首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We have identified a set of informative microsatellite markers for genome analysis in kiwifruit and related Actinidia species. A small-insert genomic library was constructed from Actinidia chinensis DNA, and screened for microsatellites. About 1.2% of the total colonies hybridised to a (GA)8 probe, 0.4% to (GT)8, and 0.1% to a mixture of three different trinucleotide repeat probes, (CAA)5, (GAA)5 and (CTA)5. From the DNA sequences of 35 hybridising clones, 18 primer pairs were designed, and used to amplify genomic DNA from 38 individual plants, representing 30 different accessions of ten Actinidia species. The banding patterns for most of the dinucleotide repeats showed a high degree of polymorphism in the diploid and tetraploid A. chinensis, and in the hexaploid A. deliciosa (kiwifruit). Heterozygosity levels of up to 100% were found among eight diploid accessions of A. chinensis examined, and the number of different-sized bands among all the species varied from 3 to 36 for each microsatellite. One simple CT microsatellite gave 21 bands with sizes suggesting that the number of repeats ranged from 9 to 37. The highest number of bands (36) and the largest size variation (>100 bp) were observed with a complex microsatellite harbouring four different repeat motifs. The majority of primer pairs amplified bands from most of the ten Actinidia species tested. The most polymorphic primer pairs were used successfully to fingerprint a range of closely related varieties of kiwifruit (A. deliciosa).Abbreviations PCR polymerase chain reaction - RFLP restriction fragment length polymorphism - VNTR variable number of tandem repeats  相似文献   

2.
The genetic origin of kiwifruit (Actinidia deliciosa var.deliciosa) was studied using phylogenetic analysis of DNA sequences derived from the polygalacturonase gene. Results indicate that hexaploid kiwifruit had an allopolyploid origin with the diploidA. chinensis contributing one genome (genome A) and another (as yet unidentified) diploid species contributing a second genome (genome B). The results leave open the question of whether a third, distinct species contributed to the hexaploid kiwifruit genome. A tetraploid race ofA. chinensis is also suggested to be allopolyploid containing genomes A and B.  相似文献   

3.
Summary Six members of a family of moderately repetitive DNA sequences from kiwifruit (Actinidia deliciosa var. deliciosa) have been cloned and characterized. The repeat family is composed of elements that have a unit length of 463 bp, are highly methylated, occur in tandem arrays of at least 50 kb in length, and constitute about 0.5% of the kiwifruit genome. Individual elements diverge in nucleotide sequence by up to 5%, which suggests that the repeat sequence is evolving rapidly. Homologous sequences were found in A. deliciosa var. chlorocarpa. The repeat sequence was not found under low stringency hybridization conditions in the diploid A. chinensis, the species most closely related to the hexaploid kiwifruit, or in eight other Actinidia species. However, homologous repeats were detected in a tetraploid species, A. chrysantha. The results provide the first molecular evidence to suggest that kiwifruit may be an allopolyploid species.  相似文献   

4.
1H NMR relaxation times (T1 and T2) in parenchyma tissue of apple can identify three populations of water with different relaxation characteristics. By following the uptake of Mn2+ ions in the tissue it is shown that the observed relaxation times originate from particular water compartments: the vacuole, the cytoplasm, and the cell wall/extracellular space.

Proton exchange between these compartments is controlled by the plasmalemma and tonoplast membranes. During the Mn2+ penetration experiment, conditions occur that cause the relaxation times of protons of cytoplasmic water to be much shorter than their residence time in the cytoplasm. Then the tonoplast permeability coefficient Pd for water can be calculated from the vacuolar T1 and T2 values to be 2.44 10-5 m·s-1.

