首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Specialisation in host plant use is strongly correlated with speciation in many plant‐feeding insects. Specialised taxa, however, could be restricted in host range due to limits in ecological availability of host plant species rather than trade‐offs in using alternate host species. 2. Moths in the genus Prodoxus are extreme specialists on Yucca and speciation is closely tied to host plant shifts. However, many Yucca ranges are allopatric. This study examined whether the bogus yucca moth Prodoxus decipiens is limited in host range because of biogeographic factors or due to differences in the characteristics of host plant species. 3. In a common garden, local P. decipiens moths that use Yucca filamentosa were exposed to individuals of five Yucca species, two that are known hosts of P. decipiens in other parts of its range and three that are used by its sister species, Prodoxus quinquepunctellus. 4. Local moths were attracted to flowers of all Yucca species and females attempted oviposition in the flowering stalks of all species. However, larvae successfully completed development to diapause in only one of the five host plant species. Larval development on non‐natal Yucca species was significantly reduced compared with the local host. 5. The results suggest that differences in host plant characteristics among Yucca species would result in strong natural selection during a host shift. Thus, specialisation in host plant use is probably due to trade‐offs involved with using novel host plant species as well as ecological availability.  相似文献   

2.
Females of the larval parasitoidCotesia glomerata (L.) use plant-associated cues to locate their lepidopteran host,Pieris rapae L. In this study we investigated the influence of four host plant species,Brassica oleracea var.acephala (‘Vates’ kale),Tropaeolum majus (nasturtium),Lunaria annua (honesty), andCleome spinosa (spider flower), on two components of the host selection process inC. glomerata, namely, attraction and host acceptance. Choice tests in a flight tunnel showed that parasitoids were attracted to some host plant species more than to others in the absence of host larvae.B. oleracea was the most attractive plant species, followed byL. annua, T. majus, andC. spinosa. In previous studies it was shown thatB. oleracea carries highly suitable hosts forC. glomerata and that, in the field, parasitization rates on this plant were the highest. When host larvae were reared on the four host plant species and then transferred to a common substrate (B. oleracea var.capitata, cabbage), plant species that had served as diet for the hosts did not have a significant effect on acceptance for parasitization. Thus, parasitoids were attracted to host plant species differentially, but they did not discriminate among host larvae based on the dietary history of their hosts. ForC. glomerata, it appears that phytochemistry mediates host selection more by influencing parasitoid attraction than it does by affecting host acceptance.  相似文献   

3.
Biotic interactions influence species niches and may thus shape distributions. Nevertheless, species distribution modelling has traditionally relied exclusively on environmental factors to predict species distributions, while biotic interactions have only seldom been incorporated into models. This study tested the ability of incorporating biotic interactions, in the form of host plant distributions, to increase model performance for two host‐dependent lepidopterans of economic interest, namely the African silk moth species, Gonometa postica and Gonometa rufobrunnea (Lasiocampidae). Both species are dependent on a small number of host tree species for the completion of their life cycle. We thus expected the host plant distribution to be an important predictor of Gonometa distributions. Model performance of a species distribution model trained only on abiotic predictors was compared to four species distribution models that additionally incorporated biotic interactions in the form of four different representations of host plant distributions as predictors. We found that incorporating the moth–host plant interactions improved G. rufobrunnea model performance for all representations of host plant distribution, while for G. postica model performance only improved for one representation of host plant distribution. The best performing representation of host plant distribution differed for the two Gonometa species. While these results suggest that incorporating biotic interactions into species distribution models can improve model performance, there is inconsistency in which representation of the host tree distribution best improves predictions. Therefore, the ability of biotic interactions to improve species distribution models may be context‐specific, even for species which have obligatory interactions with other organisms.  相似文献   

