首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Permeabilization ofZymomonas mobilis with CTAB(Cetyltrimethylammoniumbromide) was investigated in order to obtain a stable process for sorbitol production in the immobilized system. The optimum conditions for sorbitol formation were treating cells with 0.2% CTAB at 4°C for 10 min. For the immobilized system permeabilized cells were treated with glutaraldehyde to improve the system with cross-linking of enzymes. In this way, no significant loss of enzyme activity was apparent during 30 day operation in a continuous process. The productivity of the continuous process at a dilution rate 0.2 h–1 was 6.51g/L-h for sorbitol. The CTAB-permeabilized cells could be used to produce sorbitol and gluconic acid simultaneously in the long term continuous process.  相似文献   

2.
Summary Citric acid was produced with immobilized Yarrowia lipolytica yeast in repeated batch-shake-flask and air-lift fermentations. In active and passive immobilization methods calcium alginate, -carrageenan, polyurethane gel, nylon web and polyurethane foams were tested as carriers in repeated-batch fermentations. The highest citric acid productivity of 155 mg l–1 h–1 was reached with alginate-bead-immobilized cells in the first batch. A decrease in bead diameter from 5–6 mm to 2–3 mm increased the volumetric citric acid productivity threefold. In an air-lift bioreactor the highest citric acid productivity of 120 mg l–1 h–1 with a product concentration of 16.4 g l–1 was obtained with cells immobilized in -carrageenan beads. Offprint requests to: H. Kautola  相似文献   

3.
Production of gluconic acid by cells of Aspergillus niger immobilized on polyurethane foam was studied in repeated-batch shake-flask and bubble-column fermentations. For passive immobilization, various amounts of polyurethane foam and spore suspension were tested in order to obtain a suitable combination for optimal concentration of immobilized biomass. Immobilized cells were sucessfully reused with higher levels of product formation being maintained for longer period (65–70h) than free cells. The highest gluconic acid concentration of about 143 g l–1 was reached on hydrol-based production medium with 0.3-cm3 foam cubes in the bubble column, where the effect of more suitable aeration and particle volume: medium volume ratio scheme was also investigated.  相似文献   

4.
Candida glycerinogenes is an aerobe which does not depend on sulphite for production of glycerol. With a sufficient O2 supply, up to 130 g glycerol l–1 was produced with 2.6 g acetic acid l–1 as by-product. However, with an insufficient O2 supply – with higher volumes of medium or at higher corn steep liquid concentrations – the glycerol concentration was lower because the by-products, ethanol, pyruvate and lactic acid, were produced in greater amounts, up to 45 g l–1, 4.3 g l–1, 1.6 g l–1, respectively, whereas, less acetic acid (0.6 g l–1) was produced. In addition, ethanol decreased to 0.4 g l–1 and the glycerol yield improved from 34 to 50% (w/w) by adding 50 g sulphite l–1, nevertheless, acetic acid increased to 7.8 g l–1.  相似文献   

5.
Candida bombicola (ATCC 22214) and C. apicola (ATCC 96134), grown on glucose (100 g l–1) and arachidonic acid (5Z, 8Z, 11Z, 14Z-eicosatetraenoic acid; AA), 1.25 g l–1, synthesized sophorolipid up to 0.93 g l–1. Acid hydrolysis of sophorolipid yielded 19-hydroxy-5Z, 8Z, 11Z, 14Z-eicosatetraenoic acid (19-HETE) and 20-hydroxy-5Z, 8Z, 11Z, 14Z-eicosatetraenoic acid (20-HETE) which were identified by TLC and GC-MS; the ratio of synthesis was 73:27, respectively. Conversion of AA by immobilized Candida bombicola, suspended in beads of 2% (w/v) calcium alginate for 96 h, gave an 83% conversion of 1 g AA l–1 to 19- and 20-HETE. There was no significant loss in the efficiency of the immobilized cells after ten uses.  相似文献   

6.
Lactobacillus plantarum produced an extracellular tannase after 24 h growth on minimal medium of amino acids containing 2 g tannic acid l–1. Enzyme production (6 U ml–1) was optimal at 37 °C and pH 6 with 2 g glucose l–1 and 7 g tannic acid l–1 in absence of O2.  相似文献   