  相似文献   

5.
A field study and an experiment under controlled conditions using pressure-flux relationships were conducted to compare the stem and whole-plant conductance in olive (Olea europaea) and kiwifruit (Actinidia deliciosa) species. Anatomical observations were also made on one-year-old stem to determine the conductive area of vessels (A ves) and the total xylem area (A xyl). Results show that A ves of kiwifruit twigs was ~2.5-fold of that in olive twigs, and the hydraulically weighted mean diameter was up to threefold that of the olive ones. One-year-old olive twigs had lower hydraulic conductivity (k) than the kiwifruit, while values of leaf-specific conductivity (i.e. k normalised per unit leaf area) were higher than the kiwifruit (i.e. ~49 and 29 × 10?6 kg m?1 s?1 MPa?1, respectively). In the field experiment, the flux of sap (heat balance method) and differences in water potential through the soil–plant system (ΔP) were used for both species to calculate the whole-plant conductance that was normalised per unit leaf area (leaf-specific whole-plant conductance, K plant,LA). Values of K plant,LA are attributable to the combined effect of the ΔP and anatomical features of conduits. Olive species showed a larger ΔP (2.4 MPa at midday) than the kiwifruit (0.5 MPa) which contributed to lower K plant,LA in Olea than the Actinidia plants. This information, combined with vessel density data, contributes to explain differences amidst olive and kiwifruit species, in terms of susceptibility to some drought-related hydraulic impairments induced by the Mediterranean environment.  相似文献   

6.
The effects of long-term flooding on the growth of six-month-old Actinidia chinensis Planch cv. Abbot plants and some effects on stomatal behaviour and leaf water relations were examined under controlled conditions for 28 days. Flooding caused stomatal closure and decreases in transpiration rate, xylem water potential, osmotic potential and turgor potential. Flooding also caused inhibition of the dry weight increase of leaves plus stems and of roots, chlorosis and necrosis of leaves, production of hypertrophied lenticels and the appearance of a small number of adventitious roots on the submerged portions of the stems. Rapid and partial stomatal closure by flooding may not only be due to the passive mechanical response which follows leaf dehydration, since flooded plants showed an increase in xylem water potential and osmotic potential during the first days of the experiment. The marked intolerance of Actinidia chinensis to flooding has been a serious barrier to its culture in poorly drained soils, hence careful irrigation management is required.  相似文献   

7.
Kiwifruit (Actinidia spp) is a woody, perennial and deciduous vine. In this genus, there are multiple ploidy levels but the main cultivated cultivars are polyploid. Despite the availability of many genomic resources in kiwifruit, SNP genotyping is still a challenge given these different levels of polyploidy. Recent advances in SNP array technologies have offered a high-throughput genotyping platform for genome-wide DNA polymorphisms. In this study, we developed a high-density SNP genotyping array to facilitate genetic studies and breeding applications in kiwifruit. SNP discovery was performed by genome-wide DNA sequencing of 40 kiwifruit genotypes. The identified SNPs were stringently filtered for sequence quality, predicted conversion performance and distribution over the available Actinidia chinensis genome. A total of 134 729 unique SNPs were put on the array. The array was evaluated by genotyping 400 kiwifruit individuals. We performed a multidimensional scaling analysis to assess the diversity of kiwifruit germplasm, showing that the array was effective to distinguish kiwifruit accessions. Using a tetraploid F1 population, we constructed an integrated linkage map covering 3060.9 cM across 29 linkage groups and performed QTL analysis for the sex locus that has been identified on Linkage Group 3 (LG3) in Actinidia arguta. Finally, our dataset presented evidence of tetrasomic inheritance with partial preferential pairing in A. arguta. In conclusion, we developed and evaluated a 135K SNP genotyping array for kiwifruit. It has the advantage of a comprehensive design that can be an effective tool in genetic studies and breeding applications in this high-value crop.  相似文献   