4.
Variation in the degree of synchrony among host plants and herbivores can disrupt or intensify species interactions, alter the strength of natural selection on traits associated with phenological timing, and drive novel host plant associations. We used field observations from three regions during four seasons to examine how timing of the butterfly herbivore Anthocharis cardamines relative to six host plant species (Arabis hirsuta, Cardamine pratensis, Arabis glabra, Arabidopsis thaliana, Thlaspi caerulescens and Capsella bursa‐pastoris) influenced host species use and the choice of host plant individuals within populations. Butterflies laid a larger fraction of their eggs on species that were closer to the butterfly's preferred stage of development than on other host species. Within host plant populations, butterflies showed a stronger preference for individuals with a late phenology when plants within the population were on average more developed at the time of butterfly flight. Our results suggest that changes in synchrony between herbivores and their host plants are associated with changes in both host species use and the choice of host plant individuals differing in phenology within populations. This is likely to be an important mechanism generating variation in interaction intensities and trait selection in the wild, and therefore also relevant for understanding how anthropogenic induced changes, such as global warming, will influence natural communities.  相似文献   

5.
1. The pattern of host utilisation by congeneric Caloptilia caterpillars on 14 different species of Acer (maple) was investigated in temperate mixed forests of central Japan. A multi‐filtering model of host plant utilisation was proposed to address how phylogenetically related herbivore assemblages are constructed on phylogenetically related host plant species. 2. Two hypotheses were examined. The first questioned whether a negative relationship exists between the phylogenetic distance of plants from the most suitable host species and the abundance of herbivorous insects on the host. Regarding the second, it was investigated whether the assemblage dissimilarity of herbivorous insects among host plant species increases with increasing distance of plant phylogeny and traits. 3. Mantel and partial Mantel tests were used to measure the relationship between assemblage dissimilarity of Caloptilia species and the distance of plant phylogeny and leaf traits. 4. Both hypotheses were confirmed, clearly suggesting that the utilisation and suitability of hosts for Caloptilia caterpillars were strongly influenced by phylogenetic relatedness and leaf trait similarity among Acer species. This implies that phylogenetic distance is an integrated measure of phenotypic and ecological attributes of congeneric Acer species that can be used to explain specialisation and constraints of host utilisation of congeneric herbivore species even on a short evolutionary timescale.  相似文献   

6.
A large proportion of phytophagous insect species are specialised on one or a few host plants, and female host plant preference is predicted to be tightly linked to high larval survival and performance on the preferred plant(s). Specialisation is likely favoured by selection under stable circumstances, since different host plant species are likely to differ in suitability—a pattern usually explained by the “trade-off hypothesis”, which posits that increased performance on a given plant comes at a cost of decreased performance on other plants. Host plant specialisation is also ascribed an important role in host shift speciation, where different incipient species specialise on different host plants. Hence, it is important to determine the role of host plants when studying species divergence and niche partitioning between closely related species, such as the butterfly species pair Leptidea sinapis and Leptidea reali. In Sweden, Leptidea sinapis is a habitat generalist, appearing in both forests and meadows, whereas Leptidea reali is specialised on meadows. Here, we study the female preference and larval survival and performance in terms of growth rate, pupal weight and development time on the seven most-utilised host plants. Both species showed similar host plant rank orders, and larvae survived and performed equally well on most plants with the exceptions of two rarely utilised forest plants. We therefore conclude that differences in preference or performance on plants from the two habitats do not drive, or maintain, niche separation, and we argue that the results of this study do not support the trade-off hypothesis for host plant specialisation, since the host plant generalist Leptidea sinapis survived and performed as well on the most preferred meadow host plant Lathyrus pratensis as did Leptidea reali although the generalist species also includes other plants in its host range. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Abstract Potential host plants of the polyphagous lepidopteran Helicoverpa punctigera (Wallengren) were surveyed in two ways. A broad survey, conducted in southern Queensland and northern New South Wales, indicated that H. punctigera larvae were present on relatively few plant species. A detailed survey of host plant use in a non-cropping area in which H. punctigera was numerous demonstrated restricted host plant use by this species. The density of H. punctigera on its principal host in the area, the indigenous daisy Ixiolaena brevicompta F. Muell., was much higher (as measured per unit of time searched) than on other plant species available. Also, I. brevicompta was used regularly by H. punctigera after rainfall events. Ixiolaena brevicompta represents a new host record and on the basis of the pattern of its use by H. punctigera should be considered a ‘primary host plant’ of this noctuid. In cropping areas sampled, usually more than one plant species hosted H. punctigera regularly and in large numbers. Usually a crop species was included (e.g. cotton and chick pea). Alternative hosts in cropping areas were Sonchus oleraceus L. (sowthistle) and possibly the native legume Sesbania cannabina (Retz.) Poiret. Our results imply that the polyphagy of H. punctigera is probably not as extensive as previously claimed. The criteria for inclusion of a plant species as a primary host for H. punctigera need to include the regularity of use of that species and the relative abundance of eggs and larvae on it. We suggest that an understanding of the host-searching mechanism of this species will be best achieved through study of the interaction of H. punctigera with its indigenous primary hosts. The surveys also yielded information on host plants of two other heliothine noctuids, H. armigera (Hübner) and Australothis rubrescens (Walker), and this is also presented.  相似文献   

