首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hematopoietic stem cells (HSCs) are extremely useful in treating a wide range of diseases and have a variety of useful research applications. However, the routinely generated low in vitro concentrations of HSCs from current bioreactor manufacturing systems has been a hindrance to the full-scale application of these essential cellular materials. This has made the search for novel bioreactor systems for high-concentration HSC production a major research endeavour. This review addresses process challenges in relation to bioreactor development and optimisation for high-density HSC production under effective monitoring of essential culture parameters, such as pH, dissolved oxygen and nutrient uptake. It discusses different process strategies and bioreactor configurations for HSCs production from a commercial viability perspective, and also discusses recent advances in the field.  相似文献   

2.
Recently developed perfusion micro-bioreactors offer the promise of more physiologic in vitro systems for tissue engineering. Successful application of such bioreactors will require a method to characterize the bioreactor environment required to elicit desired cell function. We present a mathematical model to describe nutrient/growth factor transport and cell growth inside a microchannel bioreactor. Using the model, we first show that the nature of spatial gradients in nutrient concentration can be controlled by both design and operating conditions and are a strong function of cell uptake rates. Next, we extend our model to investigate the spatial distributions of cell-secreted soluble autocrine/paracrine growth factors in the bioreactor. We show that the convective transport associated with the continuous cell culture and possible media recirculation can significantly alter the concentration distribution of the soluble signaling molecules as compared to static culture experiments and hence needs special attention when adapting static culture protocols for the bioreactor. Further, using an unsteady state model, we find that spatial gradients in nutrient/growth factor concentrations can bring about spatial variations in the cell density distribution inside the bioreactor, which can result in lowered working volume of the bioreactor. Finally, we show that the nutrient and spatial limitations can dramatically affect the composition of a co-cultured cell population. Our results are significant for the development, design, and optimization of novel micro-channel systems for tissue engineering.  相似文献   

3.
A lumped model for cell growth and secondary metabolite production in an immobilized live cell bioreactor has been developed. This model is applied here to simulate the performance of an immobilized bioreactor under steady-state conditions and under conditions of periodically varying concentration of a growth-limiting substrate. The results of the simulation study were experimentally verified in the case of the production of the antibiotic candicidin by Streptomyces griseus in an immobilized bioreactor with forced periodic operation. The results of the studies suggest that periodically operated immobilized live cell bioreactors can provide a potent alternative for the production of non-growth-associated biochemicals, as compared to free cell fermentations, pulsed fermentations with process cycle regeneration, and nonregenerated bioreactors. This work has demonstrated that by frequent pulsing of the growth limiting nutrient, stable extended production can be obtained at high specific cellular productivities.  相似文献   

4.
In high cell density cultivation processes the productivity is frequently constrained by the bioreactor maximum oxygen transfer capacity. The productivity can often be increased by operating the process at low dissolved oxygen concentrations close to the limitation level. This may be accomplished with a closed-loop controller that regulates the dissolved oxygen concentration by manipulating the dominant carbon source feeding rate. In this work we study this control problem in a pilot 50l bioreactor with a high cell density recombinant P. pastoris cultivation in complex media. The study focuses on the design of accurate stable adaptive controllers, with guaranteed exponential convergence and its relation with the calibration of controller parameters. Two adaptive control strategies were tested in the pilot bioreactor: a model reference adaptive controller with a linear reference model and an integral feedback controller with adaptive gain. The latter alternative proved to be more robust to errors in the measurements of the off-gas composition. Concerning the instrumentation, algorithms were derived assuming that both the dissolved oxygen tension and off-gas composition are measured on-line, but also the case of only dissolved oxygen being measured is addressed. It was verified that the measurement of off-gas composition might not improve the controller performance due to measurement and process time delays.  相似文献   

5.
The rhizomes of the rare plant Podophyllum hexandrum contain podophyllotoxin, which is a precursor of the anticancer drugs etoposide and teniposide. Batch cultivation of Podophyllum hexandrum was conducted using optimized medium in a 3 L bioreactor, which resulted in biomass and podophyllotoxin concentrations of 21.4 g/L and 13.8 mg/L in 24 and 26 days, respectively. The batch kinetics was used to identify the mathematical model. The model was extrapolated to identify the nutrient feeding rate (150 mL/d) and substrate concentration (105 g/L) in the incoming feed for nonlimiting and noninhibitory glucose concentration in the cell retention bioreactor. An improvement in cell growth to 53 g/L and intracellular podophyllotoxin accumulation of 48.8 mg/L was achieved in 60 days, when the bioreactor was operated in continuous cell retention cultivation mode.  相似文献   