8.
A novel cytorhabdovirus, tentatively named Actinidia virus D (AcVD), was identified from kiwifruit (Actinidia chinensis) in China using high-throughput sequencing technology. The genome of AcVD consists of 13,589 nucleotides and is organized into seven open reading frames (ORFs) in its antisense strand, coding for proteins in the order N-P-P3-M-G-P6-L. The ORFs were flanked by a 3′ leader sequence and a 5′ trailer sequence and are separated by conserved intergenic junctions. The genome sequence of AcVD was 44.6%–51.5% identical to those of reported cytorhabdoviruses. The proteins encoded by AcVD shared the highest sequence identities, ranging from 27.3% (P6) to 44.5% (L), with the respective proteins encoded by reported cytorhabdoviruses. Phylogenetic analysis revealed that AcVD clustered together with the cytorhabdovirus Wuhan insect virus 4. The subcellular locations of the viral proteins N, P, P3, M, G, and P6 in epidermal cells of Nicotiana benthamiana leaves were determined. The M protein of AcVD uniquely formed filament structures and was associated with microtubules. Bimolecular fluorescence complementation assays showed that three proteins, N, P, and M, self-interact, protein N plays a role in the formation of cytoplasm viroplasm, and protein M recruits N, P, P3, and G to microtubules. In addition, numerous paired proteins interact in the nucleus. This study presents the first evidence of a cytorhabdovirus infecting kiwifruit plants and full location and interaction maps to gain insight into viral protein functions.  相似文献   

9.
Seedlings of kiwifruit (Actinidia deliciosa (A. Chev.) C. F.Liang et A. R. Ferguson vardeliciosa ) and A. arguta (Sieb.et Zucc.) Planch. ex Miq. grown in hydroponic nutrient solutionswith elevated salt (MgSO4and KCl) concentrations showed visiblesigns of stress at salt concentrations of 50 m M and above.The polyol myo -inositol accumulated in leaf tissue when thesalt was added to 15 m M or more, with increases being similarin the two species. The increase in concentration of myo -inositolwas approximately linear with rising salt. At any given saltconcentration an increase in myo -inositol was linear with timefrom application of salt.myo -Inositol concentrations increasedwithin the first 24 h of salt treatment, and declined againas quickly once the stress was removed. Sucrose also increasedwith salt stress, accumulating only once plants showed physicalsigns of stress. Accumulation of myo -inositol was negativelycorrelated to fructose and glucose. Copyright 1999 Annals ofBotany Company Actinidia arguta, Actinidia deliciosa, kiwifruit, leaf tissue, myo -inositol, salt stress, sucrose.  相似文献   

10.
Dry, powdery pollen grains were expected from 'buzz pollinated'flower species. However, vibration of Actinidia deliciosa (kiwifruit)anthers (a buzz pollinated species) by a mechanical shaker,at similar vibrations to Bombus terrestris caused clumps ofpollen joined by small droplets of tapetal fluid to be ejected.Pollen that was largely covered with tapetal fluid could notbe removed by vibration, whereas dehydrated pollen was easilyremoved, even without vibration. The late desiccation of A.deliciosa anthers after anthesis meant that pollen removed byvibration depended on the anther maturity. The presence of thedroplets gives insects which vibrate while foraging advantagesover insects which do not. A vibration attachment on a commercialpollen harvester increased the weight of pollen collected by57% over the whole day; 91% in the afternoon.Copyright 1994,1999 Academic Press Actinidia deliciosa, Bombus spp., bumblebees, buzz pollinate, kiwifruit, pollen collection, tapetal fluid, vibration  相似文献   

11.
China is the original home of kiwifruit which are derived from the species complex Actinidia chinensis. A short domestication history of a little more than 100 years characterizes kiwifruit as a unique fruit crop whose cultivar improvement is heavily dependent on exploitation and selection of wild resources. Actinidia species are widespread geographically; their distributions often overlap, and hybridization between taxa is common naturally. Actinidia species that vary in ploidy and complex mixtures of cytotypes are prevalent in natural populations. Here, we review the recent emerging knowledge of natural distribution, biogeography, and population genetics in Actinidia with a particular focus on the pattern of overlapping distribution and natural hybridization among Actinidia species. Based on the comparison of the original geographical localities where most kiwifruit commercial cultivars were selected and the whole geographical range of the species complex A. chinensis, we propose that introgression breeding for new selections and cultivars of kiwifruit should utilize targeted exploration in natural hybrid zones as well as the genomic tools and related genetic resources that are becoming available to an unprecedented extent.  相似文献   