8.
An insect species that shows variation in host species association across its geographical range may do so either because of local adaptation in host plant preference of the insect or through environmentally or genetically induced differences in the plants, causing variation in host plant suitability between regions. In the present study, we experimentally investigate the host plant preference of Anthocharis cardamines (orange tip butterfly) in two populations from the UK and two from Sweden. Previous reports indicate that A. cardamines larvae are found on different host plant species in different regions of the UK, and some variation has been reported in Sweden. Host plant choice trials showed that females prefer to oviposit on plants in an earlier phenological stage, as well as on larger plants. When controlling for plant phenological stage and size, the host species had no statistically significant effect on the choice of the females. Moreover, there were no differences in host plant species preference among the four butterfly populations. Based on our experiment, the oviposition choice by A. cardamines mainly depends on the phenological stage and the size of the host plant. This finding supports the idea that the geographical patterns of host–plant association of A. cardamines in the UK and Sweden are consequences of the phenology and availability of the local hosts, rather than regional genetic differences in the host species preference of the butterfly.  相似文献   

9.
Myrmecophytes depend on symbiotic ants (plant‐ants) to defend against herbivores. Although these defensive mechanisms are highly effective, some herbivorous insects can use myrmecophytes as their host‐plants. The feeding habits of these phytophages on myrmecophytes and the impacts of the plant‐ants on their feeding behavior have been poorly studied. We examined two phasmid species, Orthomeria alexis and O. cuprinus, which are known to feed on Macaranga (Euphorbiaceae) myrmecophytes in a Bornean primary forest. Our observations revealed that: (i) each phasmid species relied on two closely‐related myrmecophytic Macaranga species for its host‐plants in spite of their normal plant‐ant symbioses; and (ii) there was little overlap between their host‐plant preferences. More O. cuprinus adults and nymphs were found on new leaves, which were attended by more plant‐ants than mature leaves, while most adults and nymphs of O. alexis tended to avoid new leaves. In a feeding choice experiment under ant‐excluded conditions, O. alexis adults chose a non‐host Macaranga myrmecophyte that was more intensively defended by plant‐ants and was more palatable than their usual host‐plants almost as frequently as their usual host‐plant, suggesting that the host‐plant range of O. alexis was restricted by the presence of plant‐ants on non‐host‐plants. Phasmid behavior that appeared to minimize plant‐ant attacks is described.  相似文献   