7.
Summary The continuous production of gibberellic acid with immobilized mycelia of Gibberella fujikuroi was maintained over a hundred days in a tubular fixed-bed reactor. Free mycelium at the beginning of the storage phase was harvested from G. fujikuroi shake-flask culture and was immobilized by ionotropic gelation in calcium alginate beads.The continuous recycle production system consisted of a fixed-bed reactor, a container in which the culture medium was heated, stirred and aerated, and valves for sample withdrawal or reactant addition during the first 1320 h (55 days). A two-phase continuous extractor was then added for the last 960 hours (40 days). Free and immobilized mycelium shake-flask cultures with the same strain used in the continuous culture system were also realized to compare growth, maintenance and production parameters. The results show about the same gibberellic acid productivity in both free and immobilized mycelium shakeflask cultures: 0.384 and 0.408 mgGA3·gBiomass-1 ·day-1, respectively, whereas in the continuous system the gibberellic acid production is about twice as large for a similar biomass: 0.768 mgGA3·gBiomass-1·day-1. Several factors affecting the overall productivity of the immobilized systems were found to be: the quality and the quantity of mycelia in the biocatalyst beads and the immobilization conditions.  相似文献   

8.
Summary The production of l-lactic acid from whey permeate, a waste product of the dairy industry, by fermentation with the lactic acid bacterium Lactobacillus casei subsp. casei was investigated. A fermentation medium consisting of permeate and supplements, which enables exponential growth of the organisms, was developed. A fast method for determination of free and immobilized biomass in solid-rich media, based on measurement of cellular ATP, was evolved. Continuous fermentations in a stirred tank reactor (STR) and in a fluidized bed reactor (FBR) with immobilized biomass were compared. In the STR a volumetric productivity of 5.5 g/l per hour at 100% substrate conversion [dilution rate (D) = 0.22 h–1] was determined. In the FBR porous sintered glass beads were used for immobilization and a maximum biomass concentration of 105 g/kg support was measured. A productivity of 10 g/l per hour was obtained at D = 0.4 h–1 (substrate conversion 93%) and of 13.5 g/l per hour at D = 1.0 h–1 (substrate conversion 50%). Offprint requests to: W. Krischke  相似文献   

9.
This paper investigates the effects of the oxygenation level on the performance of d-xylose alcoholic fermentation by free- and immobilized-cell batch cultures of Candida shehatae (ATCC 22984). Yeast cells were immobilized in composite agar layer/microporous membrane structures. Fermentations were performed under varying oxygenation levels corresponding to different O2 flow rates (OFRs). Low OFRs enhanced the fermentation performance of free and immobilized yeasts. The best ethanol yield coefficient, obtained at an OFR of 5 mmol O2 h–1 dm–3 for both culture modes, was slightly higher (0.425 g g–1) for immobilized cultures than for their free counterparts (0.39 g g–1). More sustained aeration inhibited ethanol production by free and immobilized organisms. However, this inhibition was more pronounced for agar-entrapped cultures. Xylitol production of free cultures normally decreased as the OFR increased. At high OFR, however, immobilized organisms surprisingly produced more xylitol than at lower OFR or in anaerobiosis. This effect is discussed by referring to the mass transfer limitations that occur inside the immobilized-cell structures. Gel-entrapped cultures displayed higher specific and volumetric production rates of ethanol and xylitol than free-cell cultures.  相似文献   

10.
Particularly high population densities are readily sustainable in newly designed glass column reactors. The optimal density ofIsochrysis galbana in these columns in summer was 4.6 g L–1 dry algal mass at which value the highest sustainable productivity obtained was a record of 1.6 g L–1 d–1. The population density exerted a direct effect on productivity: The higher the light intensity, the more pronounced was the dependence of the output rate on the population density, variations of 10%± from the optimal density resulting in a significant decline in productivity. The population density had also a very significant effect on the course of photoadaptation which took place during the first days after transferring the cultures from the laboratory to the outdoors. The output rate was lower by 5 to 35% on the first day of such transfer as compared to the light-adapted control. The higher the cell density, the faster was the process of photoadaptation as indicated by the rise of the productivity and O2 tension to the control level. The potential for excess light damages was most prominent in the column reactors used, in which the light path was much reduced compared with that in open raceways. Significant photoinhibition took place at below optimal population density (2.8–3.8 g L–1), and when cell density was further reduced (1.9 to 1.1 g L–1), exposure to full sunlight caused photooxidative death within a few hours. The pattern of O2 concentration in the culture that emerged along the day served as a useful indicator of photolimitation.Author for correspondence  相似文献   

11.
A number of bacteria belonging to the genera Proteus, Providencia, Pseudomonas and Erwinia have been tested for their capacity to oxidize -amino acids to their corresponding α-keto acids. Members of the Proteus and the Providencia genera were active towards various -amino acids. Immobilized cell preparations of Providencia sp. PCM 1298 were shown to form up to 80 mg α-keto-γ-methiol butyric acid from -methionine per g of gel preparation (containing 4% w/w cells) per day. The productivity was highly dependent on the size of the beads. Oxygen appeared to be the rate-limiting substrate and oxygen transfer rates of 3–4 μmol cm−2 h−1 were calculated. The entrapment of activated charcoal to remove H2O2 formed during the oxidation extended the half-life of the immobilized biocatalyst considerably. A decrease in -amino acid oxidase [ -amino acid: oxygen oxidoreductase (deaminating); EC 1.4.3.2] activity during operation could be compensated for by reinoculation of the alginate-entrapped cells in fresh growth medium, allowing use of these preparations of immobilized bacterial cells for more than one month.  相似文献   