12.
Nuclear magnetic resonance (NMR) microimaging and proton relaxation times were used to monitor differences between the hydration state of the nucleus and cytoplasm in the Rana pipiens oocyte. Individual isolated ovarian oocytes were imaged in a drop of Ringer's solution with an in-plane resolution of 80 μm. Proton spin echo images of oocytes arrested in prophase I indicated a marked difference in contrast between nucleoplasm and cytoplasm with additional intensity gradations between the yolk platelet-rich region of the cytoplasm and regions with little yolk. Neither shortening τe (spin echo time) to 9 msec (from 18 msec) nor lengthening τr (spin recovery time) to 2 sec (from 0.5 sec) reduced the observed contrast between nucleus and cytoplasm. Water proton T1 (spin-lattice) relaxation times of oocyte suspensions indicated three water compartments that corresponded to extracellular medium (T1= 3.0 sec), cytoplasm (T1= 0.8 sec) and nucleoplasm (T1= 1.6 sec). The 1.6 sec compartment disappeared at the time of nuclear breakdown. Measurements of plasma and nuclear membrane potentials with KCl-filled glass microelectrodes demonstrated that the prophase I oocyte nucleus was about 25 mV inside positive relative to the extracellular medium. A model for the prophase-arrested oocyte is proposed in which a high concentration of large impermeant ions together with small counter ions set up a Donnan-type equilibrium that results in an increased distribution of water within the nucleus in comparison with the cytosol. This study indicates: (i) a slow exchange between two or more intracellular water compartments on the NMR time-scale, (ii) an increased rotational correlation time for water molecules in both the cytoplasmic and nuclear compartments compared to bulk water, and (iii) a higher water content (per unit dry mass) of the nucleus compared to the cytoplasm, and (iv) the existence of a large (about 75 mV positive) electropotential difference between the nuclear and cytoplasmic compartments. Received: 18 January 1996/Revised: 29 April 1996  相似文献   

13.

Background and Aims

Xylem flows into most fruits decline as the fruit develop, with important effects on mineral and carbohydrate accumulation. It has been hypothesized that an increase in xylem hydraulic resistance (RT) contributes to this process. This study examined changes in RT that occur during development of the berry of kiwifruit (Actinidia deliciosa), identified the region within the fruit where changes were occurring, and tested whether a decrease in irradiance during fruit development caused an increase in RT, potentially contributing to decreased mineral accumulation in shaded fruit.

Methods

RT was measured using pressure chamber and flow meter methods, the two methods were compared, and the flow meter was also used to partition RT between the pedicel, receptacle and proximal and distal portions of the berry. Dye was used as a tracer for xylem function. Artificial shading was used to test the effect of light on RT, dye entry and mineral accumulation.

Key Results

RT decreased during the early phase of rapid fruit growth, but increased again as the fruit transitioned to a final period of slower growth. The most significant changes in resistance occurred in the receptacle, which initially contributed 20 % to RT, increasing to 90 % later in development. Dye also ceased moving beyond the receptacle from 70 d after anthesis. The two methods for measuring RT agreed in terms of the direction and timing of developmental changes in RT, but pressure chamber measurements were consistently higher than flow meter estimates of RT, prompting questions regarding which method is most appropriate for measuring fruit RT. Shading had no effect on berry growth but increased RT and decreased dye movement and calcium concentration.

Conclusions

Increased RT in the receptacle zone coincides with slowing fresh weight growth, reduced transpiration and rapid starch accumulation by the fruit. Developmental changes in RT may be connected to changes in phloem functioning and the maintenance of water potential gradients between the stem and the fruit. The effect of shade on RT extends earlier reports that shading can affect fruit vascular differentiation, xylem flows and mineral accumulation independently of effects on transpiration.  相似文献   