10.
The potential role of host plant species in the selection of symbiotic, nitrogen-fixing Frankia strains belonging to the Elaeagnus host infection group was assessed in bioassays with two Morella, three Elaeagnus, and one Shepherdia species as capture plants, inoculated with soil slurries made with soil collected from a mixed pine/grassland area in central Wisconsin, USA. Comparative sequence analysis of nifH gene fragments amplified from homogenates of at least 20 individual lobes of root nodules harvested from capture plants of each species confirmed the more promiscuous character of Morella cerifera and Morella pensylvanica that formed nodules with frankiae of the Alnus and the Elaeagnus host infection groups, while frankiae in nodules formed on Elaeagnus umbellata, Elaeagnus angustifolia, Elaeagnus commutata, and Shepherdia argentea generally belonged to the Elaeagnus host infection group. Diversity of frankiae of the Elaeagnus host infection groups was larger in nodules on both Morella species than in nodules formed on the other plant species. None of the plants, however, captured the entire diversity of nodule-forming frankiae. The distribution of clusters of Frankia populations and their abundance in nodules was unique for each of the plant species, with only one cluster being ubiquitous and most abundant while the remaining clusters were only present in nodules of one (six clusters) or two (two clusters) host plant species. These results demonstrate large effects of the host plant species in the selection of Frankia strains from soil for potential nodule formation and thus the significant effect of the choice of capture plant species in bioassays on diversity estimates in soil.  相似文献   

11.
Black vine weevils, Otiorhynchus sulcatus (Fabricius) (Coleoptera: Curculionidae), are globally‐distributed polyphagous pests of many horticultural crops. We investigated how adult weevils were affected by host switching and, in particular, how host plant species nutritional and defensive chemistry affected subsequent host plant species selection and oviposition. Adults were fed one of three host plant species, blackcurrant [Ribes nigrum L. (Grossulariaceae)], raspberry [Rubus idaeus L. (Rosaceae)], or strawberry [Fragaria x ananassa Duchesne (Rosaceae)], throughout their pre‐reproductive periods and then subjected to behavioral choice assays with these plants. Foliar chemistry differed significantly among the three host plant species. Compared to raspberry and strawberry foliage, blackcurrant foliage was 13% lower in nitrogen, 3% higher in carbon, and 28% higher in phenolic compounds. Initial host plant species had a significant effect on weevil mortality, with more weevils dying when previously fed blackcurrant (12%) than strawberry (3%) or raspberry (0%) regardless of subsequent host. Initial host plant species also affected oviposition, with weevils laying only ca. two eggs per week when previously fed blackcurrant, compared to those on raspberry or strawberry (ca. 11 and 15 eggs per week, respectively). When given a choice, weevils discriminated among host plant species and tended to oviposit on plants on which they had previously fed, even when the plant was nutritionally inferior for egg production and adult survival. In contrast, feeding behavior was only affected by the current host plant species. Feeding and oviposition were related to leaf chemistry only in blackcurrant, as leaf consumption was negatively correlated with foliar carbon and zinc concentrations, and positively correlated with foliar phosphorus and potassium concentrations.  相似文献   

12.
Most studies on plant defenses against insect herbivores investigate direct and indirect plant defenses independently. However, these defenses are not necessarily mutually exclusive. Plant metabolites can be transmitted through the food chain and can also affect the herbivore's natural enemies. A conflict may arise when a natural enemy is attracted to a plant that is suboptimal in terms of its own fitness. In addition, plant defenses are often studied in cultivated plant species in which artificial selection may have resulted in reduced resistance against insect herbivores. In this study, we investigated both direct and indirect plant defenses in two closely related wild brassicaceous plant species, Brassica nigra L. and Sinapis arvensis L. The herbivore Pieris brassicae L. (Lepidoptera: Pieridae), which is specialized on brassicaceous plant species, developed faster and attained higher pupal mass when reared on B. nigra than on S. arvensis. In contrast, Cotesia glomerata L. (Hymenoptera: Braconidae), which is a gregarious endoparasitoid of P. brassicae caterpillars, developed equally well on P. brassicae irrespective of the food plant on which its host had been reared. The feeding strategy of the parasitoid larvae, that is, selectively feeding on hemolymph and fat body, is likely to allow for a much wider host‐size range without affecting the size or development time of the emerging parasitoids. In flight chamber experiments, C. glomerata, which had an oviposition experience in a host that fed on Brussels sprout, exhibited significant preference for host‐damaged B. nigra over host‐damaged S. arvensis plants. Headspace analysis revealed quantitative and qualitative differences in volatile emissions between the two plant species. This parasitoid species may use a range of cues associated with the host and the host's food plant in order to recognize the different plant species on which the host can feed. These results show that there is no conflict between direct and indirect plant defenses for this plant–host–parasitoid complex.  相似文献   