12.
The optimization task was performed using the gluconic acid synthesis by the Acetobacter methanolicusMB 58 strain. The microorganisms were grown continuously on methanol as the growth substrate. After finishing the growth process by the deficiency of N and P, the gluconic acid synthesis was started by adding glucose. The synthesis process was performed continuously. The oxygen transfer rate depended on the gluconic acid concentration. During the growth process, the oxygen transfer rate reached a value of about 13 g O2 · kg?1 · h?1using a 30-l glass fermenter equipped with a 6 blade stirrer and fully baffled. This rate declined to a value of between 2 and 5 g O2 · kg?1 · h?1 in the presence of gluconic acid concentrations above 150 g gluconic acid · kg?1medium. The yield (g gluconic acid · g?1glucose) depended on the gluconic acid concentration and amounted to y = 0.7 in relation to 150 g gluconic acid · kg?1medium and y = 0.8 in relation to 200 g · kg?1medium, respectively. The fermenters were coupled with ultrafiltration moduls (Fa. ROMICON and Fa. SARTORIUS). The biomass concentrations amounted from 5 to 40 g dry mass kg?1medium. The ultrafiltration modules retained the biomass within the fermentation system. A glucose solution (30 to 50 weight percent glucose) was continuously dosed into the fermenter. The retention time was chosen between 2 and 30 h. The gluconic acid synthesis rate reached values of up to 32 g gluconic acid · kg?1 · h?1. Within a range of up to 250 g gluconic acid · kg?1medium, the acid concentration had no influence on the enzyme activity.  相似文献   

13.
Pseudomonas sp. 42A2 when incubated for 36 h with oleic acid (20 g l–1) in a stirred bioreactor, accumulated 10-hydroxy-8E-octadecenoic acid. Production in a 2 l bioreactor with 1.4 l of working volume, was increased from 0.65 g l–1 to 7.4 g l–1 with K L a values ranging between 15 and 200 h–1. A linear relationship was found between volumetric productivity and oxygen transfer rates and an exponential relation between the specific rate of product formation and specific growth rate.  相似文献   

14.
Summary Sanguinaria canadensis L. plants were harvested from a local forest and calli were initiated from leaf explants. The production of benzophenanthridine alkaloids (i.e. sanguinarine, sanguilutine, sanguirubine, chelerythrine, chelilutine and chelirubine) by S. canadensis cell grown in modified B5 and IM2 media was compared to the alkaloid content of rhizomes. Sanguinarine accounted for approximately 80% of the total alkaloid content of cultured cells (1.3%,g g–1) while sanguinarine and sanguirubine accounted for 70% of rhizome alkaloids (9.0%, g g–1). Sanguinarine, chelirubine and chererythrine were the only known alkaloids detected in cultured S. canadensis cells. Maximum alkaloid production of cultures performed using B5 medium, containing half the original nitrate concentration, was observed following extracellular nitrate and sugar depletion. The scale-up of this culture was successfully performed in a 2-1 immobilization bioreactor. The consumption of sugar and nitrate as well as the oxygen (OTR) and carbon dioxide (CTR) transfer rates of the immobilized cell culture were monitored for 15 days. The maximum sugar and nitrate consumption rates were 1.8 g l–1 per day and 2.3 mm per day respectively. The maximum OTR and CTR of the immobilized cell culture were 0.8 mmol O2 l–1 h–1 and 0.95 mmol CO2 l–1 h–1 respectively. The sanguinarine yield of this culture reached 1.0% based on biomass dry weight (g g–1 dw) by day 15.  相似文献   

15.
Continuous ethanol fermentation by immobilized whole cells ofZymomonas mobilis was investigated in an expanded bed bioreactor and in a continuous stirred tank reactor at glucose concentrations of 100, 150 and 200 g L–1. The effect of different dilution rates on ethanol production by immobilized whole cells ofZymomonas mobilis was studied in both reactors. The maximum ethanol productivity attained was 21 g L–1 h–1 at a dilution rate of 0.36 h–1 with 150 g glucose L–1 in the continuous expanded bed bioreactor. The conversion of glucose to ethanol was independent of the glucose concentration in both reactors.  相似文献   