14.
In plants, the role of anthocyanins trafficking in response to high temperature has been rarely studied, and therefore poorly understood. Red‐fleshed kiwifruit has stimulated the world kiwifruit industry owing to its appealing color. However, fruit in warmer climates have been found to have poor flesh coloration, and the factors responsible for this response remain elusive. Partial correlation and regression analysis confirmed that accumulative temperatures above 25°C (T25) was one of the dominant factors inhibiting anthocyanin accumulation in red‐fleshed Actinidia chinensis, ‘Hongyang’. Expression of structural genes, AcMRP and AcMYB1 in inner pericarp sampled from the two high altitudes (low temperature area), was notably higher than the low altitude (high temperature area) during fruit coloration. AcMYB1 and structural genes coordinate expression supported the MYB–bHLH (basic helix‐loop‐helix)–WD40 regulatory complex mediated downregulation of anthocyanin biosynthesis induced by high temperatures in kiwifruit. Moreover, cytological observations using the light and transmission electronic microscopy showed that there were a series of anthocyanic vacuolar inclusion (AVI)‐like structures involved in their vacuolization process and dissolution of the pigmented bodies inside cells of fruit inner pericarp. Anthocyanin transport was inhibited by high temperature via retardation of vacuolization or reduction in AIV‐like structure formation. Our findings strongly suggested that complex multimechanisms influenced the effects of high temperature on red‐fleshed kiwifruit coloration.  相似文献   

15.
Protocols were developed for regeneration and Agrobacterium-mediated transformation of Actinidia eriantha Benth. A. eriantha has a number of features that make it a useful tool for functional genomics in Actinidia: the vines are relatively small and non-vigorous in nature, flowers form all over the vine including on lower axillary branches and the species flowers prolifically in greenhouse conditions. Flowering and fruiting of transgenic A. eriantha plants was obtained within 2 years of transformation in a containment greenhouse. GUS (β-glucuronidase) activity indicating stable expression of the uidA gene was observed in leaf, stem, root, petal and fruit tissues. Molecular evidence for incorporation of transgenes into the A. eriantha genome was obtained by PCR and DNA gel blot analysis. Inheritance of transgenic phenotypes was demonstrated in seedling progeny. Functional genomic studies in kiwifruit have been initiated using transgenic A. eriantha plants. Communicated by F. Sato  相似文献   

16.
Field data showing the daily patterns in body temperature (T b) of kangaroos in hot, arid conditions, with and without water, indicate the use of adaptive heterothermy, i.e. large variation in T b. However, daily T b variation was greater in the Eastern Grey Kangaroo (Macropus giganteus), a species of mesic origin, than in the desert-adapted Red Kangaroo (Macropus rufus). The nature of such responses was studied by an examination of their thermal adjustments to dehydration in thermoneutral temperatures (25°C) and at high temperature (45°C) via the use of tame, habituated animals in a climate chamber. At the same level of dehydration M. rufus was less impacted, in that its T b changed less than that for M. giganteus while it evaporated significantly less water. At a T a of 45°C with water restriction T b reached 38.9 ± 0.3°C in M. rufus compared with 40.2 ± 0.4°C for M. giganteus. The ability of M. rufus to reduce dry conductance in the heat while dehydrated was central to its superior thermal control. While M. giganteus showed more heterothermy, i.e. its T b varied more, this seemed due to a lower tolerance of dehydration in concert with a strong thermal challenge. The benefits of heterothermy to M. giganteus were also limited because of thermal (Q10) effects on metabolic heat production and evaporative heat loss. The impacts of T b on heat production were such that low morning T b’s seen in the field may be associated with energy saving, as well as water saving. Kangaroos respond to dehydration and heat similarly to many ungulates, and it is apparent that the accepted notions about adaptive heterothermy in large desert mammals may need revisiting.  相似文献   

17.
Negative effects of osmotically-induced dehydration of two foliose lichen species, Lasallia pustulata and Umbilicaria hirsuta, was studied at physiological (22 °C), low (5 °C) and freezing temperature (−10 °C), using chlorophyll (Chl) fluorescence. In both species, exposure to increasing sucrose concentrations led to a pronounced decrease in potential (FV/FM), and actual (Φ2) quantum yields of photochemical processes in photosystem 2. L. pustulata was more sensitive to osmotic stress, because comparable osmotic dehydration inhibited FV/FM and Φ2 more than in U. hirsuta. Critical concentration of sucrose that fully inhibited photochemical processes of photosynthesis was 2.5 M, which represented water potential (Ψw) of −18.8 MPa. Decrease in background Chl fluorescence (F0) and increase in non-photochemical quenching (qN) revealed two phases of osmotic stress in lichens: phase I with no change (Ψw 0 to −6.6 MPa) and phase II (Ψw −11.3 to −18.8 MPa) typical by substantial change in Chl fluorescence parameters. Effects of thallus anatomy on species-specific response to osmotic dehydration is discussed and attributed to the results obtained by optical microscopy and Chl fluorescence imaging technique.  相似文献   