13.
Abstract 1. The taxon known as the pea aphid, Acyrthosiphon pisum, is composed of a series of host plant associated populations and is widely used as a model system to explore ecological speciation and the evolution of specialisation. It is thus important to know how maternal and pre‐adult experience influences host plant utilisation in this species. 2. The relative importance of the maternal and pre‐adult host plant for adult fecundity and host preference was investigated using three aphid clones collected from Lathyrus pratensis and maintained on Lathyrus or Vicia faba. 3. No significant effects of the maternal host plant on offspring fecundity were detected. 4. The host plant on which the aphid grew up influenced adult fecundity, although in a complex way that depended on both the adult host plant species and when after transfer to the test plant fecundity was assessed. 5. All three clones preferred to colonise Lathyrus over Vicia, and this preference was stronger for aphids raised on Lathyrus. 6. The significance of the results for studies of the evolution of specialisation and speciation that employ A. pisum is discussed.  相似文献   

14.
Natural enemies are important mortality factors for herbivores and thus may influence herbivore population dynamics. In response to natural enemy pressure, herbivores can alter life history decisions, such as oviposition behavior, so that offspring are protected from natural enemies. One such strategy is to deposit eggs into structures where vulnerability to natural enemies is reduced or eliminated, i.e., use enemy-free space. The plant bug, Lygus lineolaris (Palisot de Beauvois), is native to North America and has a broad host range (>350 plant species), including crops. This bug’s eggs are attacked by a native parasitoid, Anaphes iole Girault, and parasitism levels vary greatly among host plant species. Weed hosts are critical to contemporary L. lineolaris life history because they serve as an ecological bridge from one crop growing season to the next. We investigated the egg distribution pattern of L. lineolaris on 11 host plant species (nine weeds and two crops), and parasitism by A. iole, to determine whether oviposition choices by L. lineolaris females protect their eggs from parasitism and to demonstrate the mechanism of this protection. Our results indicate that the reproductive structures of Erigeron annuus, as well as those of several other host plant species, provide a refuge from parasitism for most L. lineolaris eggs. This refuge is due to the deposition of host eggs deeper in plant tissue than the length of the ovipositor of A. iole. Also, overall parasitism levels were greater on non-Asteraceae host plant species compared with host plant species belonging to Asteraceae. Oviposition site choice by female bugs appears to be a selective strategy to take advantage of enemy-free space.  相似文献   

15.
1. At the higher taxonomic levels Psylloidea have largely co‐evolved with their host plants, and the colonisations of new plant lineages have been relatively few. The mechanisms that have constrained the evolution of host relationships throughout the history of this superfamily are not understood. The host relationships of Prosopidopsylla flava were studied in order to identify possible genetic or ecological constraints to macroevolutionary change in host range, using methodology developed for the host specificity testing of potential biological control agents. 2. The five Prosopis taxa (Leguminosae) tested appeared to be indistinguishable as hosts. Adult feeding required for survival, and for the initiation and continuation of egg production, was specific to Prosopis species. Oviposition occurred on 57 of the 58 non‐Prosopis plant species tested within the Leguminosae and Rosaceae, and was highest on plant species that belonged to the same subfamily. Eggs were inserted into plant tissue by their peduncle but hatched independently of host species. Complete development was restricted to Prosopis, although some early nymphal development was observed on species within the same subfamily as Prosopis (Mimosoideae). 3. Multiple phylogenetic constraints restrict host selection and utilisation by P. flava to Prosopis species, implying a long association between insect and host. Specificity of adult feeding was of special significance, being required for survival, oogenesis, and probably indirectly determining the oviposition host. This supports the hypothesis that genetically set limits in particular aspects of life history are responsible for the inability of some psyllids to readily colonise new plant lineages, rather than stabilising selection.  相似文献   