6.
Summary The insecticidal crystal protein (ICP) synthesized at the onset of sporulation by Bacillus thuringiensis var. galleriae (Btg) is lethal against specific pests. Attempts were made to enhance the synthesis of biomass and ICP by Btg employing process optimization strategies. The process optimization was carried out with residual glucose concentration control in a bench scale bioreactor. A fuzzy logic-based feedback control system for maintaining the residual glucose concentration at a constant level during cultivation was developed in LabVIEW. This control system indicated the possibilities in providing a balanced substrate flux during cultivation. The identified optimum level of 2.72 g/l in residual glucose concentration was maintained by fed-batch cultivation with glucose and yeast extract fed at equal concentration with the above control system. High cell density of 16.0 g/l with specific growth rate of 0.69 h-1 was obtained during the cultivation. The balanced flux of substrate during cultivation has resulted in the enhanced synthesis of biomass and ICP. This optimized process could be commercially exploited by comparing the fluxes of basal compounds in different media sources used in fermentation.  相似文献   

7.
Different types of stem cells have been investigated for applications in drug screening and toxicity testing. In order to provide sufficient numbers of cells for such in vitro applications a scale‐up of stem cell culture is necessary. Bioreactors for dynamic three‐dimensional (3D) culture of growing cells offer the option for culturing large amounts of stem cells at high densities in a closed system. We describe a method for periodic harvesting of pluripotent stem cells (PSC) during expansion in a perfused 3D hollow‐fiber membrane bioreactor, using mouse embryonic stem cells (mESC) as a model cell line. A number of 100 × 106 mESC were seeded in bioreactors in the presence of mouse embryonic fibroblasts (MEF) as feeder cells. Over a cultivation interval of nine days cells were harvested by trypsin perfusion and mechanical agitation every second to third culture day. A mean of 380 × 106 mESC could be removed with every harvest. Subsequent to harvesting, cells continued growing in the bioreactor, as determined by increasing glucose consumption and lactate production. Immunocytochemical staining and mRNA expression analysis of markers for pluripotency and the three germ layers showed a similar expression of most markers in the harvested cells and in mESC control cultures. In conclusion, successful expansion and harvesting of viable mESC from bioreactor cultures with preservation of sterility was shown. The present study is the first one showing the feasibility of periodic harvesting of adherent cells from a continuously perfused four‐compartment bioreactor including further cultivation of remaining cells. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:141–151, 2016  相似文献   

8.
We designed an Integrated Media Preparation System (IMPS) for continuous, on-line preparation of cell culture media and delivery to intermediate storage vessels or directly to a bioreactor. Key components of the IMPS include: a high precision, continuous fluid mixing device; formulation-specific liquid medium concentrates; validated process controls and membrane filtration; and automated dispensing into large volume flexible plastic containers. The IMPS system is designed to produce sterile, single-strength liquid medium from common raw materials at a delivery rate of 1000–3000 liters per hour and will manufacture homogenous batches from several thousand liters to over 60,000 liters. Fortified nutrient media prepared from multi-component 50X concentrates have been demonstrated to accelerate bioreactor seed chains, increase product yield, and reduce the overall manufacturing cost of nutrient medium. A productivity matrix will analyze the fully-loaded costs and contrast alternative methods for media preparation against projected biological yield.Abbreviations IMPS Integrated Media Preparation System - 50X Nutrient fluid components formulated at fifty-fold final use concentration - 1X Nutrient fluid formulated at final, single-strength use concentration - cGMP Current Good Manufacturing Practices - SCADA Supervisory Control and Data Acquisition - PLC Process Logic Controller - LTI Life Technologies, Inc. - WFI Water for Injection - CIP Clean in place - SIP Sterilize in place - HPLC High performance liquid chromatography - DMEM Dulbecco's Modified Eagle's Medium  相似文献   