18.
An analysis of the compartmentation and fluxes of inorganic phosphate in isolated cladophyll cells from Asparagus officinalis was made in parallel with an ultrastructural study. The elution pattern of labelled inorganic phosphate (which indicates that the asparagus cells are behaving as a system of three compartments in series) was used to quantify the fluxes between the vacuole, cytoplasm and free space. A relaxation time of 198 min was calculated for inorganic phosphate exchange between the vacuole and cytoplasm. It is, therefore, suggested that the vacuole serves to buffer the cytoplasmic inorganic phosphate concentration in the long term. However, in the short term, exchange with the vacuole will not appreciably affect the cytoplasmic inorganic phosphate concentration and thus the partitioning of photosynthetically fixed carbon.Abbreviations Hepes 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid - Pi inorganic phosphate  相似文献   

19.
The effects of dehydration and hemorrhage on plasma ionic, osmotic, and antidiuretic hormone (arginine vasotocin) concentrations and of hemorrhage on salt gland secretion and glomerular filtration rate were evaluated in glaucous-winged gulls, Larus glaucescens. Dehydration for 24 h did not affect plasma ionic, osmotic or arginine vasotocin concentrations; 72 h dehydration significantly elevated plasma osmolality, plasma sodium and chloride concentrations, and plasma arginine vasotocin concentration, but did not affect plasma potassium concentration. Constant infusion of 0.8 mol·l-1 NaCl increased plasma arginine vasotocin concentration and produced salt gland secretion in seven gulls; four secreted well, while three secreted less well. Removal of 20% blood volume during saline infusion immediately reduced (P<0.001) salt gland secretion rate in all gulls. After bleeding, good secretors maintained glomerular filtration rate and urine flow rate; the poorer secretors increased glomerular filtration rate and became diuretic. Blood replacement returned salt gland secretion rate to the prebleeding level (P<0.05) without affecting salt gland secretions sodium concentration in gulls which secreted well, but did not restimulate salt gland secretion in gulls which secreted poorly. Reinfusion of blood had no effect on glomerular filtration rate. Bleeding and blood replacement did not affect plasma arginine vasotocin concentration.Abbreviations AVT arginine vasotocin - ECF extracellular fluid - ECFV extracellular fluid volume - EDTA ethylenediaminetetra-acetate - EWL evaporative water loss - GFR glomerular filtration rate - Hct hematocrit - LB large blood sample - [Na+]pl plasma sodium concentration - Osmpl plasma osmolality - PEG polyethylene glycol - RH relative humidity - RIA radioimmunoassay - SB small blood sample - SGS salt gland secretion - T a ambient temperature - TFA trifluoroacetic acid - UFR urine flow rate  相似文献   

20.
In situ hybridization in Actinidia using repeat DNA and genomic probes   总被引:4,自引:0,他引:4  
 In situ hybridization has been used to probe chromosome spreads of hexaploid Actinidia deliciosa (kiwifruit; 2n=6x=174) and tetraploid A. chinensis (2n=4x=116). When a species-specific repeat sequence, pKIWI516, was used, six hybridization sites were observed in some accessions of tetraploid A. chinensis and all of A. deliciosa. Southern analysis with the pKIWI516 probe revealed that there are two types of tetraploid A. chinensis. Genomic probes from diploid A. chinensis (2n=2x=58) did not differentiate the genomes of hexaploid A. deliciosa and tetraploid A. chinensis, irrespective of the presence or absence of blocking DNA. The results indicate that the genomes of polyploid Actinidia species are similar but not identical. The origin of A. deliciosa is discussed. Received: 29 June 1996 / Accepted: 5 July 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号