16.
Ahn SJ  Yoo JH  Lee HC  Kim SY  Noh BS  Kim JH  Lee JK 《Biotechnology letters》2003,25(14):1179-1183
Mutagenesis of Erwinia rhapontici was performed to enhance the production of isomaltulose from sucrose. A mutant strain, BN 68089, was obtained through a screening process involving automated and miniaturized cultivation in Bioscreen C. This high-throughput, miniaturized screening system was optimized to identify the mutant strain, which had a conversion yield (90%) and productivity (194 g l–1 h–1). The BN 68089 mutant cells were immobilized in sodium alginate and when operated in a packed bed reactor gave a yield of 89% and a productivity of 144 g l–1 h–1 of at 30 °C, the optimal temperature. Immobilized BN 68089 cells exhibited 8% and 15% higher yield and productivity, respectively, than those of the wild-type strain.  相似文献   

17.
Baterial lipase from Staphylococcus carnosus (pLipMut2) has been immobilized on various supports in order to determine a suitable immobilization technique in terms of activity and stability, when utilized for the hydrolysis of tributyrin. The hydrophobic materials PBA Eupergit and PBA Eupergit 250L prooved to be appropriate supports, when the enzyme was crosslinked with glutaraldehyde after adsorption. No desorption of the immobilized enzyme occured during operation. The pore size of the support has a strong effect on the activity but does not influence stability.The initial activity for immobilized and soluble lipase is found to follow the Arrhenius equation at low temperature, where mass transfer does not affect reaction kinetics. Activation energies for soluble and immobilized lipase were evaluated to be 21.7 kJ mol–1 and 60.8 kJ mol–1, respectively.Operational stability was studied in a packed bed recirculation reactor. Thermal desactivation followed first order kinetics with a half-life of 1340 h at 10°C. Model calculations for productivity showed, that optimal temperatures for high productivity are well below the temperature of maximal activity.List of Symbols E a [kJ mol–1] activation energy - E d [kJ mol–1] activation energy of desactivation - H [–] half-number - k d [h–1] desactivation constant - k d, [h–1] constant - k N [–] desactivation constant (number) - N [–] number of runs - p [mol dm–3] productivity - t [h] time - t 0.5 [h] half-life - T [K] absolute temperature - V [U ml–1] activity - V(N) [Uml–1] activity exhibited in the n-th run - V s,O [U ml–1] initial activity of supernatant - V s, [U ml–1] activity of supernatant after immobilization - V O [U ml–1] initial activity - V [U ml–1] constant - imm [–] activity yield - [ml ml–1] ratio of volume of support to volume of supernatant Financial support of this work by the Deutsche Forschungsgemeinschaft (SFB 145, A15) is gratefully acknowledged.  相似文献   

18.
Summary The production of sorbitol and gluconic acid by toluene-treated, permeabilized cells of Zymomonas mobilis has been evaluated. From a 60% total sugar solution (300 g/l glucose and 300 g/l fructose), a sorbitol concentration of 290 g/l and a gluconic acid concentration of 283 g/l were achieved after 15 h in a batch process using free toluene-treated cells. A continuous process with immobilized cells was developed and only a small loss of enzyme activity (less than 5%) was evident after 120 h. With a strongly basic anion exchange resin and an eluent of 0.11 M Na2B4O7/0.11 M H3BO3, good separation of sorbitol and gluconic acid was achieved.  相似文献   

19.
The performance of a continuous bioreactor containing Clostridium beijerinckii BA101 adsorbed onto clay brick was examined for the fermentation of acetone, butanol, and ethanol (ABE). Dilution rates from 0.3 to 2.5 h–1 were investigated with the highest solvent productivity of 15.8 g l–1 h–1 being obtained at 2.0 h–1. The solvent yield at this dilution rate was found to be 0.38 g g–1 and total solvent concentration was 7.9 g l–1. The solvent yield was maximum at 0.45 at a dilution rate of 0.3 h–1. The maximum solvent productivity obtained was found to be 2.5 times greater than most other immobilized continuous and cell recycle systems previously reported for ABE fermentation. A higher dilution rate (above 2.0 h–1) resulted in acid production rather than solvent production. This reactor was found to be stable for over 550 h. Scanning electron micrographs (SEM) demonstrated that a large amount of C. beijerinckii cells were adsorbed onto the brick support.  相似文献   

20.
Summary Living Gluconobacter oxydans cells were attached on fibrous nylon carrier. Free gluconic acid was directly continuously produced in an aerated tubular immobilized-cell bioreactor for at least 6 months, with a volumetric productivity of at least 5 g/lh at 100 g/l substrate glucose and about 80 g/l product gluconic acid concentrations. The highest volumetric productivity in respect to glucose concentration was obtained with 175 g/l glucose, with about 120 g/l product gluconic acid level. With self-directing optimization procedure in respect to maximum product gluconic acid level, productivities as high as about 12–15 g/lh were obtained at relatively high substrate feed rate of 0.166 l/lh and relatively low aeration rate of 0.5 l/lmin. The highest glucose conversion of about 96% was obtained with a long residence time, at the lowest substrate feed rate used at a relatively low aeration rate, resulting however in a significant increase in ketogluconic acid production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号