9.
A mathematical model was formulated to describe yeast cell growth within the Ca-alginate microbead during air-lift bioreactor cultivation. Model development was based on experimentally obtained data for the intra-bead cell concentration profile, after reached the equilibrium state, as well as, total yeast cell concentration per microbed and microbead volume as function of time. Relatively uniform cell concentration in the carrier matrix indicated that no internal nutrient diffusion limitations, but microenvironmental restriction, affected dominantly the dynamics of cell growth. Also interesting phenomenon of very different rates of cell number growth during cultivation is observed. After some critical time, the growth rate of cell colonies decreased drastically, but than suddenly increased again under all other experimental condition been the same. It is interpreted as disintegration of gel network and opening new free space for growth of cell clusters. These complex phenomena are modeled using the thermodynamical, free energy formalism. The particular form of free energy functional is proposed to describe various kinds of interactions, which affected the dynamics of cell growth and cause pseudo-phase transition of hydrogel. The good agreement of experimentally obtained data and model predictions are obtained. In that way the model provides both, the quantitative tools for further technological optimization of the process and deeper insight into dynamics of cell growth mechanism.  相似文献   

10.
Recent advances in mammalian, insect, and stem cell cultivation and scale-up have created tremendous opportunities for new therapeutics and personalized medicine innovations. However, translating these advances into therapeutic applications will require in vitro systems that allow for robust, flexible, and cost effective bioreactor systems. There are several bioreactor systems currently utilized in research and commercial settings; however, many of these systems are not optimal for establishing, expanding, and monitoring the growth of different cell types. The culture parameters most challenging to control in these systems include, minimizing hydrodynamic shear, preventing nutrient gradient formation, establishing uniform culture medium aeration, preventing microbial contamination, and monitoring and adjusting culture conditions in real-time. Using a pneumatic single-use bioreactor system, we demonstrate the assembly and operation of this novel bioreactor for mammalian cells grown on micro-carriers. This bioreactor system eliminates many of the challenges associated with currently available systems by minimizing hydrodynamic shear and nutrient gradient formation, and allowing for uniform culture medium aeration. Moreover, the bioreactor’s software allows for remote real-time monitoring and adjusting of the bioreactor run parameters. This bioreactor system also has tremendous potential for scale-up of adherent and suspension mammalian cells for production of a variety therapeutic proteins, monoclonal antibodies, stem cells, biosimilars, and vaccines.  相似文献   

11.
Batch kinetics of polyhydroxybutyrate (PHB) synthesis in a bioreactor under controlled conditions of pH and dissolved oxygen gave a biomass of 14 g l(-1) with a PHB concentration of 6.1 g l(-1) in 60 h. The data of the batch kinetics was used to develop a mathematical model, which was then extrapolated to fed-batch by incorporating the dilution due to substrate feeding. Offline computer simulation of the fed-batch model was done to develop the nutrient feeding strategies in the fed-batch cultivation. Fed-batch strategies with constant feeding of only nitrogen and constant feeding of both nitrogen and fructose were tried. Constant feeding strategy for nitrogen and fructose gave a better PHB production rate of 0.56 g h(-1) over the value obtained in batch cultivation (PHB production rate - 0.4 g h(-1)).  相似文献   

12.
In this work, the heterotrophic cultivation of bacterium Paracoccus denitrificans has been studied in a horizontal rotating tubular bioreactor (HRTB). After development of a microbial biofilm on the inner surface of the HRTB, conditions for one-step removal of acetate and ammonium ion were created. The effect of bioreactor process parameters [medium inflow rate (F) and bioreactor rotation speed (n)] on the bioprocess dynamics in the HRTB was studied. Nitrite and nitrogen oxides (NO and N2O) were detected as intermediates of ammonium ion degradation. The biofilm thickness and the nitrite concentration were gradually reduced with increase of bioreactor rotation speed when the medium inflow rate was in the range of 0.5–1.5 l h−1. Further increase of inflow rate (2.0–2.5 l h−1) did not have a significant effect on the biofilm thickness and nitrite concentration along the HRTB. Complete acetate consumption was observed when the inflow rate was in the range of 0.5–1.5 l h−1 at all bioreactor rotation speeds. Significant pH gradient (cca 1 pH unit) along the HRTB was only observed at the highest inflow rate (2.5 l h−1). The results have clearly shown that acetate and ammonium ion removal by P. denitificans can be successfully conducted in a HRTB as a one-step process.  相似文献   