16.
Symbiotic associations between plants and arbuscular mycorrhizal (AM) fungi are ubiquitous in many herbaceous plant communities and can have large effects on these communities and ecosystem processes. The extent of species-specificity between these plant and fungal symbionts in nature is poorly known, yet reciprocal effects of the composition of plant and soil microbe communities is an important assumption of recent theoretical models of plant community structure. In grassland ecosystems, host plant species may have an important role in determining development and sporulation of AM fungi and patterns of fungal species composition and diversity. In this study, the effects of five different host plant species [Poa pratensis L., Sporobolus heterolepis (A. Gray) A. Gray, Panicum virgatum L., Baptisia bracteata Muhl. ex Ell., Solidago missouriensis Nutt.] on spore communities of AM fungi in tallgrass prairie were examined. Spore abundances and species composition of fungal communities of soil samples collected from patches within tallgrass prairie were significantly influenced by the host plant species that dominated the patch. The AM fungal spore community associated with B. bracteata showed the highest species diversity and the fungi associated with Pa. virgatum showed the lowest diversity. Results from sorghum trap cultures using soil collected from under different host plant species showed differential sporulations of AM fungal species. In addition, a greenhouse study was conducted in which different host plant species were grown in similar tallgrass prairie soil. After 4 months of growth, AM fungal species composition was significantly different beneath each host species. These results strongly suggest that AM fungi show some degree of host-specificity and are not randomly distributed in tallgrass prairie. The demonstration that host plant species composition influences AM fungal species composition provides support for current feedback models predicting strong regulatory effects of soil communities on plant community structure. Differential responses of AM fungi to host plant species may also play an important role in the regulation of species composition and diversity in AM fungal communities. Received: 29 January 1999 / Accepted: 20 October 1999  相似文献   

17.
1. The role of food plant and aggregation on the defensive properties of two aposematic sympatrically occurring seed bugs, Tropidothorax leucopterus and Lygaeus equestris (Lygaeinae, Heteroptera), was investigated. Larvae reared on seeds either of their natural host plant Vincetoxicum hirundinaria (Asclepiadaceae) or of sunflower Helianthus annuus were subjected to predation by chicks. 2. The two species differ in their dependency on the host for their defence. Lygaeus equestris was better defended on its natural host plant than on the alternative food, as indicated by fewer attacks, lower mortality, and predator avoidance after experience. No such effect of food plant could be found for T. leucopterus, suggesting the existence of alternative defences in this species. 3. The number of attacks was lower when host plant‐fed larvae of both species were presented in groups. 4. The discussion concerns how major components of an aposematic syndrome, such as host plant chemistry, insect colouration, and aggregation, are integrated with other life‐history traits to form alternative lifestyles in L. equestris and T. leucopterus.  相似文献   

