, similarly to soluble gp42, but it does not inhibit fusion with epithelial cells, as observed for gp42 alone. A gp42 peptide, derived from an N-terminal segment involved in gH/gL interactions, binds to soluble gH/gL and inhibits EBV-mediated epithelial cell fusion, mimicking gp42. These observations reveal distinct functional requirements for gH/gL and gp42 complexes in EBV-mediated membrane fusion.  相似文献   

18.
The conserved herpesvirus fusion complex consists of glycoproteins gB, gH, and gL which is critical for virion envelope fusion with the cell membrane during entry. For Varicella Zoster Virus (VZV), the complex is necessary for cell-cell fusion and presumed to mediate entry. VZV causes syncytia formation via cell-cell fusion in skin and in sensory ganglia during VZV reactivation, leading to neuronal damage, a potential contributory factor for the debilitating condition of postherpetic neuralgia. The gH cytoplasmic domain (gHcyt) is linked to the regulation of gB/gH-gL-mediated cell fusion as demonstrated by increased cell fusion in vitro by an eight amino acid (aa834-841) truncation of the gHcyt. The gHcyt regulation was identified to be dependent on the physical presence of the domain, and not of specific motifs or biochemical properties as substitution of aa834-841 with V5, cMyc, and hydrophobic or hydrophilic sequences did not affect fusion. The importance of the gHcyt length was corroborated by stepwise deletions of aa834-841 causing incremental increases in cell fusion, independent of gH surface expression and endocytosis. Consistent with the fusion assay, truncating the gHcyt in the viral genome caused exaggerated syncytia formation and significant reduction in viral titers. Importantly, infection of human skin xenografts in SCID mice was severely impaired by the truncation while maintaining the gHcyt length with the V5 substitution preserved typical replication in vitro and in skin. A role for the gHcyt in modulating the functions of the gB cytoplasmic domain (gBcyt) is proposed as the gHcyt truncation substantially enhanced cell fusion in the presence of the gB[Y881F] mutation. The significant reduction in skin infection caused by hyperfusogenic mutations in either the gHcyt or gBcyt demonstrates that both domains are critical for regulating syncytia formation and failure to control cell fusion, rather than enhancing viral spread, is severely detrimental to VZV pathogenesis.  相似文献   

19.
The gH/gL heterodimer represents two of the four herpes simplex virus glycoproteins necessary and sufficient for membrane fusion. We generated deletions and point mutations covering gL residues 24 to 43 to investigate that region''s role in gH/gL intracellular trafficking and in membrane fusion. Multiple mutants displayed a 40 to 60% reduction in cell fusion with no effect on gH/gL trafficking. The amino terminus of gL plays an important role in the gH/gL contribution to membrane fusion.  相似文献   

20.
Human cytomegalovirus (CMV) infection is dependent on the functions of structural glycoproteins at multiple stages of the viral life cycle. These proteins mediate the initial attachment and fusion events that occur between the viral envelope and a host cell membrane, as well as virion-independent cell-cell spread of the infection. Here we have utilized a cell-based fusion assay to identify the fusogenic glycoproteins of CMV. To deliver the glycoprotein genes to various cell lines, we constructed recombinant retroviruses encoding gB, gH, gL, and gO. Cells expressing individual CMV glycoproteins did not form multinucleated syncytia. Conversely, cells expressing gH/gL showed pronounced syncytium formation, although expression of gH or gL alone had no effect. Anti-gH neutralizing antibodies prevented syncytium formation. Coexpression of gB and/or gO with gH/gL did not yield detectably increased numbers of syncytia. For verification, these results were recapitulated in several cell lines. Additionally, we found that fusion was cell line dependent, as nonimmortalized fibroblast strains did not fuse under any conditions. Thus, the CMV gH/gL complex has inherent fusogenic activity that can be measured in certain cell lines; however, fusion in fibroblast strains may involve a more complex mechanism involving additional viral and/or cellular factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号