13.
The use of Process Analytical Technology tools coupled with chemometrics has been shown great potential for better understanding and control of mammalian cell cultivations through real-time process monitoring. In-line Raman spectroscopy was utilized to determine the glucose concentration of the complex bioreactor culture medium ensuring real-time information for our process control system. This work demonstrates a simple and fast method to achieve a robust partial least squares calibration model under laboratory conditions in an early phase of the development utilizing shake flask and bioreactor cultures. Two types of dynamic feeding strategies were accomplished where the multi-component feed medium additions were controlled manually and automatically based on the Raman monitored glucose concentration. The impact of these dynamic feedings was also investigated and compared to the traditional bolus feeding strategy on cellular metabolism, cell growth, productivity, and binding activity of the antibody product. Both manual and automated dynamic feeding strategies were successfully applied to maintain the glucose concentration within a narrower and lower concentration range. Thus, besides glucose, the glutamate was also limited at low level leading to reduced production of inhibitory metabolites, such as lactate and ammonia. Consequently, these feeding control strategies enabled to provide beneficial cultivation environment for the cells. In both experiments, higher cell growth and prolonged viable cell cultivation were achieved which in turn led to increased antibody product concentration compared to the reference bolus feeding cultivation.  相似文献   

14.
Plant cell culture provides a viable alternative over whole plant cultivation for the production of secondary metabolites. In order to successfully cultivate the plant cells at large scale, several engineering parameters such as, cell aggregation, mixing, aeration, and shear sensitivity are taken into account for selection of a suitable bioreactor. The media ingredients, their concentrations and the environmental factors are optimized for maximal synthesis of a desired metabolite. Increased productivity in a bioreactor can be achieved by selection of a proper cultivation strategy (batch, fed-batch, two-stageetc.), feeding of metabolic precursors and extraction of intracellular metabolites. Proper understanding and rigorous analysis of these parameters would pave the way towards the successful commercialization of plant cell bioprocesses.  相似文献   

15.
为实现转小鼠金属硫蛋白基因-I聚球藻7002的高密度培养, 并将其应用于实际的重金属废水处理过程, 首先需要对培养基的成分进行优化。本文利用响应面这一多因素过程优化的有效工具, 通过全因子实验、最陡爬坡实验和中心组合实验, 对转小鼠金属硫蛋白基因-I聚球藻7002培养基的主要成分以及初始pH进行了优化。优化后的培养基组成为: NaHCO3 1.696 g/L, NaNO3 8.57 g/L, 初始pH为8.57, 其他成分同Medium A。优化条件分别在2 L和20 L气升式光生物反应器中得到了验证, 最大细胞浓度分别达到每升4.16 g干重和每升3.12 g干重, 分别比优化前提高了9倍和7倍, 从而为其产业化应用打下基础。  相似文献   

16.
Periodic chronic myelogenous leukemia (PCML) is an interesting dynamical disease of the hematopoietic system in which oscillating levels of circulating leukocytes, platelets and/or reticulocytes are observed. Typically all of these three differentiated cell types have the same oscillation period, but the relation of the oscillation mean and amplitude to the normal levels is variable. Given the appearance of the abnormal Philadelphia chromosome in all of the nucleated progeny of the hematopoietic stem cells (HSCs), the most parsimonious conclusion is that chronic myelogenous leukemia, and its periodic variant, arise from derangements partially involving the dynamics of the stem cells. Here, we have synthesized several previous mathematical models of HSC dynamics, and models for the regulation of neutrophils, platelets and erythrocytes into a comprehensive model for the regulation of the hematopoietic system. Based on estimates of parameters for a typical normal human, we have systematically explored the changes in some of these parameters necessary to account for the quantitative data on leukocyte, platelet and reticulocyte cycling in 11 patients with PCML. Our results indicate that the critical model parameter changes required to simulate the PCML patient data are an increase in the amplification in the leukocyte line, an increase in the differentiation rate from the stem cell compartment into the leukocyte line, and the rate of apoptosis in the stem cell compartment. Our model system is particularly sensitive to changes in stem cell apoptosis rates, suggesting that changes in the numbers of proliferating stem cells may be important in generating PCML.  相似文献   