18.
There has been much recent debate on whether physiological tradeoffs in performance across hosts or ecological factors such as predation are the primary determinants of host plant specialization in plant-herbivore interactions. This paper examines the relative role of intrinsic behavioral and physiological factors in host specialization of two species of leaf-feeding beetles (Coleoptera: Chrysomelidae). Ophraella notulata and Ophraella slobodkini are sister taxa that feed exclusively on the asteraceous plants Iva frutescens and Ambrosia artemisiifolia, respectively. Ambrosia is the ancestral host plant for this pair of beetles. I performed full-sib breeding experiments in both the laboratory and the field to assess mean responses of each species to both its native host and the host of its congener, genetic variation within each species for traits associated with using each host, and tradeoffs in performance across hosts. I reared each beetle species on each host plant and measured larval consumption, survival, development time and growth. I measured only survival and growth in the field. Genetic correlations were calculated to assess tradeoffs in performance across hosts. In the laboratory experiment, larval survival of O. slobodkini on I. frutescens was lower and development time longer than on A. artemisiifolia. Survival of O. notulata on A. artemisiifolia was marginally lower than on I. frutescens while development time did not differ. There was little genetic variation among families in host use traits for either species. None of the estimates of genetic correlations were negative. The results of the field experiment support the results of the laboratory experiment. I conclude that O. notulata, the species with the derived host association, retains considerable ability to utilize the ancestral host plant, while O. slobodkini, the species witht he ancestral host association, does not show a similar ability to ut ilize the derived host. Tradeoffs in performance across hosts were not documented for either species of Ophraella. That notulata performs so well on A. artemissifolia suggests that intrinsic factors may not provide a sufficient explanation for the host specialization of this species on I. frutescens.  相似文献   

19.
Even for parasitoids with a wide host range, not all host species are equally suitable, and host quality often depends on the plant the host feeds on. We compared oviposition choice and offspring performance of a generalist pupal parasitoid, Pteromalus apum (Retzius) (Hymenoptera: Pteromalidae), on two congeneric hosts reared on two plant species under field and laboratory conditions. The plants contain defensive iridoid glycosides that are sequestered by the hosts. Sequestration at the pupal stage differed little between host species and, although the concentrations of iridoid glycosides in the two plant species differ, there was no effect of diet on the sequestration by host pupae. The rate of successful parasitism differed between host species, depending on the conditions they were presented in. In the field, where plant‐associated cues are present, the parasitoid used Melitaea cinxia (L.) over Melitaea athalia (Rottemburg) (Lepidoptera: Nymphalidae), whereas more M. athalia were parasitised in simplified laboratory conditions. In the field, brood size, which is partially determined by rate of superparasitism, depended on both host and plant species. There was little variation in other aspects of offspring performance related to host or plant species, indicating that the two host plants are of equal quality for the hosts, and the hosts are of equal quality for the parasitoids. Corresponding to this, we found no evidence for associative learning by the parasitoid based on their natal host, so with respect to these host species they are truly generalist in their foraging behaviour.  相似文献   

20.
A new species of the genus Colocasiomyia de Meijere (Diptera: Drosophilidae) was discovered from inflorescences of Steudnera colocasiifolia K. Koch (Araceae) in Yunnan, China. The new species is described as Colocasiomyia steudnerae Takenaka and Toda, sp. nov., and we investigated the reproductive ecology of both the fly and the plant species. This fly species reproduces in the inflorescences/infructescences of the plant, and depends almost throughout its entire life cycle on the host plant. The fly species is the most abundant flower visitor for S. colocasiifolia and behaves intimately with the flowering events, suggesting that it is the unique and most efficient pollinator for the host plant. Bagging (insect‐exclusion) treatment of inflorescences resulted in no fruits. These findings strongly suggest that intimate pollination mutualism has evolved between the fly and the host plant, as are known in other Colocasiomyia flies and Araceae plants. One notable feature of this system is that the new species almost monopolizes the host‐plant inflorescence as a visitor, without any cohabiting Colocasiomyia species. In comparison to other cases where two Colocasiomyia species share the same inflorescence and infructescence of Araceae host plants for reproduction by separating their breeding niches microallopatrically between the staminate (upper male‐flower) and the pistillate (lower female‐flower) regions on the spadix, C. steudnerae exhibits a mixture of stamenicolous and pistillicolous breeding habits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号