17.
Bioengineered functional cardiac tissue is expected to contribute to the repair of injured heart tissue. We previously developed cardiac cell sheets using mouse embryonic stem (mES) cell-derived cardiomyocytes, a system to generate an appropriate number of cardiomyocytes derived from ES cells and the underlying mechanisms remain elusive. In the present study, we established a cultivation system with suitable conditions for expansion and cardiac differentiation of mES cells by embryoid body formation using a three-dimensional bioreactor. Daily conventional medium exchanges failed to prevent lactate accumulation and pH decreases in the medium, which led to insufficient cell expansion and cardiac differentiation. Conversely, a continuous perfusion system maintained the lactate concentration and pH stability as well as increased the cell number by up to 300-fold of the seeding cell number and promoted cardiac differentiation after 10 days of differentiation. After a further 8 days of cultivation together with a purification step, around 1×108 cardiomyocytes were collected in a 1-L bioreactor culture, and additional treatment with noggin and granulocyte colony stimulating factor increased the number of cardiomyocytes to around 5.5×108. Co-culture of mES cell-derived cardiomyocytes with an appropriate number of primary cultured fibroblasts on temperature-responsive culture dishes enabled the formation of cardiac cell sheets and created layered-dense cardiac tissue. These findings suggest that this bioreactor system with appropriate medium might be capable of preparing cardiomyocytes for cell sheet-based cardiac tissue.  相似文献   

18.
Perfusion bioreactor systems play a crucial role in mitigating nutrient limitation as well as providing biomechanical stimuli and redistributing regulatory macromolecules that influence human mesenchymal stem cells (hMSC) fate in three‐dimensional (3D) scaffolds. As fibroblast growth factor‐2 (FGF‐2) is known to regulate hMSC phenotype, understanding the role of autocrine FGF‐2 signaling in the 3D construct under the different perfusion flow provides important insight into an optimal bioreactor design. To investigate FGF‐2 signaling inhibition in hMSC cultured in the porous poly(ethylene terephthalate) (PET) scaffolds perfused under two flow configurations, PD173074, an FGFR1 inhibitor, was added in growth media after 7 day of pre‐culture and its impact on hMSC proliferation and clonogenicity during the subsequent 7 days of cultivation was analyzed. Compared with control constructs in growth media, the addition of PD173074 resulted in significant reduction in hMSC proliferation and colony formation in both constructs with a more dramatic reduction in the parallel flow constructs. The results demonstrate that autocrine FGF‐2 plays a significant role in 3D scaffold and suggest modulation of the perfusion flow in the bioreactor as a strategy to influence autocrine actions and cell fate in the 3D scaffold. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

19.
Proliferation and differentiation of haematopoietic stem cells (HSCs) from umbilical cord blood at large scale will potentially underpin production of a number of therapeutic cellular products in development, including erythrocytes and platelets. However, to achieve production processes that are scalable and optimised for cost and quality, scaled down development platforms that can define process parameter tolerances and consequent manufacturing controls are essential. We have demonstrated the potential of a new, automated, 24×15mL replicate suspension bioreactor system, with online monitoring and control, to develop an HSC proliferation and differentiation process for erythroid committed cells (CD71(+), CD235a(+)). Cell proliferation was relatively robust to cell density and oxygen levels and reached up to 6 population doublings over 10 days. The maximum suspension culture density for a 48h total media exchange protocol was established to be in the order of 10(7)cells/mL. This system will be valuable for the further HSC suspension culture cost reduction and optimisation necessary before the application of conventional stirred tank technology to scaled manufacture of HSC derived products.  相似文献   

20.
Physical properties such as viscosity, fluid dynamic behavior of cell suspension, and size distribution of cell aggregates of a plant, Perilla frustescens, cultured in a liquid medium were studied. As a result of investigations using cells harvester after 12 days of cultivation in a flask, it was found that the apparent viscosity of the cell suspension did not change with any variation of cell concentration below 5 g dry cell/L but markedly increased when the cell concentration increased over 12.8 g dry cell/L. The cell suspension exhibited the characteristics of a Bingham plastic fluid with a small yield stres. The size of cell aggregates in the range 74 to 500 mum did not influence the rheological characteristics of the cell suspension. The rheological characteristics of cultivation mixtures of P. frutescens cultivated in a flask and in a bioreactor were also investigated. The results showed that the flow characteristics of the cell culture could be described by a Bingham plastic model. At the later stage of cultivation, the apparent viscosity increased steadily, even though the biomass concentration (by dry weight) decreased, due to the increase of individual cell size. (c) 1992 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号